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Abstract: Wavefront sensors and processors are vital components of adaptive optical (AO) systems,
directly impacting the operating bandwidth. As application scenarios become increasingly complex,
AO systems are confronted with more extreme atmospheric turbulence. Additionally, as optical sys-
tems scale up, the data processing demands of AO systems increase exponentially. These challenges
necessitate advancements in wavefront sensing and processing capabilities. To address this, this
paper proposes an integrated wavefront sensing and processing method based on the optical neural
network architecture, capable of directly providing control coefficients for the wavefront corrector.
Through simulation and experimentation, this method demonstrates high sensing precision and
processing speed, promising to realize large-scale, high-bandwidth AO systems.

Keywords: optics in computing; wavefront sensing; adaptive optics

1. Introduction

Adaptive Optics (AO) is a technology that makes real-time corrections to distorted
wavefronts by dynamically adjusting the control signal of a corrector based on wavefront
sensing data, which was first proposed by American astronomer H.W. Babcock in 1953 [1].
Over the past 60 years, AO has significantly developed and is now widely used in various
fields such as astronomy [2], Free space optics [3], and microscopy [4]. As optical systems
become more complex and find applications in more extreme scenarios, the wavefront
disturbance caused by atmospheric turbulence often exhibits higher temporal variabil-
ity, which places greater demands on AO systems’ wavefront sensing and processing
performance [5,6].

In recent years, researchers have been working to enhance AO systems’ performance
by improving wavefront sensing and processing speed, which has been mainly achieved
by applying electronic neural networks to data processing and system control [7–10].
Although these methods have reduced time consumption to some extent, they still require
a large amount of data conversion and complex calculations due to the limitations of
electronic computation. In contrast, recent architectures based on optical computation
have shown considerable promise, particularly in object classification [11] and saliency
detection [12] applications. Compared to electronic methods, these optical approaches
demonstrate unparalleled speed advantages and comparable sensing accuracy.

Considering the wavefront sensing and processing task receiving optical signals as
inputs, optical computation emerges as a promising avenue for acceleration. Significant
progress has been made in this area. Pan et al. proposed a diffractive adaptive optics
system (DAOS) architecture. This wavefront sensor-less AO system can achieve wavefront
correction for converging light beams entirely through optical means, thereby enhancing
the imaging quality of point targets [13]. Zhan et al. also employed an optical neural
network to correct wavefront distortion generated by oceanic turbulence in an underwater
wireless optical communication (UWOC) system [14]. Furthermore, Goi et al. introduced an
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Integrated Diffractive Deep Neural Networks (ID2N2) method [15]. This hybrid photonic-
electronic integrated deep neural network directly reconstructs the optical pupil phase as
an intensity distribution through optical computation.

Although the methods mentioned above have provided insights into the application
of optical computation in wavefront sensing and processing, there are still challenges in
working with other components of the AO system. For instance, these methods exhibit
sensitivity to overall or local perturbations in intensity distribution, thereby limiting their
generalization capabilities, especially in harsh atmospheric conditions. Moreover, the cou-
pling between these methods and the following wavefront correctors still necessitates
extensive post-processing of data, which, due to the “weakest link” effect, continues to
constrain the overall operational bandwidth of the AO system.

In this paper, we propose an integrated wavefront sensing and processing (IWFSP)
method, which employs a diffractive optical neural network to replace traditional wavefront
sensors and processors, specifically optimized for seamless integration with subsequent
wavefront correctors to form a high-bandwidth AO system. In the simulation section,
we generate a dataset of wavefront aberrations and train the diffractive neural network
to perform wavefront sensing and processing tasks, followed by a numerical analysis
of its performance. In the experimental section, we demonstrate wavefront correction
based on IWFSP through benchtop experiments, preliminarily validating the feasibility of
this method for constructing AO systems. In the discussion section, we propose several
potential hardware improvement measures and further analyze the bandwidth of adaptive
optical systems based on this approach.

2. Simulation

The IWFSP proposed in this paper is essentially an optical neural network optimized
for wavefront sensing and processing tasks, which is a variant of the diffractive deep neural
network (D2NN). Introduced by Lin et al. from the University of California, D2NN is an
optical computation architecture based on the diffraction effect, enabling specific inference
tasks at the speed of light [11]. The implementation process of IWFSP, like a typical D2NN,
comprises two stages: electronic training and optical deployment. The electronic training
stage can be seen as an automatic design process for the modulation layer of the optical
field on an electronic computing platform. It is data-driven, utilizing abundant sample data
to update parameters through deep learning algorithms iteratively. A comparison between
the D2NN and the classical Fully Connected Neural Network (FCNN) is illustrated in
Figure 1, where both consist of input, hidden, and output layers. Unlike electronic neural
networks, in D2NN, the interconnection between neurons is described by optical diffraction
theory, which implies that the forward propagation of this model can be regarded as a
numerical simulation of spatial light modulation and diffraction for a specific complex field.
Consequently, based on the free-space optical interconnection, the parameters of the neural
network trained electronically correspond to the modulation coefficients of spatial light,
which can be deployed to achieve optical computation for specific tasks.

According to the description of the angular spectrum method, the diffraction prop-
agation phenomenon of light can be regarded as a linear spatial filter, assuming that the
complex field at z = 0 is U0, then the complex field at z position is

Uz = F−1{F{U0} · H( fX , fY; z)}, (1)

where the transfer function H( fX , fY; z) is

H( fX , fY; z) = exp
[

j
2π

λ
z
√

1 − (λ fX)
2 − (λ fY)

2
]

, (2)
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therefore, based on the Huygens–Fresnel principle, the interconnection formula between
neurons in adjacent layers of the neural network can be obtained as

Vk = F−1

{
n

∑
i=1

F{Ui · exp(jϕi)} · Hi( fX , fY; zik)

}
, (3)

where Vk represents the input of the neuron labeled k in the next layer, and Ui represents
the output of the neuron labeled i in the previous layer.

Figure 1. A comparison between (a) the FCNN and (b) the D2NN.

Considering that the classical D2NN architecture is only capable of handling classifica-
tion problems based on the maximum output intensity, we introduce an improvement by
incorporating differential operations to extend its inference capability to regression prob-
lems [16]. The improvement method involves integrating a pair of parallel D2NNs through
differential operations into the same model for synchronous optimization, as illustrated in
Figure 2a. This enhancement not only alleviates the strict non-negativity constraints on
output light intensity but also enhances the robustness of the model to both overall and
local perturbations in input light intensity, thereby contributing to the improvement of the
model’s accuracy.

Additionally, we have specifically optimized the IWFSP for subsequent collaboration
with the deformable mirrors, where output intensity signals, after simple differential
operations, can be directly utilized to control actuators for correction, thereby constructing
a high-bandwidth AO system, as illustrated in Figure 2c. When working, a wavefront
sensor in a traditional AO system, such as the Shack–Hartmann wavefront sensor (SH-
WFS), first needs to collect the intensity distribution at the focal plane of the microlens
array, and then calculate the intensity center of mass within the sub-aperture, and then
The local slope of the wavefront is calculated based on the offset of the center of mass
from the ideal focus, and finally the wavefront is reconstructed based on the slope of the
wavefront. Then, the wavefront processor computes actuator control signals based on
the reconstructed wavefront and the optical response function of the deformable mirror,
involving extensive and complex matrix operations. Then, the wavefront processor needs
to calculate the control signals of actuators based on the reconstructed wavefront and
the optical response function of the deformable mirror, which involves a large number
of complex matrix operations. In contrast, the proposed IWFSP method accomplishes
most of the computations during wavefront sensing and processing using optical neural
networks, resulting in minimal data volume for subsequent electronic operations. For a
deformable mirror with n actuators, only 2n intensity signals need to be detected and
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subjected to simple differential operations, significantly reducing the time required for
wavefront sensing and computation processes.

Figure 2. (a) Structure of the IWFSP model. (b) Construction method for the wavefront aberration
dataset. (c) A schematic diagram of an AO system based on IWFSP.

Firstly, in order to train the diffractive optical neural network for wavefront sensing
and processing tasks, we compiled a dataset of wavefronts. We generated 10,000 wavefront
distortion samples using Zernike polynomials with random coefficients, as shown in
Figure 2b. Zernike polynomials, introduced by Zernike in 1934 [17], constitute a complete
orthogonal basic function set on the unit circle, making them suitable for fitting aberrations
on circular pupils. These wavefront samples are generated using Zernike polynomials up
to the 28th order (according to Noll indices), with random coefficients following Gaussian
distributions of varying standard deviation. The coefficients of Zernike polynomials of
all samples can be found in the Supplementary Materials. These samples were employed
for the electronic training process, with 6,000 randomly selected for training, 2000 for
validation, and 2000 for testing. As part of integrating wavefront processing capabilities,
we used the optical response functions of a 19-actuator deformable mirror as elementary
functions. Each sample’s label represents the decomposition coefficients of the wavefront
on this set of elementary functions. Expanding each response function into a vector and
concatenating them into a response matrix, R. For a random wavefront distortion sample
X, its label L is given by the least-squares solution to the equation R · L = X.

During the electronic training process, we constructed an IWFSP model using Python
3.10.11 and PyTorch 2.0.1 frameworks, with specific parameter configurations shown in
Table 1. We set the physical size of a single neuron to 8× 8 µm, determined by the pixel size
of the SLM used in the subsequent experiment. Additionally, the input wavelength was set
to 532 nm, determined by the laser source used in the experiment. After determining the
neuron size and input wavelength, it was necessary to choose an appropriate inter-layer
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distance to ensure full connectivity of the neural network. Considering a single diffraction
modulation layer as a grating with modulation unit physical size d and incident light
wavelength λ, under normal incidence conditions, the diffraction angle θ satisfies the
following equation according to the grating equation

sin θ =
mλ

d
m = 0,±1,±2, · · · (4)

where m represents the diffraction order, where the primary diffraction peak corresponds to
m = 0. As m increases, the intensity of the diffraction peaks gradually decreases. Therefore,
we choose m = 1 to determine the maximum diffraction angle, as follows:

θmax = arcsin
(

λ

d

)
(5)

For the λ = 532 nm and d = 8 µm used in this simulation, the maximum diffraction
angle is calculated to be θmax ≈ 3.81◦. Considering that each layer of the neural network
contains N2 = 800 × 800 neurons, in order to achieve full connectivity, the inter-layer
spacing l must satisfy

l ⩾
Nd

tan(θmax)
≈ 9.6 cm (6)

Table 1. IWFSP model and training configuration.

Parameter Value

Number of Parallel Branches 2
Number of Neural Network Layers 2 × 2 = 4

Physical Size of Single Neuron 8 × 8 µm
Number of Neurons per Layer 1000 × 1000

Inter-layer Distance 10 cm
Input Wavelength 532 nm

Range of Phase Modulation Coefficients [0, 2π]
Batch Size 30

Initial Learning Rate 0.01

Furthermore, we validated this through numerical simulations of the diffractive re-
sponse matrix at different distances. As mentioned earlier, the diffraction propagation
phenomenon of light can be regarded as a linear system. For a diffractive layer containing
N2 neurons, it has N2 inputs and N2 outputs. By applying unit excitation to each neuron
and observing output intensities at different distances, we obtained multiple diffractive
response matrices of size N2 × N2, as depicted in Figure 3. It is important to note that both
the intensity distribution and the response matrices in the figure have been normalized. It
can be observed that with increasing distance, the response of edge neurons becomes more
pronounced. However, the total intensity decreases because some of the light propagates
outside the calculation window. This implies the necessity of selecting an appropriate
inter-layer spacing l to maintain a high utilization of light intensity while satisfying the
fully connected characteristic of the diffraction neural network. Consequently, in this study,
we chose an inter-layer spacing of l = 10 cm.

Besides the four diffractive layers, the construction of the IWFSP model also incor-
porates a front-end input layer and an end-stage differential layer. The input layer loads
wavefront data from the dataset onto the phase channel of the beam. The differential layer
integrates the output intensities of the two parallel models, providing final differential
predictions to enable joint training. The forward propagation of this neural network model
is implemented using angular spectrum method, and the loss function is represented by
the mean squared error (MSE) between the differential predictions and the labels of the
samples. Error back-propagation is performed using the adaptive moment estimation
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(Adam) algorithm. For the Adam optimizer, the initial learning rate is set to α = 0.01,
with coefficients for computing the running averages of gradients and their squares set
as β1 = 0.9 and β2 = 0.999, respectively. To improve numerical stability, ϵ = 1 × 10−8 is
added in the denominator. Additionally, we apply the sigmoid function to the parameters
of the neural network to confine the phase modulation coefficients within the range [0, 2π].

Figure 3. Analysis of fully connected characteristics based on diffraction response matrix.

As depicted in Figure 4a, after 50 epochs of training, the IWFSP model exhibits a
convergence of the loss function, reaching its minimum on both the training and valida-
tion datasets, Which indicates optimal performance and generalization capability. Further
training might offer marginal performance improvements but could potentially lead to over-
fitting. Therefore, we performed a detailed performance analysis for the 50-epoch model.

Figure 4. Training results of the IWFSP. (a) Training and validation loss curves. (b) The final design
result of the phase modulation layers. (c) The wavefront sensing and reconstruction process.

Parameters of the trained IWFSP model are extracted and transformed to obtain the
final optimized design for the cascaded phase modulation layers, as shown in Figure 4b.
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After training with a large dataset, the model forms specific modulations at positions corre-
sponding to the peak values of the response functions, establishing a connection between
the input wavefront’s local information and the target region’s light intensity. From the
wavefront sensing and reconstruction process of a random sample in Figure 4c, it is evident
that after optical computing through phase modulation layers, the model provides two sets
of discrete light intensity distributions on the output plane. Assuming subsequent collab-
oration of IWFSP with a deformable mirror containing n actuators, models A and B will,
respectively, output n discrete output light intensities, denoted as IA = (IA,1, IA,2, . . . , IA,n)
and IB = (IB,1, IB,2, . . . , IB,n). The final prediction value P of IWFSP is determined by the
following differential operation:

P = (P1, P2, . . . , Pn) = K · IA − IB

IA + IB
, (7)

where K is a scalar hyperparameter of the model, used to amplify the results of differential
operations, thereby allowing smaller differences in light intensity to produce larger output
signals. In both the simulations and experiments of this study, the value of K was set to 4.
The value was determined as the optimal result by training multiple models while keeping
other model and training hyperparameters unchanged. We varied this hyperparameter
between 1 and 5 at intervals of 1 and conducted hyperparameter evaluations on the valida-
tion set, ultimately yielding the optimal result of 4. Additionally, due to the generation of
the optical response function for a 19-actuator deformable mirror in this simulation (i.e.,
n = 19), models A and B output 19 intensity signals each, totaling 38 data points. This
data volume is significantly smaller than what is required by traditional wavefront sensors
and processors. It is worth noting that the 19 values of the differential prediction result
P correspond to the control signals of the 19 actuators of the deformable mirror, which,
after simple voltage amplification, can be directly used to guide the deformable mirror in
correcting wavefront distortions.

After obtaining the predicted values, we can multiply them with the corresponding
elementary function and then superimpose sum them up to obtain the final reconstructed
wavefront. The wavefront sensing results of four random test data not used during the
training process are shown in Figure 5, indicating its ability to generalize to a certain extent.
We then conducted traversal verification on the test set of 2000 samples and calculated that
the input wavefront’s average Root Mean Square (RMS) value was 0.2849 µm. The average
RMS of sensing error was 0.0167 µm, which accounts for only 5.86% of the input wavefront
RMS. Therefore, it can be concluded that IWFSP has high-precision sensing performance,
which is comparable to traditional wavefront detection methods.

Figure 5. Test results of four random samples.
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3. Experiment

Following numerical simulations, we conducted benchtop experiments to validate
the feasibility of the IWFSP method for wavefront correction, as illustrated in Figure 6.
In this experiment, we employed a continuous-wave laser with a wavelength of 532 nm
as the illumination source, generating a circular beam with an approximate diameter
of 5 mm. Following the laser, we placed a Spatial Light Modulator (SLM) to introduce
wavefront aberrations into the beam. The SLM, an electro-optic modulating device, alters
the arrangement of liquid crystal molecules by applying varying electric fields, thereby
modifying the refractive index of the liquid crystal layer to modulate the incident wave.
Specifically, we utilized reflective phase-type SLMs, which receives 8-bit grayscale image
data as input and adjusts the phase of corresponding elements based on the grayscale values
of the image pixels, where a grayscale value of 255 corresponds to a phase modulation
of 2π. In the experiment, we randomly selected wavefront samples from the test dataset,
converted them into grayscale images, and loaded them onto the first SLM to introduce
wavefront aberrations. Subsequently, we constructed a monitoring branch using a beam
sampler to quantitatively measure the wavefront of the beam using a Shack-Hartmann
Wavefront Sensor (SH-WFS) . Then, we split the beam into two branches, A and B, using a
1:1 beam splitter (BS) , each equipped with two SLMs to deploy phase modulation layers
designed by IWFSP corresponding to Model A and Model B. Finally, a Complementary
Metal Oxide Semiconductor (CMOS) camera was placed at the end of each branch to
capture the output intensity.

Figure 6. (a) Optical path schematic diagram. (b) Experimental setup photograph. (c) IWFSP is
deployed by SLMs. (d) Output intensity is collected by CMOS.

In this experiment, considering inter-layer misalignment of the neural network, we
retrained a new model with 800 × 800 neurons for each layer using only the central 7 actua-
tors of the 19-actuator deformable mirror employed in simulations. This adjustment was
made to reserve 280 pixels of the SLM for alignment correction. Apart from the number
of actuators and neurons, all other parameters of this model remained identical to those
used in the simulations. Inter-layer alignment error is one of the primary factors affect-
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ing the deployment performance of D2NN. Therefore, to address the alignment issues
inherent in deploying D2NN based on SLMs, this study employs a holographic imaging-
based alignment method. By loading a holographic modulation image onto the first SLM,
a cross-shaped pattern is formed on the surface of the second SLM. If there is any deviation
between the center of this cross and the center of the second layer SLM, calibration can be
achieved by shifting the phase modulation pattern on the first layer. Considering the pixel
size of the SLM is 8 µm, this method theoretically enables alignment accuracy up to 8 µm.

Subsequently, we extracted the trained D2NN model parameters, transformed them
into phase modulations using the sigmoid function, and loaded them to the correspond-
ing SLM. Considering that there are some inevitable deployment errors in the optical
implementation of IWFSP, we have made some corrections to the differential operation.
If the two output light intensities corresponding to the m-th actuator of the deformable
mirror are denoted as IA,m and IB,m, then the actuator’s control signal is given by the
following equation

Pm = −K · (IA,m − BGA,m)− kB,m · (IB,m − BGB,m)

(IA,m − BGA,m) + kB,m · (IB,m − BGB,m)
, (8)

where BG is employed to correct the background noise of the CMOS and the incompletely
shielded ambient light. kB is utilized to correct the uneven beam splitter ratio. Both parame-
ters can be determined through a calibration process before the experiment. After adjusting
the optical path and completing the alignment process, without turning on the laser source,
the intensity of light is collected using the two CMOS sensors at the end, which can be
utilized to calibrate the BG parameters for each target area. Subsequently, with the light
source turned on, the intensity of light is once again captured using the two CMOS sensors
at the end. The collected intensities are subtracted by BG to eliminate background noise.
Finally, the output intensity of branch A is divided by the output intensity of branch B to
obtain the calibrated parameter value kB.

After setting up the experimental platform and completing the necessary calibration
procedures, we conducted tests on 30 randomly generated wavefront distortion samples.
The experimental results for five random samples are shown in Figure 7a. The reconstructed
wavefront from IWFSP is combined after taking the negative and superimposed onto the
input wavefront, allowing SH-WFS to detect the correction residuals. This process serves
as a simplified simulation of the actual workflow of an AO system. Figure 7b displays
the Peak-to-Valley (PV) and RMS values before and after correction for all 30 wavefront
distortion samples tested in the experiment. The average RMS of the input wavefront
distortions is 0.3642 µm, with an average PV of 1.4110 µm. After correction by IWFSP,
the average RMS of the residual wavefront is reduced to 0.0548 µm, with an average PV of
0.2243 µm, indicating an error of approximately 15%.

The above experimental results further confirm the capability of the IWFSP method
to perform sensing and processing of the input wavefront through optical computation,
directly solving the control signals based on the corrector of the AO system. A particular
discrepancy between the experimental and simulated results could be attributed to the
deployment errors, which can be addressed by introducing an in-situ training method [18]
or vaccination strategy [19].
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Figure 7. Experimental results of the optical implementation of the IWFSP model. (a) Experimental
results for five random wavefront samples. (b) PV and RMS of all thirty wavefront samples and
wavefront residuals.

4. Discussion

Through the above simulation and experiment, we have proven that IWFSP can opti-
cally realize most of the operations in wavefront sensing and processing. Compared with
traditional wavefront sensing and processing methods, the IWFSP method can be seen as
shifting the majority of computations before sensing, effectively achieving “optical-domain
data preprocessing”, which will significantly enhance computational speed and reduce data
volume. It is worth noting that there are no restrictions on the elementary functions used
for wavefront reconstruction in IWFSP. In this study, the optical response function of the
deformable mirror is used as the elementary function. The advantage is that it can realize
the direct optical solution of the control signal of the deformable mirror. Furthermore, this
approach offers the flexibility to utilize Zernike polynomials as basis functions. In this
scenario, the method can function as a rapid wavefront sensor, providing direct estimation
of the fitting coefficients for various orders of Zernike polynomials characterizing the
input wavefront.

In the verification experiment of this study, CMOS cameras were utilized to capture
the distribution of light intensity. This decision was made for experimental convenience
and to facilitate result analysis and performance evaluation. Actually, the final control
signal predicted by IWFSP does not need to be obtained from the high-resolution light
intensity distribution. Rather, it only requires the total intensity data of light within small
regions on the output plane, which is the advantage of “optical-domain data preprocess-
ing”. This means that in actual applications, only 2n photodiodes can be used to detect
intensity signals (n is the number of actuating units of the deformable mirror). This not
only improves the sensing speed, but also completes the summation of light intensity in the
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target area through the sensing method of the photodiode device itself, further reducing
the amount of calculations. In addition, SLMs were adopted for the optical deployment of
IWFSP in the experiment. In practice, diffractive neural networks can be deployed through
micro/nanostructures to reduce volume and mass and achieve compact small detectors.
Considering experimental convenience, a computer was employed for conducting differen-
tial operations. In fact, differential calculations involve only basic arithmetic operations
such as addition, subtraction, multiplication, and division, which can be efficiently imple-
mented by Field-Programmable Gate Array (FPGA) circuits. This approach would enhance
processing speed further through parallel computing optimization.

Most of the IWFSP data is processed using parallel optical computing, so its processing
time is equivalent to the time required for light to travel. For our simulation and benchtop
experiment examples presented in this article, the optical path distance from the wave-
front input surface (SLM1) to the intensity output surface (CMOS) is less than 1 m. If the
miniaturized deployment solution mentioned above is adopted, the distance can be further
reduced to within 0.1 m. Therefore, the time consumption of the optical calculation part is
on the order of nanoseconds and can be ignored. The subsequent differential operation also
requires much less data compared to traditional methods. For the 19-actuator deformable
mirror, only 38 intensity data need to be calculated. Even if multiple calibration coefficients
are taken into account, the amount of data required to be processed does not exceed one
hundred, which is far smaller than the tens of thousands of image pixel data in traditional
methods. More importantly, IWFSP can compress wavefront data into several intensity
characteristics, significantly reducing the time required for processes such as photoelectric
conversion and analog-to-digital conversion. Generally speaking, the rise time of conven-
tional photodiodes is usually on the order of hundreds of nanoseconds to microseconds,
and even considering analog-to-digital conversion, it only takes tens of microseconds. If the
subsequent differential operation of hundreds of data is implemented by FPGA, it may take
a time ranging from a few microseconds to dozens of microseconds. If parallel computing
optimization is fully considered, higher levels can be achieved. Therefore, compared with
traditional methods, the frame time based on IWFSP is approximately within a hundred
microseconds and can reach an operating bandwidth of at least 10 kHz. If it is subsequently
used in combination with a high-speed deformable mirror to form an AO system, consider-
ing the iterative correction of about 10 frames, its closed-loop bandwidth can also reach the
kHz level. This is much higher than the closed-loop bandwidth of tens to hundreds of Hz
of existing classic AO systems.

In addition, with the growing demand in astronomical observations and other fields,
the scale of AO systems is also increasing. Extreme AO systems often contain wavefront
sensors with thousands of sub-apertures and wavefront correctors with thousands of actua-
tors, which will dramatically increase the amount of data and time-consuming wavefront
processing [5]. AO systems based on traditional wavefront sensing and processing meth-
ods will inevitably face bottlenecks in scale and bandwidth in the future. The AO system
based on IWFSP introduces optical operations to achieve parallel processing, which greatly
compresses the amount of data and can maintain a high processing speed even in extreme
AO systems. Therefore, the IWFSP method is expected to resolve the conflict between the
scale and bandwidth of future AO systems.

5. Conclusions

In this study, we proposes an integrated wavefront sensing and processing method
based on optical neural networks for high-bandwidth AO systems and verifies the fea-
sibility of this method through simulation and experiment. The improvement through
differential operations has resulted in wavefront correction residuals with RMS within
0.05 µm, demonstrating accuracy comparable to traditional wavefront sensing and pro-
cessing methods. In future work, our research team will consider applying this method to
build a complete adaptive optics system, hoping to break through the existing bandwidth
bottleneck and achieve high-speed wavefront correction.
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