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Abstract: Optical backbone networks constitute the fundamental infrastructure employed today by
network operators to deliver services to users. As network capacity is a key factor influencing optical
network performance, it is important to understand how topological and physical properties impact
its behavior and to have the capability to estimate its value. In this context, we propose here a method
to evaluate the network capacity that relies on the optical reach to account for physical layer aspects
in conjunction with constrained routing techniques for traffic routing. As this type of routing can
lead to traffic blocking, particularly due to the limitation on the number of wavelengths per fiber, we
also propose a fiber assignment algorithm designed to deal with this problem. We apply this method
to a set of randomly generated networks using a modified Waxman model, and for a network with
60 nodes, in a scenario without blocking, we obtain capacities of about 2.5 Pbit/s for a symbol rate of
64 Gbaud and about 5 Pbit/s for a symbol rate of 128 Gbaud. Remarkably, this duplication in the
total network capacity is achieved by an increase in the total fiber length of only about 51%.

Keywords: network capacity; fiber assignment; random networks; optical networks; optical
communications

1. Introduction

In recent years, there has been an enormous growth in telecommunications traffic
due to the surge of applications and services that require high bandwidth and generate
large amounts of data, such as video streaming services, social media platforms, cloud
computing, and the adoption of emerging technologies such as 5G, artificial intelligence, etc.
This evolving landscape requires the use of very high-speed telecommunications networks
like optical networks [1].

Optical networks are communication infrastructures that utilize light for transmission,
processing, and routing information and rely on optical fibers as their transmission medium.
These networks vary in terms of distance and capacity, falling into several tiers: (1) Back-
bone networks, which span extensive geographic distances and offer huge capacities (in
the order of dozens of Tbit/s); (2) Metro networks, which cover cities or metropolitan areas,
handling data transmission in the range of hundreds of Gbit/s; (3) Access networks, also
known as ‘last-mile networks’, which encompass small areas, connecting end-users to the
network providers and delivering data rates on the order of a few Gbit/s.

Wavelength Division Multiplexing (WDM) is a fundamental technology in the optical
networking field, as it enables the transmission of large amounts of data across long
distances. It works by simultaneously transmitting multiple optical signals, often referred
to as optical channels, through a single optical fiber, with each channel utilizing its own
wavelength. The number of channels transmitted per fiber depends on both the spacing
between wavelengths and the WDM signal bandwidth, which in turn is limited by the
bandwidth of the optical amplifiers used to compensate for the fiber losses. The most
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commonly used optical amplifier is the Erbium-Doped Fiber Amplifier (EDFA), which,
utilizing standard technology, can provide an amplification bandwidth of approximately
4800 GHz, although more advanced solutions can achieve values up to 6000 GHz. Therefore,
for a typical channel spacing of 50 GHz, the first solution can support up to 96 channels,
while the second one can accommodate up to 120 channels [2].

Network capacity is an important performance feature of optical networks. This
capacity can be defined as the maximum amount of data that the entire network can handle
per unit of time, and it is closely related to channel capacity. The concept of channel capacity
was introduced by Claude Shannon in 1948 [3]. This refers to the maximum data rate at
which the information can be reliably transmitted through a noisy channel without errors.
The fundamental assumptions behind this definition are that the noise is additive, white,
and Gaussian (AWGN) and that the channel is linear, i.e., the capacity always increases
with increasing signal power. However, the last assumption does not hold for optical fiber
channels, which are nonlinear by nature. This behavior implies that the optical channel
capacity does not grow indefinitely; instead, it is limited and reaches a maximum value as
the transmitted signal power increases [4–6].

When estimating the capacity of an optical network, one must necessarily consider
the optical channel capacity. However, the problem is more complex than that, as it is
necessary to also consider topological aspects, traffic demands, routing, and wavelength
and modulation assignments. In other words, this capacity estimation can be viewed as
a multilayer problem in the sense that it requires taking into account not only physical
layer properties but also network layer aspects. Furthermore, for an optimized design, it
would be paramount to have a clear understanding of how these different aspects correlate
with the network capacity. For that purpose, it is convenient to have available a large
number of network topologies, which can be obtained using, for example, generative graph
models [7].

The problem of estimating the optical channel capacity has been the focus of many
studies. Some rely on accurate numerical simulations [6], while others offer detailed
analytical models based on either the Gaussian noise (GN) model [8–10] or a regular
perturbation model [11]. More recently, the topic of optical network capacity has also
received some attention. In [12], the authors presented an algorithm to maximize the
capacity of an optical network in the presence of physical layer impairments. The algorithm
was based on an integer linear program (ILP) and was designed with the goal of optimizing
routing, wavelength assignment, modulation format, and launched power allocation. An
alternative approach for capacity estimation using a heuristic algorithm for routing and
wavelength assignment instead of the ILP was provided in [13]. To understand how
network topology characteristics influence network capacity , a new generative graph
model was developed [14]. This model is based on the classical Barabási-Albert model,
which has been properly modified to incorporate physical layer aspects. The published
results showed that it can maximize the network capacity in comparison with classical
models. Recently, a framework was also proposed to study the relationship between
various topological parameters and network performance metrics, including network
capacity [15]. That framework provided valuable insights into the key parameters that
affect network capacity.

Apart from the last work, which relies on dynamic routing, all the other referred
studies on network capacity used static routing with no channel blocking. However, since
the number of optical channels per optical fiber is limited, it makes sense to also use a con-
strained routing approach, as this limitation can lead to blocking under certain conditions.
Another topic that deserves consideration is studying how the symbol rate (also referred to
as baud rate) impacts network capacity. In fact, considerable research has been conducted
to increase the symbol rate within optical networks. Currently, commercial deployments
typically operate between 60–90 Gbaud, while field trials have reached 130 Gbaud [16],
and laboratory demonstrations have achieved symbol rates of 200 Gbaud [17].
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This paper is focused on the topic of capacity in optical backbone networks and
examines how different network and physical layer parameters influence its value, giving
special emphasis to the symbol rate. We present an alternative approach to evaluating
the capacity of optical networks that uses a constrained routing algorithm to account
for the limitations in the number of optical channels and use the metric optical reach,
which measures the maximum distance an optical channel can effectively propagate, to
describe the impact of the physical layer. Furthermore, a strategy to address the blocking
caused by insufficient spectral resources (wavelengths) by adding additional optical fibers
is also proposed. The paper’s results are obtained across hundreds of network topologies
generated using the modified Waxman method.

The rest of the paper is organized as follows: Section 2 reviews the concept of channel
capacity and introduces the necessary background to determine optical reach. Section 3
defines the method used to generate random networks. Section 4 introduces a suitable
approach to computing the optical network capacity, taking into account the constraints
due to the limited number of optical channels per fiber, while Section 5 describes a strategy
to overcome blocking by adding more fibers per link. Section 6 provides some simulation
results, and finally, Section 7 summarizes and concludes the paper.

2. Optical Channel Capacity

An optical channel can be seen as a communication pathway through which informa-
tion is transmitted in the optical domain from a sender to a receiver, utilizing an optical
fiber as a transmission medium. This channel is characterized by its carrier frequency,
denoted as νc (or carrier wavelength λc) and occupied bandwidth, denoted as Bch. The
minimum bandwidth that guarantees a signal transmission over the channel without inter-
symbol interference is defined using the Nyquist criterion and is equal to the symbol rate
Rs [4]. The capacity of an optical channel is defined as the maximum data rate at which the
information can be effectively transmitted through the channel. This capacity is typically
expressed in bit/s. This capacity can be calculated using Shannon’s theory [3] under the
assumption that the noise sources present in these channels are modeled as AWGN sources,
giving [6]

Cch = 2Rslog2 (1 + SNR) [bit/s] (1)

where SNR is the signal-to-noise ratio at the receiver side computed for a channel band-
width equal to Rs, given by

SNR =
Pch

N0Rs
(2)

where Pch is the average optical power per channel in watts, and N0 is the noise power
spectral density (PSD) in watt/Hz. Note that factor 2 in (1) stems from the fact that
the optical fiber channel supports two optical channels with orthogonal polarizations,
commonly referred to as polarization multiplexed (PM) optical channels.

One important noise source in optical communications systems is the amplified sponta-
neous emission (ASE) noise. This noise is generated inside optical amplifiers simultaneously
with signal amplification and can be effectively described using a random optical field with
statistical properties like those of AWGN noise [6]. Optical amplifiers are used to compen-
sate for the optical fiber losses. To achieve this, optical amplifiers, typically EDFAs, are
placed at discrete intervals along an optical link, with each amplifier exactly compensating
for the loss incurred by each fiber span. For a link of length L composed of Ns identical
spans, the span length is Ls = L/Ns, while the span attenuation is As = αLs, where α is
the fiber attenuation coefficient in dB/km. Typically, α is approximately 0.2 dB/km within
the 1550 nm wavelength region, denoted as C-band. The PSD of the ASE noise at the end
of a chain of Ns amplifiers, spaced by fiber spans of length Ls, is given by

Nase = Nase,1Ns = hνc fn(as − 1)Ns (3)
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where Nase,1 is the ASE per span, h is the Planck’s constant (in joule-second), f n is the
noise figure ( fn = 10Fn/10, with Fn in dB), and as = 10As/10.

Another significant noise source is nonlinear interference (NLI), which results from
the Kerr effect in optical fibers. The Kerr effect refers to the dependence of the refractive
index of the fiber on the transmitted signal power. This characteristic makes the optical
fiber channel intrinsically nonlinear and, in this sense, different from other transmission
media used for information transfer that have a linear behavior. Interestingly, it has been
demonstrated in [18] through simulations and experiments that the impact of NLI noise
on WDM links, supported in dispersion uncompensated fibers, can also be modeled as
additive Gaussian noise. Furthermore, it was shown in [9] that under specific conditions,
such as the Nyquist limit, the white noise assumption leads to quite accurate results. Note
that such a limit is achieved when all the WDM channels have a rectangular spectral width
and a frequency spacing equal to Rs. This permits us to characterize the NLI noise also
as an AWGN process with a power spectral density of Nnli. As the ASE and NLI noises
are assumed to be uncorrelated, their power spectral densities simply add, resulting in
N0 = Nase + Nnli. In these circumstances, the signal-to-noise ratio of an optical channel can
be described as

SNR =
Pch

(Nase + Nnli)Rs
(4)

where Pch denotes the launched average optical power per channel.
Rigorous characterization of Nnli is not an easy task, and many studies have been

published on this topic (see, for example, [18,19]). Fortunately, some closed-form approxi-
mations have also been published [8,18], which simplifies the evaluation of Nnli. One of
these approximations, which is based on the white noise assumption, allows to write the
PSD of the NLI at the end of a fiber link with Ns spans in the following way:

Nnli = µnNsP3
ch (5)

where µn is the NLI coefficient per span given by

µn ≈ µ́n
1

Rs
3 =

(
2
3

)3
γ2Le f

ln
(

π2|β2|Le f B2
WDM

)
π|β2|

1
Rs

3 · (6)

In the last equation, one can identify parameters related to the optical fiber, such as γ,
the fiber nonlinear coefficient in W−1km−1, β2, the fiber dispersion in ps2km−1 and Le f ,
the span effective length in km. Additionally, there are parameters related to the signal,
such as BWDM, the optical bandwidth of the WDM signal in Hz, assumed to be composed
of Nch channels spaced by ∆νch, in such a way that BWDM = Nch∆νch. In addition, the span
effective length is given as

Le f = (1 − exp(−2aN Ls))/(2αN

)
(7)

where Ls is the span length and aN is the fiber attenuation coefficient in Np/km, i.e.,
αN = αdB/km/20log10 e. Using (4)–(6), one arrives to

SNR =
Pch(

Nase,1 + µnP3
ch
)

NsRs
· (8)

From (8) one can derive the following equation for the optimum launch power [9]

Popt
ch = Rs

3

√
Nase,1

2µ́n
· (9)



Photonics 2024, 11, 342 5 of 15

The maximum channel capacity can be determined by inserting (8) and (9), into (1),
giving

Cch = 2Rslog2

(
1 +

Ls

3L
3

√
4

µ́nN2
ase,1

)
· (10)

From (9) and (10) we can see that:

(1) Popt
ch depends on ASE and NLI noise and varies linearly with the symbol rate. For the

parameters given in Table 1 we arrive to Popt
ch = 0.89 dBm for Rs = 64 Gbaud, and

Popt
ch = 3.89 dBm for Rs = 128 Gbaud.

(2) The channel capacity increases linearly with the symbol rate and decreases linearly
with the total link length.

Table 1. Optical fiber and system parameters.

Parameter Symbol Value

Fiber Attenuation Coefficient α 0.22 dB/km
Fiber Dispersion Parameter β2 −21.7 ps2km−1

Fiber Nonlinear Coefficient γ 1.27 W−1km−1

Carrier Frequency νc 193.41 THz
Carrier Wavelength λc 1550 nm

Span length Ls 80 km
EDFA noise figure Fn d dB

Symbol rate Rs 64 Gbaud, 128 Gbaud
Channel Spacing ∆νch 64 GHz, 128 GHz

Number of Channels Nch 75, 37
WDM bandwidth BWDM 4800 THz

The optical reach, also denoted as transmission reach, is an important parameter used
in the context of this work to describe the impact of the physical layer on the performance
of an optical channel. The optical reach is defined here as the maximum length of an
optical channel for which a certain value of the capacity can be met. As this length can be
viewed as the total link length L, one can use (10) to obtain the optical reach for various
capacity values. Assuming, as seen before, that for the 64 Gbaud case, L is a multiple of the
span length, Table 2 shows the optical reach obtained using (10) for different values of the
Shannon channel capacities. Furthermore, in the case of 128 Gbaud, we considered a 10%
reach reduction compared to the previous scenario to address additional limitations not
taken into account in the formulation that leads to (10) (see [19]). Although these capacity
values can be seen as upper bounds, it is worth noting that a recent field trial reported
an 800 Gb/s transmission over a distance of 6600 km for a symbol rate of 120 Gbaud [20],
which is not far from the values of the reach given in Table 2 for that bit rate.

Table 2. Optical reach values for two symbol rates.

Reach (km)
64 Gbaud

Capacity (Gb/s)
64 Gbaud

Reach (km)
128 Gbaud

Capacity (Gb/s)
128 Gbaud

23,120 200 20,808 400
11,120 300 10,008 600
5840 400 5256 800
3280 500 2952 1000
1760 600 1584 1200
1040 700 936 1400
560 800 504 1600
320 900 288 1800
160 1000 144 2000
80 1100 72 2200
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3. Network Topology Model

In an abstract way, an optical network can be described as an undirected graph G(V, E),
with V = {v1, . . . , vN } denoting a set of nodes and E = {e1, . . . , eK } denoting a set of links,
where N = |V| is the number of nodes, and K = |E| is the number of links. In transparent
optical networks, all node functionalities take place in the optical domain, and the nodes
are built upon reconfigurable optical add-drop multiplexers (ROADMs). Meanwhile, an
optical link represents a physical interconnection between two nodes, implemented using
optical fibers and optical amplifiers. In bidirectional links, some fibers are used in one
direction and others (typically the same number) in the opposite direction. Each optical
fiber supports WDM signals, meaning it carries a specific number of optical channels.

Besides N and K, other important parameters are the node degree δ(G), the network
diameter diam(G), and the edge connectivity λ(G). δ(G) defines the number of links
connected to a node, diam(G) is the length of the longest shortest path between any two
nodes, while λ(G) represents the maximum number of link-disjoint paths between two
nodes. The λ-connectivity is a measure of a network’s resilience against link failures,
making it a key parameter in designing protection paths in optical networks.

To have a clear understanding of how different topological parameters impact network
capacity, it is paramount to have large numbers of network topologies available, which can
be obtained from a set of random graphs designed to adequately describe the characteristics
of real-world optical networks. Erdős–Rényi and Waxman models are widely used to
generate random networks. The last model works by randomly placing nodes in a two-
dimensional space with specific coordinates and connecting them with links based on a
probability function determined using the distance between those nodes. In the Waxman
model, the probability that node i establishes a link to node j is given by [7]:

P(i, j) = βexp
−d(i, j)

Lwα
(11)

where d(i, j) is the Euclidean distance between the nodes, Lw is the maximum distance
between any two nodes, and α and β are parameters in the range of 0 to 1.

In contrast, the first model does not reference node positions, and the links are added
with a uniform probability. Assigning the nodes’ positions in space makes the Waxman
model better suited for describing realistic optical networks. However, the Waxman model
cannot generate λ-connected graphs, which is a significant limitation in the context of
optical backbone networks, where survivability is a primordial feature. To overcome such
a limitation, one uses the modified Waxman model [7] in this work.

The modified Waxman model is designed to generate optical backbone networks
that are survivable to single-link failures and are conceived as interconnected sets of
subnetworks. In this sense, the two-dimensional space is divided into a set of regions
where nodes are randomly placed in the first part of the process. In the subsequent steps,
nodes are interconnected within each region and then across different regions according
to the Waxman probability, subject to certain constraints in terms of node degree and
λ-connectivity. For exemplification purposes, Figure 1 shows a generated graph with
N = 10, K = 20, which gives an average node degree of < δ >= 2K/N = 4. Two distinct
subnetworks S1 and S2 are clearly identified within the graph, with S1 = {0, 1, 2, 3} and
S2 = {5, 7, 8, 9}, corresponding to the aforementioned regions. Furthermore, λ(G) = 3,
with this value being determined by calculating the minimum number of links that need to
be removed to disconnect the graph.
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Figure 1. Network topology generated using the modified Waxman model with N = 10, K = 20, and
λ(G) = 3. The regions S1 = {0, 1, 2, 3} and S2 = {5, 7, 8, 9} can be identified.

To ensure that the generated graphs accurately mimic real optical backbone networks,
it is important to compare certain statistics. In [7], it is demonstrated that the node degree
distribution of these networks follows a Poisson distribution. Figure 2 shows that the
node degrees of the random graphs generated using the modified Waxman model closely
approximate the Poisson statistics seen in real networks.
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4. Constrained Routing and Network Capacity

Network capacity, also known as throughput, can be defined as the maximum amount
of data that a network can handle per unit of time. This capacity depends on various
network properties such as the physical and logical topology (traffic profile), optical reach,
link capacity, node structure, routing, wavelength assignment, etc. Physical topology
describes the interconnection pattern of nodes and is typically known in advance. Nodes
are considered simultaneously as the source and destination of traffic. A starting point in
the network capacity evaluation is the definition of the traffic demand profile. This profile
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is defined by the traffic matrix T = [ts,d ], where each entry ts,d represents a traffic demand,
or in other terms, the volume of traffic flowing from a source node s to a destination node
d, with s, d ∈ V. In this analysis, it is assumed that the traffic profile is uniform and equal
among all node pairs, which corresponds to

ts,d =

{
1 s ̸= d
0 s = d

(12)

Note that this traffic profile describes a full-mesh logical topology in the sense that
each node is logically connected to every other node within the network [21]. Another
important point in the network capacity evaluation is the link characterization. The link
(i, j) ∈ E can be described by two attributes: (1) length li,j; (2) capacity ci,j determined by
the number of optical channels Nch available in the links given by ci,j = Nch. As already
seen, this number is limited by the bandwidth BWDM and the symbol rate Rs.

For each traffic demand, it is necessary to find a path in the physical topology between
each pair of nodes. This process is known as routing. Since there are multiple paths
between each pair of nodes, the objective is to determine the shortest path using a heuristic
like Dijkstra’s algorithm. The shortest path corresponds to the one that minimizes the
total path length, defined as the sum of the lengths of all the links traversed by the path.
However, in this case, the routing is constrained by the capacity ci,j leading to the concept
of constrained routing (CR) problem [22]. The objective of this problem is to maximize the
number of allocated traffic demands while minimizing the blocking ratio in a network with
limited link capacity. The input parameters include the weighted graph G(V, E), with the
link (i, j) ∈ E, being characterized by li,j and ci,j, and the traffic matrix T = [ts,d], while
the output parameters include the list of blocked traffic demands B = [bs,d] and the list of
established paths P = [πs,d], with the path πs,d having the length l(πs,d) = ∑i,j li,j.

Furthermore, we assume that each path πs,d (also denoted as lightpath) computed
using the CR approach is physically established using an optical channel with a specific
wavelength, which is computed in this work using a first-fit heuristic [23]. In other words,
a channel k = (s, d), defined as k = {πk, λk} ∈ S has an associated path πk and wavelength
λk, and belongs to the set of optical channels required to implement a logical full mesh
topology S = {1, 2, . . . , N(N − 1)}. In the process of assigning wavelengths to the optical
channels, which occurs during the routing process, it must be assured that all the optical
channels that traverse the same link are assigned different wavelengths, as otherwise
there would be interference between the channels. That means that there can be different
channels using the same wavelength as long as there are no common links in their paths.

In this work, the CR problem is addressed through the following heuristic (CR heuristic):

(1) Compute the shortest paths:

• Run the Dijkstra’s algorithm to find the shortest path between each source-
destination node pair in the network (πs,d), considering the total path length
l(πs,d) as the metric that defines that computation.

(2) Order the traffic demands:

• Apply a specific sorting strategy (e.g., shortest-first, longest-first, largest-first)
to order traffic demands ts,d. If the order is “shortest”, the traffic demands are
sorted by path length in ascending order, while for the “longest” order, the traffic
demands are sorted by path length in descending order. Furthermore, if the order
is “largest”, the traffic demands are sorted by their value in descending order.

(3) Route the demand, update link loads, and assign a wavelength:

• For each traffic demand ts,d, in accordance with the order established in Step 2,
route it through πs,d, updating the load (number of demands routed through the
link) of each link in πs,d, and assign a wavelength λk to that optical channel (a
wavelength being represented by an integer between 1 and Nch).

(4) Blocking:
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• If, in Step 3, a link (or more than one) in πs,d does not have enough residual
capacity (which is defined as the difference between the link capacity and its
load), or if a wavelength that fits all links of the path does not exist (respecting
the principle that two optical channels with the same wavelength cannot exist on
the same link), then the traffic demand ts,d is blocked.

(5) Remove links and determine alternative shortest paths:

• After routing each traffic demand, remove all the links that have residual capacity
zero from the weighted graph.

• With the updated topology, determine new shortest paths, as in Step 1, so that
alternative paths are found for the remaining traffic demands.

• Go to Step 3 to route the next traffic demand.

To compute the total network capacity, one can apply the concepts of channel capacity
introduced in Section 2, which can be written as [14]

Cnet = ∑
k∈S

Cch,k (13)

where Cch,k is the capacity of channel k, which, according to (11) and (13), becomes:

Cch,k = 2Rslog2(1 + SNRk) (14)

with SNRk being the SNR of channel k. The SNRk can be readily evaluated using (4),
assuming that the optical nodes (ROADMs) are ideal and, as a result, do not affect the
calculations. In this context, the number of spans for optical channel k is denoted as
ns,k = ⌊Lk/Ls⌋, with Lk representing the length of the path πk. To avoid calculating the
SNRk and reduce the computation time, we can take advantage of the analysis undertaken
in Section 2 and use the optical reach to obtain the channel’s capacities. By knowing
the lengths of the different paths and utilizing the data from Table 1, we can obtain the
capacities of the different channels for a span length of 80 km and for the two symbol rate
values (64 Gbaud and 128 Gbaud) from Table 2. These capacities are referred to as Shannon
capacities because the reach values are obtained using the Shannon theory.

An additional important metric for network analysis is the network-wide average
channel capacity, defined as [24]

Cch = ∑
k∈S

Cch,k/∑
k∈S

γk (15)

where γk denotes the expected utilization ratio of channel k. For the sake of simplicity, it is
assumed that γk = 1 for all channels. As a result, the sum in the denominator of (15) equals
the total number of paths in the network, which, for a full-mesh logical topology, amounts
to N(N − 1). With this simplification, the network capacity for a full-mesh logical topology
is reduced to

Cnet = Cch × N(N − 1)×
(
1 − B

)
(16)

where B is the average blocking ratio obtained as

B = ∑
k∈S

bk /(N(N − 1)· (17)

5. Unconstrained Routing and Fiber Assignment

Optical backbone networks are typically designed to avoid blocking traffic demands.
Blocking occurs when there is insufficient capacity to accommodate all the incoming traffic
demands at a particular node or link. In the previous analysis, blocking occurred due to
the limited number of optical channels and their corresponding wavelengths on each link.
This limitation arises, namely, from bandwidth constraints of the optical amplifiers, which,
in this work, are assumed to be operating in the C-band. To address the blocking problem
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in optical backbone networks, one can utilize optical amplifiers that operate in other bands
different from the C-band, such as the L-band and the S-band. Nevertheless, this solution
has some drawbacks: one can refer, for example, to the technical difficulties associated with
building optical amplifiers to operate in the S-band and the need to add band multiplexers/
demultiplexers to separate the different bands for individual amplification, which can
significantly increase the transmission losses.

A more straightforward solution for increasing the overall capacity of an optical
backbone network is to add more optical fibers per link. However, this can be a costly
and complex solution, particularly when extensive upgrades are required. Nonetheless,
in common scenarios where network operators own dark fibers, lighting additional fibers
emerges as a viable and cost-effective solution. This study will explore this approach as
a means of overcoming blocking. To achieve this objective, a fiber-assignment heuristic,
designated FA heuristic, will be proposed. The input parameters of this heuristic are also a
weighted graph G(V, E), as in the CR heuristic , but now with ci,j = ∞ (meaning that there
is no constraint relative to the number of optical channels in a given link), the traffic matrix
T = [ts,d ] and the maximum number of available optical channels per fiber Nmax = Nch.
On the other hand, the output parameters comprise the list of established paths P = [πs,d]
with the path πs,d having the length l(πs,d), as in the CR heuristic, and an N × N matrix

with the number of optical fibers per link, NF =
[
n f i,j

]
, where n f i,j is the number of optical

fibers in the link (i, j). The first part of the FA heuristic is equivalent to Steps 1–3 of the CR
heuristic, but now using an unconstrained routing strategy, which permits obtaining the
list P, and an N × N matrix with the wavelengths in each link, W =

[
wi,j
]
, where wi,j is the

list of all the wavelengths λk present in the link (i, j), wi,j = [λk]. Subsequently, the next
steps of the heuristic are the following:

(4) Assign fibers when there is no traffic in a link:

• If there is no traffic in that link but the link does exist in the network’s physical
topology, set n f i,j = 1

(5) Assign fibers when there is traffic in a link:

• Set n f i,j = max
(
num_rep_wi,j

)
, where num_rep_wi,j is the number of repeated

wavelengths in wi,j, ∀(i, j) ∈ E

Note that in this context, where unconstrained routing is being done, the number of
wavelengths in each link does not have a limit, so the value attributed to a given λk is
any natural number (and not bounded by Nmax, as in the CR heuristic ). To determine the
number of fibers needed in each link, the maximum number of “repeated wavelengths”
in that link needs to be determined. A wavelength is considered a “repeated wavelength”
when its value modulo Nmax (the modulo operation referring to the remainder of a division)
is equal to that of another wavelength also present in that link. For instance, if Nmax is 75,
then wavelengths 1 and 76 are “repeated” because 76 modulo 75 equals 1. This implies
that both wavelengths would occupy the same channel in a link; hence they are “repeated”.
This concept is crucial in determining the number of fibers needed for a link, ensuring that
each “repeated” wavelength has its own fiber. Finding the maximum count of “repeated
wavelengths” will ensure that there are enough fibers to accommodate all the wavelengths,
thus assuring that there are no channels with the same wavelength on the same fiber.

By knowing the length l(πs,d) of all the paths belonging to P, it is possible to compute
the capacity of the optical channel corresponding to those paths using the values of the
reach given in Table 2 and consequently computing the average channel capacity using (15)
and total network capacity using (16) with B = 0. To assess the network performance in
the present scenario, it is also necessary to account for the network cost. For simplification
purposes, we assume that the transponder cost can be neglected in comparison with the
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fiber cost, which seems to be a reasonable assumption for optical backbone networks [25].
In this case, the network cost is given as

Λnet = ∑
i,j

li,j × n f i,j· (18)

6. Results and Discussion

To investigate the dependence of network capacity on network parameters, five sets,
each comprising 200 graphs, were obtained using the modified Waxman model described
in Section 3, with the number of nodes varying from 20 to 60 in increments of 10. All the
graphs were generated assuming a bi-dimensional plane with dimension 1000 × 1000 km
and Waxman parameters α = β = 0.4, as well as an average node degree varying ran-
domly from 2 to 4. These sets of random networks were used in both routing scenarios
described previously, i.e., constrained routing (Section 4) and unconstrained routing with
fiber assignment (Section 5).

In the first scenario, the routing was performed considering a full-mesh logical topol-
ogy described by the traffic profile (12), using the CR heuristic and the shortest-first sorting
strategy. The study was undertaken for two symbol rate values, 64 Gbaud and 128 Gbaud,
considering the optical reach values provided in Table 2 and one fiber pair per link, with
each fiber being used in a communication direction. Furthermore, the number of optical
channels per fiber was limited to 75 for 64 Gbaud and 37 for 128 Gbaud. This limitation
arises from the fixed bandwidth of 4800 GHz in optical amplifiers and by considering
a channel spacing of 64 GHz and 128 GHz for 64 Gbaud and 128 Gbaud transmissions,
respectively. Note that the equality between channel spacing and symbol rate results from
the Nyquist limit assumption, as explained in Section 2.

The values of the computed total network capacity are depicted in Figure 3 using
boxplots. A boxplot is a way of illustrating the statistical distribution of a data set and
includes the median, the interquartile range, and both the minimum and maximum values
of the set. The boxplots in Figure 3 also show outliers, represented as small circles, to
describe data samples that differ significantly from the rest of the data set.
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It can be seen from Figure 3 that the network capacity tends to grow as the number
of nodes increases, although the rate of growth decreases for higher node counts. This
increase in the network capacity is expected according to the relation between the number
of nodes and the network capacity described in (16). The fact that the capacity growth tends
to be slower as the number of nodes increases indicates that the blocking of traffic demands
must also be increasing with the number of nodes. Figure 4, which depicts both the number
of blocked traffic demands and the blocking probability, which is obtained by dividing the
number of blocked traffic demands by N × (N − 1), shows that is indeed the case. This
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increase in blocking occurs because networks with more nodes experience a higher volume
of traffic demands (as described by (12)). Consequently, the conditions for blocking (see
Section 4) intensify as the links become increasingly saturated with traffic demands.
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When comparing the transmission at 64 Gbaud (Figure 3a) and at 128 Gbaud (Figure 3b),
we can see that using a symbol rate of 128 Gbaud makes it possible to achieve a higher
total network capacity in comparison with the 64 Gbaud case, although the extent of the
improvement tends to decrease as the number of nodes increases. Comparing the median
capacity values between the sets of generated graphs, transmission at 128 Gbaud results in
an improvement over the transmission at 64 Gbaud of approximately: 34%, 24%, 19%, 17%,
and 16%, for the respective sets of graphs, listed in ascending order of number of nodes.
The average improvement across all sets is around 22%. The decrease in performance
improvement verified in networks with more nodes can be explained by the slight increase
in the blocking probability, which, for example, for the case of 60 nodes, rises from 0.6 to
0.7 as the symbol rates go from 64 Gbaud to 128 Gbaud, as can be seen in Figure 4. The
improvement in the networks’ capacity, coupled with the simultaneous reduction in the
number of wavelengths, which are halved, represents an important advantage in utilizing
128 Gbaud compared to 64 Gbaud.

The previous analysis deals with the constrained routing of traffic demands due to
the limited number of optical channels per link. As can be seen, this leads to blocking,
which increases with the size of the network, as shown in Figure 4. To address the blocking
problem, one can enhance the link capacity by adding more optical fibers, following the
strategy outlined in the FA heuristic. As a result, the network achieves an unconstrained
total capacity, determined only by the load of the traffic demands, without any imposed
constraint. This capacity is shown in Figure 5, which also uses boxplots. As in the first
scenario, the traffic profile described in (12) was also considered, as well as the shortest-first
sorting strategy. The values of the maximum number of optical channels per fiber (Nmax)
were set to 75 for transmission at 64 Gbaud and 37 for transmission at 128 Gbaud. As
described in the FA heuristic, there is no limit set on the addition of fibers, so enough fibers
are added to eliminate the blocking completely.
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The first conclusion we can draw from Figure 5 is that the total capacity increases
approximately in a quadratic manner with the number of nodes (∼ N2). Another note-
worthy aspect is the huge capacities achieved in this scenario, which corresponds to about
2.5 Pbit/s for 60-node networks and a symbol rate of 64 Gbaud (see Figure 5a). It can
also be referred to that the total network capacity median values for a 30-node network
(~660 Tbit/s) are similar to the values reported in Figure 9 of [14] for the 30-node CONUS
topology generated using the Erdős–Rényi model. As expected, Figure 5b shows a twofold
increase in the total capacity when the symbol rate is set at 128 Gbaud.

According to what is expected, the significant increase in capacity comes at the cost
of a substantial rise in network cost, which translates into an increase in the optical fiber
length to be deployed. Figure 6 shows the total fiber cost, expressed in terms of the total
fiber length, as a function of the number of nodes. This figure shows a law of variation of
the cost as a function of the number of nodes similar to the one of the capacity referred to
above. A prominent conclusion we can draw from Figure 6 is that when the symbol rate
increases from 64 Gbaud to 128 Gbaud, the total fiber cost increases by about 51%, while
the total network capacity value doubles, as seen previously.
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7. Conclusions

In this paper, the problem of assessing the impact of topological and physical impair-
ments on the capacity of optical backbone networks was investigated.

The capacity was defined using Shannon’s theory, and the impact of the physical layer
was studied using the optical reach, which was computed, considering both linear and
nonlinear noise terms, for two symbol rate values: 64 Gbaud and 128 Gbaud. To explore
the influence of topological characteristics, we used a modified Waxman model to generate
random networks that mimic real optical backbone networks, ensuring edge connectivity
greater than or equal to 2.
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The paper also proposed a constrained routing and wavelength assignment algorithm
to deal with the fact that the number of optical channels/wavelengths per link is limited,
which inevitably results in traffic blocking as the number of demands increases. Given that
traffic blocking is not acceptable in optical backbone networks, we also devised a strategy
to overcome it by adding more optical fibers per link, albeit at the expense of increasing the
network cost.

The total network capacity was evaluated for a set of generated random networks
considering a full-mesh logical topology. The results showed that although the capacity
increases with the number of nodes, the rate of increase tends to diminish due to the
rising of the blocking ratio. By moving from a symbol rate of 64 Gbaud to 128 Gbaud, one
observes an improvement in median total capacity of about 34% for N = 20 and 16% for
N = 60. The reduction in improvement is also explained by the rising of the blocking ratio.
With proper fiber assignment, one can see a substantial increase in the total capacity. For
a network with N = 60, median values of about 2.5 Pbit/s can be achieved for a symbol
rate of 64 Gbaud and about 5 Pbit/s for a symbol rate of 128 Gbaud. Remarkably, this
duplication in the total network capacity is achieved by an increase in the total fiber length
of only about 51%.
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