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Abstract: Ultraviolet (UV) networks are widely applied in complex electromagnetic environments.
Designing an efficient multi-node medium access control (MAC) protocol for these networks is
important. In this study, we proposed an enhanced clustering time division multiple access (TDMA)
MAC protocol based on clustering and learning automata (LA). Subsequently, the effects of the
network topology, class of service, and number of cluster nodes on the network performance under
the proposed protocol were analyzed. Then, the protocol was compared with the TDMA protocol
and clustering system. Results revealed that it obtained a better network performance, proving its
suitability for multi-node UV networking.
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1. Introduction

Ultraviolet (UV) networks are mobile networks that use UV radiation as communi-
cation carriers to realize wireless multi-hop communication among UV communication
terminals [1]. These networks can be applied to military networks, emergency services,
disaster recovery, and other complex electromagnetic environments due to their excellent
non-line-of-sight (NLOS) communication, high security, and all-weather operation [2]. The
secure properties of UV networks include strong anti-interference abilities, good confi-
dentiality, and low position resolutions [3]; thus, they have recently become a research
hotspot [4]. Unfortunately, high-power UV light sources cause damage to the eyes and skin;
therefore, the power of the light source should be strictly controlled according to safety
regulations [5].

Properly setting up and optimizing the media access control (MAC) protocol is signifi-
cant in improving network performance [6]. This protocol is one of the key technologies
for realizing communication through UV networks. At present, the UV MAC protocols
are relatively lacking and fall into two main categories [5,7]. The first class concerns
competition-based protocols, which require less control overhead and are more suitable
for changes in network topology [8]. However, as traffic loads increase, there are more
transmission collisions, resulting in the network performance significantly deteriorating.
Furthermore, competition-based protocols do not ensure the quality of service (QoS) and
bounded network delays in highly dense scenarios.

On the other hand, the second class has received increasing attention. In competition-
free MAC protocols, a certain channel is allocated to a single terminal at a time. When a
terminal transmits data in this channel, no other terminal competes for channel resources.
The competition-free protocol can guarantee the QoS of the data, and its performance is bet-
ter than that of the competition-based MAC protocol under a high traffic load. Liu et al. [9]
proposed that the competition-free protocol had a better QoS than the competition-based
protocol that worked based on the carrier sense multiple access (CSMA) mechanism.
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Studies on using a competition-free MAC protocol have been carried out to provide
an optimized access mechanism in the bandwidth-constrained solar-blind UV band [10].
Compared to other MAC protocols, the time division multiple access (TDMA) protocol is
a representative competition-free protocol with several preponderances, such as convenient
networking, good communication reliability, and bounded network delay [11]. However,
there is an unavoidable defect in this protocol regarding its fixed-slot allocation, that is, the
time slot allocated to the terminals is inversely proportional to the number of nodes, resulting
in a longer network delay and unsatisfactory throughput in multi-node networks [12].

The traditional TDMA protocol can be improved by employing the concept of clus-
tering in cognitive radio ad hoc networks [13]. In the clustering protocol, the number
of nodes that interfere with one another is limited, solving the problem of the network
performance rapidly deteriorating as the number of nodes increases [14]. Moreover, this
protocol provides convenient topology adjustments in the cluster [15,16].

In practical network scenarios, the load and channel resource requirements of each
terminal significantly vary, and the fixed-slot allocation mechanism cannot fully utilize the
channel. Therefore, in this study, we optimized the clustering mechanism even further using
a reinforcement learning (RL) algorithm. To address the channel utilization problem, the
cluster leader (CL) uses a smart learning automata (LA) model to monitor the intracluster
transmissions and learn the traffic parameters of its cluster nodes (CNs), avoiding any
complications [17]. The LA can help the CL optimize the allocation of intracluster time
slots, thereby maximizing the channel utilization.

The main contents of the paper include:

(1) An enhanced clustering TDMA MAC protocol based on LA (CL-LA MAC) was pro-
posed for UV networks, wherein the network topology of the clustering mechanism
and dynamic slot allocation of the RL algorithm were combined.

(2) The variation of the cache queue length was mathematically analyzed using a Markov
chain (MC), and the stable cache probability distributions for CL and CN were derived
separately to analyze the network performance.

(3) The effects of the network topology, class of service, and number of CNs on the
network performance under the CL-LA MAC protocol were analyzed. Compared with
the conventional TDMA protocol and clustering system, a better network performance
was achieved under the CL-LA system wherein the clustering topology and dynamic
time slot allocation mechanism were employed, proving the effectiveness of the
proposed protocol.

2. Learning Automata

Under the CL-LA protocol, the LA located at the CLs constantly update their output
behavior through repeated interaction learning with the random environment until they
obtain the behavior that is most suitable for the random environment to help the CLs
optimally allocate the intracluster time slot to the CNs and maximize the channel utilization.

The LA are decision-making units under the RL [18]. An adaptive decision-making
mechanism comprises an LA and external environment, and the decision system can adjust
its responses based on past experiences. This system can choose the best action based on
the reward or penalty characteristics of the random environment to improve the overall
performance. Specifically, an action is randomly selected as an input to the environment
based on the updated probability distribution for each step. The LA adjusts their state and
updates their probability distributions according to the reinforcement feedback provided
by the environment and they then converge to the optimal behavior [19,20].

The system model consists of an LA and a random environment, which form a closed
loop through the action and feedback. The interaction diagram of the LA and random
environment is shown in Figure 1.

The core idea of linear LA algorithms is that the probabilities of selected actions are
updated when the decision system receives rewards or penalties from the environment [21].
The environment can be defined by a triple {X, Y, Z}, where X = {x1, x2, . . ., xn} specifies a
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set of n inputs that forms the action set of the LA, and n is the maximum number of possible
actions. One action, xi, from set X is selected and inputted into the random environment at
each iteration. The set Y = {y1, y2, . . ., yn} is the output after reinforcement feedback, which
is the feedback set of the random environment, and the set Z = {z1, z2, . . ., zn} represents n
reward probabilities corresponding to each action in set X.
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The variable types of LA can be defined as a quadruple {X, Y, P, H}, where
X = {x1, x2, ..., xn} is a set of n actions, Y = {y1, y2, ..., yn} indicates a set of LA inputs,
P = {p1, p2, . . ., pn} refers to the action probability vector, and H: pi(t + 1) = H[xi(t), yi(t), pi(t)]
is a learning algorithm.

Under the LA algorithm used in this study, the linear reward–penalty (LRP) scheme
was used to update the action probability on the feedback in the form of rewards and
penalties. This is shown in Algorithm 1. When the selected action xi was rewarded, the
corresponding action probability increased, whereas the probabilities of the other actions
decreased, as shown in (1).

ps(t + 1) =
{

ps(t) + α · [1− ps(t)], s = i
(1− α) · ps(t), ∀s 6= i

. (1)

Conversely, the corresponding action probability decreased when the selected action
xi was penalized, whereas the probabilities of the other actions increased according to (2).

ps(t + 1) =

{
(1− β) · ps(t), s = i

β
n−1 + (1− β) · ps(t), ∀s 6= i

, (2)

where α and β are the reward and penalty parameters, respectively, and t is the number of cycles.

Algorithm 1. Algorithm of LRP.

Input: Reward parameter α and penalty parameter β

1: Initialization
Action probability vector pi = 1/n, ∀i ∈ [0, n]

2: Repeat
3: At cycle t, the action xi is chosen according to the action probability vector P
4: Obtain feedback Yi(t) from the environment on the selected action xi
5: if Yi(t) = 1

then
6: Update the action probability vector P according to the reward formula

7: ps(t + 1) =
{

ps(t) + α · [1− ps(t)], s = i
(1− α) · ps(t), ∀s 6= i

. # xi is rewarded

8: else if Yi(t) = 0
9: Update the action probability vector P according to the penalty formula

10: ps(t + 1) =

{
(1− β) · ps(t), s = i

β
n−1 + (1− β) · ps(t), ∀s 6= i

. # xi is penalized

11: end if
12: Until max{pi(t)} > 0.99
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3. CL-LA MAC Protocol

The nodes were divided into independent clusters. Each cluster had a CL that pro-
cessed and forwarded the data of the CNs. This clustering mechanism could avoid conflicts
caused by providing concurrent access to the same available time slot, limiting the number
of terminals that interfered with one another, and providing fair channel access and effec-
tive topological control in a cluster. Additionally, with the support of the LA algorithm, the
CL could flexibly and dynamically allocate the intracluster time slots for CNs, avoiding
wasteful gaps between the time slots and improving the channel utilization.

A. Network model

Figure 2 shows a twenty-four node network model. The network is divided into four
clusters wherein nodes A1, B1, C1, and D1 are CLs, and the others are CNs. The CLs
could communicate with one another. The CNs could only communicate with other CNs
within the same cluster. CNs belonging to different clusters established communication
by forwarding information through the CLs. Taking the communication between CN-A2
and CN-B2 as an example; first, A2 would send data to CL-A1 in the allocated time slot.
Then, the data would be stored in A1 and transmitted to B1 in the transmission time slot of
A1. Finally, the data would be forwarded from B1 to B2. The information flow for this case
would be A2-A1-B1-B2.
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B. Working modes

In the clustering network, different working modes can be adopted for the CLs and
CNs. The CN model is a hexagonal body, and each side has separate transmitting and
receiving devices, as shown in Figure 3. Within each cluster, the approximate positions
of adjacent nodes can be predicted, and a neighbor table can be formed for a specific
CN. Using this table, the CN can select a UV light-emitting diode (LED) array on the
corresponding side to directionally send data to the target node with a low transmission
power, saving energy and prolonging the service life of the UV nodes.
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Omnidirectional transmission was selected for the CL to facilitate its communication
with other CLs and forward the information from CNs. Since the entire network was based
on the clustering-based TDMA mechanism, and there was no interference among the nodes,
and all the nodes adopted an omnidirectional receiving mode.

C. Allocation of intracluster time slots

The data frame consists of a frame header, CN subframe, polling subframe, CL sub-
frame, and frame end, as shown in Figure 4. The CN subframe was dynamically allocated to
CNs by the corresponding CL. The CL polled the CNs in the polling subframe. According
to the polling results and updated output of the LA, the CL broadcasted new mapping
information among the CNs and their allocated slots in the next frame header, allowing the
CN subframe in the next cycle to be dynamically adjusted. The reason for this was that
each CN would be optimally allocated a fraction of the intracluster time slots proportional
to its traffic load in terms of data transmission.
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Each CL maintained a probability vector of the LA to dynamically allocate intra-
cluster time slots. The sorted list of cluster Ct was Lt = {CNt

1, CNt
2, . . ., CNt

s, . . ., CNt
a},

s ∈ (1, a), where a is the cluster size. pt = {pt
1, pt

2, . . ., pt
s, . . ., pt

a} was the probability vector
of the allocation of the time slot by the LA corresponding to CLt. Initially, all the CNs were
allocated intracluster time slots of the same size. The CL periodically transmits polling
information to the CNs, and the polled CNs responded with “required slots” in the polling
subframe. Subsequently, the LA determined whether the “required slot” was larger than
the corresponding allocated time slot. If it was, this indicated that the polled CNt

s still had
data packets to transmit and the allocated time slots were insufficient. Then, the selected
allocation of the time slot was rewarded, and the probability of the corresponding action
was increased based on (1). If it was not, this indicated that CNt

s had been allocated too
many intracluster time slots. This action was penalized, with the corresponding probability
being reduced according to (2). Then, CL polled the next cluster node CNt

s + 1 from list Lt,
and the same polling process was repeated.

The allocation strategy for the intracluster time slots is regarded as a distributed
game with common benefits. When the step size is sufficiently small, the allocation
algorithm of the distributed time slot resource converges to the Nash equilibrium of the
game process [22]. After the progress in the stages of the algorithm, the number of time
slots allocated to each CN gradually converges to the proportion of time required to send
packets based on its actual traffic load. This shows that CLs exploit the LA algorithm to
adjust the time slot allocation of the CNs by scheduling the polling iteratively, avoiding the
wastage of time slots due to idle channels and maximizing the channel utilization.

D. Working process

Figure 5 shows the communication flow diagrams of the CN and CL under the CL-LA
MAC protocol. When the allocated data transmission time slot does not arrive, the CN
keeps monitoring the channel and stores the generated data. The polled CNs respond
with “required slot” to the CL in the polling subframe. When the allocated time slot arrives,
the cache state is determined. If it is (i) BUSY, there are data in the cache queue, and it
should be checked whether the destination node is in the neighbor table. If it is there, an
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appropriate transmitting side should be selected for sending the data according to the table;
otherwise, the data are transmitted to the CL to be forwarded. If the cache state is (ii) IDLE,
the cache queue is idle, and the node continues monitoring channels and storing data.
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The CL broadcasts mapping information between the CNs and their allocated slots at
the frame header. The CL stores the forwarded data from the CNs and their own generated
data when the data transmission time slot does not arrive. In the polling subframe, the
CL completes the dynamic allocation of the intracluster time slots according to the polling
results. When the data transmission time slot arrives, the CL starts to send its own data or
forward the data of the CNs.

4. Stable Cache Probability Distributions Based on MC

A. Cache-queuing model

Figure 6 shows the cache-queuing model of the CN and CL. The generated data enter
the cache in sequence. When the data transmission time slot arrives, the node sends the
data based on the first in, first out (FIFO) method. The data class in the CN cache is
different from that of the CL, including the forwarded data generated by the CN. The
network performance could be analyzed iteratively since the cache lengths of the CL and
CN followed state-dependent queuing models.
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B. Cache queue length

The arrival of data at each node in the network obeyed the Poisson process. Let px(x)
and py(y) be the probabilities of the x-forwarded and y-non-forwarded data reaching, and
they were subjected to the Poisson processes with intensities λx and λy, respectively.

px(x) =
e−λxE(λxE)x

x!
; (3)

py(y) =
e−λyE(λyE

)y

y!
, (4)

where E is the unit time slot.
The sum of the data reaching probabilities is given by:

pz(z) =
e−λzE(λzE)z

z!
, (5)

where λz = λx + λy.
The probability of forwarded data is:

p1 = 1− px(0). (6)

If each cluster has M nodes, the probability of m nodes producing the forwarded
data is:

p2(m) = Cm
M p1

m(1− p1)
M−m. (7)

After unit time t, the cache length of the node becomes Lt. The cache length of the
node at this moment only depends on the cache length at the previous moment, and the
data packet changes at the current moment.

P(Lt = lt| L1 = l1, L2 = l2, . . . , Lt−1 = lt−1)
= P(Lt = lt| Lt−1 = lt−1).

(8)

Therefore, the cache change is a Markov process. Figure 7 illustrates the Markov state
transition diagram.
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The transfer process of the cache length is shown in Figure 8, where It is the number
of packets reaching at the time Et

−, and Ot is the number of data packets transmitted at
Et

+. The node only sends data in the allocated time slot, thus, Ot can be either “0” or “1”.
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The transition matrices T of the two classes of nodes are obtained as follows (see Ap-
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Figure 8. Transfer process of the cache length.

Let Pab = P{Lt+1 = b| Lt = a} be the probability that the state of the cache a at time t
transfers to the state of the cache b at next unit time.

Based on Figure 8,

Lt+1 =

{
Lt + It+1 −Ot Et ≥ 1
It+1 Et = 0

, (9)

Pab =



P{Lt+1 = b| Lt = 0}
= P{It+1 = b} a = 0, 0 ≤ b < Lmax

P{Lt+1 = Lmax| Lt = 0}
= P{It+1 ≥ Lmax} a = 0, b = Lmax

P{Lt+1 = b| Lt = a}
= P{It+1 −Ot = b− a} 1 ≤ a < Lmax , 0 ≤ b < Lmax

P{Lt+1 = Lmax| Lt = a}
= P{It+1 −Ot ≥ Lmax − a} 1 ≤ a < Lmax , b = Lmax

. (10)

The transition matrices T of the two classes of nodes are obtained as follows (see
Appendix A for the derivation process):

TCN =



PCN
00 PCN

01 PCN
02 · · · · · · · · · PCN

0Lmax−1 1−
Lmax−1

∑
i=0

PCN
0i

PCN
10 PCN

11 PCN
12 PCN

13 · · · · · · PCN
1Lmax−1 1−

Lmax−1
∑

i=0
PCN

1i

0 PCN
21 PCN

22 PCN
23 PCN

24 · · · PCN
2Lmax−1 1−

Lmax−1
∑

i=1
PCN

2i

· · · · · · · · · · · · · · · · · · · · ·
...

0 · · · · · · · · · · · · 0 PCN
LmaxLmax−1 1− PCN

LmaxLmax−1


, (11)
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TCL =



PCL
00 PCL

01 PCL
02 · · · · · · · · · PCL

0Lmax−1 1−
Lmax−1

∑
i=0

PCL
0i

PCL
10 PCL

11 PCL
12 PCL

13 · · · · · · PCL
1Lmax−1 1−

Lmax−1
∑

i=0
PCL

1i

0 PCL
21 PCL

22 PCL
23 PCL

24 · · · PCL
2Lmax−1 1−

Lmax−1
∑

i=1
PCL

2i

· · · · · · · · · · · · · · · · · · · · ·
...

0 · · · · · · · · · · · · 0 PCL
LmaxLmax−1 1− PCL

LmaxLmax−1


. (12)

First, the cache probability distributions of the two classes of nodes is:
∂CN(0) =

(
∂CN

0 (0), ∂CN
1 (0), · · · ∂CN

Lmax
(0)
)

= (1, 0, 0, · · · 0)
∂CL(0) =

(
∂CL

0 (0), ∂CL
1 (0), · · · ∂CL

Lmax
(0)
)

= (1, 0, 0, · · · 0)

. (13)

After unit time t, the cache probability distributions of the two classes of nodes is:
∂CN(t) =

(
∂CN

0 (t), ∂CN
1 (t), · · · ∂CN

Lmax
(t)
)

= (∂0(0), ∂1(0), · · · ∂Lmax(0)) ·
(
TCN)t

∂CL(t) =
(

∂CL
0 (t), ∂CL

1 (t), · · · ∂CL
Lmax

(t)
)

= (∂0(0), ∂1(0), · · · ∂Lmax(0)) ·
(
TCL)t

. (14)

Because the cache change follows a recurrent finite Markov process, there are stable
states. The sum of the cache probability distribution is one, which is expressed as:

lim
t→∞

Lmax
∑

i=0
∂CN(t) = 1

lim
t→∞

Lmax
∑

i=0
∂CL(t) = 1

. (15)

Therefore, the stable cache probability distributions of the CL and CN could be ob-
tained iteratively.

5. Simulation and Analysis

Figure 9 illustrates the UV NLOS communication model. According to our previous
study [23], the communication distance of a UV terminal, according to the on–off keying
(OOK) modulation, is given by:

ROOK = α

√
− ηλPt

hcξRb ln(2Pe)
, (16)

In the simulation, the communication radii of the CL and CN were 210 and 60 m,
which was consistent with the lengths of the radii in the actual situation of our previous
experiments [24].

The classes of service were classified into forwarded and non-forwarded data. Let
the proportion of non-forwarded data to the total data (pnon) denote network scenarios
with different classes of service. With the development of UV light sources, photoelectric
detection techniques, and modulation coding modes, much higher rates than several Mbps
are achieved in the UV point-to-point communication system [25]. However, the UV
networks are primarily limited by the networking method, topology control, and terminal
movement, and the actual working rate can only be limited to below 100 kbps [26]. To
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ensure the reliable transmission of information, the data rate is selected as 50 kbps in
the simulations of the multi-node UV network. The simulation parameters are shown in
Table 1.
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Table 1. Simulation Parameters.

Parameter Value

UV terminals 24

communication distance of CL dCL 210 m

communication distance of CN dCN 60 m

data rate Rb 50 kbps

packet length L 500 bit

time slot length σ 10 ms

cache of CL 3

cache of CN 3

simulation time 500 s

A. Network topology

Figures 10 and 11 show the relationship between network performances and data
arrival intensity λ with different network topologies, respectively. The topology structure
is expressed as A × B, representing A × CLs in the topology and B × CNs in each cluster.
The pnon was 0.6.
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Figure 11. Relationship between packet loss rate and data arrival intensity λ with different
network topologies.

The network performances versus λ were approximately identical for different net-
work topologies. First, the intensity λ increased, increasing the throughput. With the
continuous increase of λ, each time slot in the network is gradually occupied, and the
channel tends to be saturated. Even if the λ increases, the network throughput cannot
increase and remains constant. Moreover, there will be an upper bound on the throughput,
which is related to the network topology. Meanwhile, the increasing amount of data led to
an overflow in the terminal cache and a gradual increase in the packet loss rate.

The throughput of the CL was lower than that of the CN since the forwarded packet
occupied the data transmission time slot of the CL, as shown in Figure 10. When the
network topology changed from 2 × 12 to 4 × 6, the throughput ratio of the CL to CN data
increased from 8.25% to 17.87%, while it increased to 46.30% in the 8 × 3 topology when
the λ was 1.20.

Compared to the throughputs in the 4 × 6 (0.99 × 104 bit/s) and 2 × 12
(0.36 × 104 bit/s) topologies when the intensity λ was 1.20, the throughput of the CL
was the highest (1.75 × 104 bit/s) in the 8 × 3 topology, owing to the highest number of
CLs being set in these simulations. However, the throughput of the CN was the lowest
(3.78 × 104 bit/s) because there were only three CNs in each cluster and fewer services
in the cluster. Additionally, the number of services was only 69.87% and 87.91% of that
of the 4 × 6 (5.40 × 104 bit/s) and 2 × 12 (4.30 × 104 bit/s) topologies, respectively. The
ratio of the CLs to CNs was relatively large, resulting in the burden of each CL being re-
duced and the packet loss rate in the 8 × 3 topology network being the lowest, as shown in
Figure 11. Inversely, there were a large number of CNs in each cluster of the 2× 12 topology
network, and the forwarded data caused an overflow at the cache of the corresponding CL.
Therefore, the packet loss rate surged, making it significantly higher than that of the other
two topologies.

The highest throughput (6.39 × 104 bit/s) and acceptable packet loss rate (approx-
imately 8%) of the 4 × 6 topology was achieved when λ was 1.2, owing to the relative
appropriateness of the topology setup. Therefore, the network topology should be reason-
ably set to achieve a better performance in the actual networking.

B. Class of service

Figures 12 and 13 illustrate the relationship between network performances and data
arrival intensity λ with various classes of service (pnon = 0.2, 0.5, and 0.8). The network
topology was 4 × 6.
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Figure 12. Relationship between throughput and data arrival intensity λ with different classes
of service.
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Figure 13. Relationship between packet loss rate and data arrival intensity λ with different classes
of service.

When pnon was larger, more data packets could be directly transmitted within the
cluster, resulting in better performances. Figures 12 and 13 show that the total throughput
with pnon = 0.5 increased by approximately 99.66% from 2.98 × 104 to 5.95 × 104 bit/s,
compared to the total throughput with pnon = 0.2. Additionally, the corresponding packet
loss rate decreased by 74.36% from 0.39 to 0.10 when the intensity λ was 1.20. This rate of
increase in the throughput and decrease in the packet loss rate increased to 132.88% (from
2.98 × 104 to 6.94 × 104 bit/s) and 89.74% (from 0.39 to 0.04) from pnon = 0.2 to pnon = 0.8.

The number of CLs determined the maximum forward capacity in the CL-LA protocol.
Therefore, the CL throughput rapidly overlapped for the three classes of service with the
same number of CLs, as shown in Figure 12.

C. Number of CNs

Figures 14 and 15 illustrate the relationship between network performances and data
arrival intensity λ with different numbers of CNs (i.e., 3, 6, and 9). The pnon was 0.6.
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The network performances versus the intensity λ were approximately identical in
relation to the network performance regarding the number of CNs. A network with more
CNs produced more packets with the same number of CLs, resulting in better performances.

Figure 14 shows that the throughput of a CL with nine CNs was the lowest
(0.76 × 104 bit/s), which was only 76.66% and 55.47% of that with six (0.99 × 104 bit/s) and
three CNs (1.37× 104 bit/s), respectively, when λ was 1.20. As the number of CNs increases,
more forwarded data were generated with the same pnon, and more data transmission time
slots of the CLs are occupied by forwarded packets, leading to a decrease in the throughput
of the CL. More forwarded packets were crowded and overflowed at the corresponding
CLs, leading to a sharp increase in the packet loss rate, as shown in Figure 15.

Although increasing the number of CN nodes could increase the network throughput
to a certain extent, the packet loss rate would sharply increase, and the network perfor-
mance would deteriorate due to an increase in the services outside the cluster. Therefore,
the topology of the network structure must be reasonably set and the number of clusters
must be adjusted accordingly.

D. Comparison with TDMA and clustering MAC protocols

Figures 16–18 show the comparison of the network performances for the three MAC
protocols. The network topology was 4 × 6, and the pnon was 0.6.
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Horizontally comparing the results from the three MAC protocols in Figures 16 and 17
show that the network performance of the clustering mechanism was significantly higher
than that of the TDMA protocol. Compared with the clustering protocol, the CL-LA
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protocol had a higher throughput (increased by approximately 14.91% when λ = 1.00) and
lower packet loss rate (decreased by 53.42%) due to the application of the LA algorithm.

Figure 18 shows the channel utilization for three MAC protocols. The data transmis-
sion time slot could be dynamically allocated under the CL-LA protocol when the data
arrival of each node was unbalanced, causing the upper bound of the throughput to be
rapidly reached and the channel resources to be fully utilized.

6. Discussion

At present, the UV protocols are relatively lacking, especially in multi-node net-
works [5,7]. For application in large-scale UV node networking, this study improves the
conventional TDMA protocol based on the clustering topology and LA algorithm. The sim-
ulation results reveals that the CL-LA MAC protocol obtains a better network performance,
proving its suitability for multi-node UV networking.

The overhead of the RL algorithm is added to the frame structure to achieve dynamic
time slot allocation and fully utilize the channel. The complexity of the system does
increase but still within acceptable limits. Compared with other protocols that can achieve
similar functions, the CL-LA protocol does not involve complex handshake mechanisms,
simplifying its complexity. In addition, the performance of the proposed protocol is better
than the conventional ones [27]. The CL-LA MAC protocol provides practical guidance for
the development of UV multi-node networking.

As the cluster head, the CL had to frequently send important control data. However,
because the FIFO method was adopted in the current CL-LA mechanism, forwarded packets
from the CNs frequently occupied the data transmission time slot of the CL, resulting in a
loss in the packet overflow and a low throughput for the CL, owing to the limited cache.
Therefore, in the future, we aim to configurate various caches to classes of service or set a
higher priority for the CL data to guarantee the transmission of control data.

7. Conclusions

A CL-LA MAC protocol based on the clustering topology and LA algorithm was
proposed. We thoroughly described the LA algorithm and communication flow. Moreover,
the stable cache probability distributions of CN and CL were separately derived based on
the MC. To obtain the most suitable network performance, the effects of network topology,
class of service, and number of CNs on the network performance under the novel CL-
LA MAC protocol were analyzed, and the structural parameters were optimized. In the
simulation, the performances of the CL and CN were examined separately to perform a
more detailed and intuitive analysis. Compared with the TDMA and clustering system,
the CL-LA protocol achieved a higher throughput and channel utilization and a lower
packet loss rate, owing to the clustering mechanism and dynamic time slot allocation, fully
proving the effectiveness of the proposed protocol. The CL-LA MAC protocol is a novel,
reliable, and effective method for multi-node UV networking.
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Appendix A

(1) State transition probability of CN

Pab =



P{Lt+1 = b| Lt = 0}
= P{It+1 = b} a = 0, 0 ≤ b < Lmax

P{Lt+1 = Lmax| Lt = 0}
= P{It+1 ≥ Lmax} a = 0, b = Lmax

P{Lt+1 = b| Lt = a}
= P{It+1 −Ot = b− a} 1 ≤ a < Lmax , 0 ≤ b < Lmax

P{Lt+1 = Lmax| Lt = a}
= P{It+1 −Ot ≥ Lmax − a} 1 ≤ a < Lmax , b = Lmax

. (A1)

At Et
−, the number of CN data packets follows the Poisson distribution:

P{It = k} = pz(k), k = 0, 1, 2, · · · . (A2)

At Et
+, let ptr

CN be the probability that a data packet is transmitted, we obtain:{
P{Ot = 1} = pCN

tr

P{Ot = 0} = 1− pCN
tr

. (A3)

Substituting (A2) and (A3) into (A1), we obtain:

PCN
ab =



pz(b), a = 0, 0 ≤ b ≤ Lmax
∞
∑

i=Lmax

pz(i), a = 0, b = Lmax

pCN
tr ·pz(0), 1 ≤ a ≤ Lmax, b = a− 1

pCN
tr ·pz(b− a + 1) +

(
1− pCN

tr
)
· pz(b− a),

1 ≤ a ≤ Lmax, a ≤ b < Lmax

pCN
tr ·

∞
∑

i=Lmax−a+1
pz(i) +

(
1− pCN

tr
)
·

∞
∑

i=Lmax−a
pz(i),

1 ≤ a ≤ Lmax, b = Lmax

. (A4)

(2) State transition probability of CL

The CL not only sends the data generated by itself but also forwards the multihop
CN data. At Et

−, the probability of k non-forwarded data packets generated by the CL is
given by:

P{It = k} = py(k), k = 0, 1, 2, · · · . (A5)

The probability that there are k forwarded data packets in the cluster is:

P{Rt = k} = p2(k). (A6)

At Et
+, let ptr

CL be the probability that a data packet is transmitted, we obtain:{
P{Ot = 1} = pCL

tr
P{Ot = 0} = 1− pCL

tr
. (A7)

By substituting (A5)–(A7) into (A1):
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When a = 0,

PCL
ab =



py(0) · P{Rt+1 = 0}, b = 0
py(0) · P{Rt+1 = 1}+ py(1) · P{Rt+1 = 0}, b = 1

b
∑

n=0
py(n) · P{Rt+1 = b− n}, 1 < b < Lmax

1−
Lmax−1

∑
n=0

PCL
an , b = Lmax

; (A8)

When a > 0,

PCL
ab =



pCL
tr · py(0) · P{Rt+1 = 0}, b = a− 1(
1− pCL

tr
)
·

b−a
∑

n=0
py(n) · P{Rt+1 = b− a− n}

+pCL
tr ·

b−a+1
∑

n=0
py(n) · P{Rt+1 = b− a− n + 1},

1−
Lmax−1

∑
n=0

PCL
an , b = Lmax

a ≤ b < Lmax . (A9)
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