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Abstract: This paper delves into the strategic design and optimization of silver (Ag) nanostructured
arrays within plasmonic metamaterials, targeting the enhancement of imaging sensitivity. Leveraging
Finite-Difference Time-Domain (FDTD) simulations, our research rigorously compares various Ag
nanostructured geometries, including nanospheres, nanocones, nanodisks, and nanocubes. The
aim is to pinpoint configurations that significantly enhance electric field localization on the surfaces
of nanostructures, a pivotal factor. The nanocube array exhibits superior field enhancement, par-
ticularly in narrow nanogaps, suggesting its suitability for high-sensitivity applications. Further
exploration into nanocube arrays reveals the crucial role of nanogap size and spacer layer thickness
in tuning the optical properties through the manipulation of Fabry–Pérot and mirror image modes in
metal–insulator–metal (MIM) structures. By presenting a thorough analysis of these nanostructured
arrays, the study not only contributes to our understanding of the fundamental principles governing
plasmonic metamaterials but also provides a solid foundation for future innovation in highly sensitive
imaging applications. It underscores the importance of nanostructure design and optimization in
achieving significant improvements in the performance of plasmonic devices, marking a pivotal step
forward in the field of nanophotonics and its application to sensitive imaging technologies.

Keywords: plasmonics; metamaterials; localized surface plasmon resonance; nanocube array; metal–
insulator–metal; nanostructures on mirror

1. Introduction

Plasmonic metamaterials have emerged as a transformative technology in the field
of optics and photonics, harnessing the power of surface plasmon (SP) resonances to ma-
nipulate light at the nanoscale [1–4]. These materials offer unprecedented control over
light–matter interactions, enabling phenomena such as negative refraction [5,6], superlens-
ing [7–9], and cloaking [10–12], which were once deemed theoretical. The fundamental
principle behind plasmonic metamaterials involves the use of metal–dielectric structures to
support SPs, facilitating light manipulation well below the diffraction limit of conventional
optics. Among the various configurations of plasmonic metamaterials, metal–insulator–
metal (MIM) structures stand out for their unique ability to confine and guide electromag-
netic waves in ultra-compact dimensions [13–16]. This configuration not only enhances
the local electromagnetic field but also allows for the engineering of the material’s op-
tical properties by adjusting the thickness of the dielectric layer and the type of metals
used [17–19]. The versatility of MIM structures has led to their exploration in various
applications, ranging from subwavelength waveguides and sensors to novel photonic
devices. The application of plasmonic metamaterials, particularly MIM structures, in the
realm of imaging represents a significant leap forward. By overcoming the diffraction limit,
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these materials enable super-resolution imaging, allowing for the visualization of features
much smaller than the wavelength of light [9,20–23]. Furthermore, vivid full-color devel-
opment using plasmonic metamaterials based on the MIM structure has been reported,
which is expected to be applied to flexible, tunable color printing technologies [24–29].
This capability has profound implications for medical diagnosis, where the enhanced res-
olution and contrast of plasmonic metamaterial-based imaging systems can facilitate the
early detection of diseases at the cellular or even molecular level [30,31]. Furthermore, the
sensitivity of plasmonic metamaterials to changes in the local refractive index makes them
ideal candidates for label-free biosensing applications, providing a non-invasive means
to detect and monitor biological markers in real-time [32,33]. The design and optimiza-
tion of silver nanostructure array structures are the most important factors in advancing
these applications. For example, to improve imaging sensitivity through surface-enhanced
Raman scattering (SERS), various approaches have been utilized, including the applica-
tion of graphene oxide on magnetron-sputtered silver (Ag) thin films [34], the creation of
Ag nanowire arrays on paper via automated drawing methods [35], and the synthesis of
various Ag-nanostructured substrates through physical vapor deposition and chemical
synthetic routes [36], all aimed at the optimization of Ag-nanostructured array structures.
Furthermore, the use of machine learning with deep neural networks has been explored for
the design and optimization of comprehensive nanostructured array structures [37–39].

In the exploration of plasmonic metamaterials and their profound capabilities to ma-
nipulate light at the nanoscale, we have embarked on a comprehensive study to optimize
the structural geometry of nanostructures for advanced imaging applications. Employ-
ing arrays of metal nanoparticles to manipulate localized SP modes presents a viable
strategy. Notably, our recent investigations unveiled distinctive optical characteristics in
three-dimensional stacked Ag nanosheets on metallic substrates [40,41]. The extinction
spectrum displayed a bifurcation into dual peaks, a phenomenon absent when using trans-
parent substrates. This optical behavior stems from a mode-splitting effect resulting from
intense coupling. Consequently, Ag nanosheet constructs serve as effective plasmonic
metamaterials. Leveraging this architecture, we have documented several practical appli-
cations, including colorimetric biosensing [42], detection of photocatalytic reactions [43],
augmentation of fluorescence imaging [44], and achieving ultrahigh-resolution imaging
capabilities [45]. Our primary objective is to understand and enhance the interaction of
light with two-dimensional nano-array configurations, which are pivotal in achieving
high-resolution imaging at scales previously unattainable. The path to this understand-
ing involves the meticulous design and simulation of various nanostructures, such as
nanospheres, nanocones, nanodisks, and nanocubes, and the examination of their electric
field distributions. We employ Finite-Difference Time-Domain (FDTD) simulations to
unravel the complex interplay between the electric field and the nanostructures, thereby
shedding light on the potential for ‘hot spots’ or areas of intense electric field localiza-
tion [46–48]. These hot spots are crucial for enhancing the optical response of the materials
and for the development of next-generation sensors and imaging devices. Our simulations
reveal that the field enhancement is dependent on the geometric arrangement and the
physical dimensions of the nanostructures, particularly the gap size between them. By
manipulating these parameters, we can tune the localized plasmon resonances and control
the electric field distribution. This tunability offers a pathway to precisely control the
resonance spectra of the nanostructures, thus enabling the manipulation of their optical
properties for specific applications.

Plasmonic metamaterials have been used for many applications across a wide range of
fields, and various nanostructures have been devised for this purpose. Compared to many
of these previous reports, the structures designed and optimized in this study are unique in
that they are specialized, two-dimensional array structures that can be fabricated by the self-
assembly of nanostructures without requiring top-down nanofabrication techniques such
as electron beam lithography. This makes it both easy and convenient to fabricate large-area
structures and, thus, it holds extremely high potential for practical use. Furthermore, we
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are considering a two-dimensional array structure on a metal substrate by combining
it with the MIM structure to elucidate and control the interaction of plasmon modes,
enabling the flexible control of both the intensity of the localized electric field and the
resonance wavelength. This novel strategy, scarcely reported in the existing literature,
is introduced for the first time in this study. The findings of this study extend beyond
theoretical simulations to practical applications, which can be achieved by fabricating
optimized structures using self-assembly techniques. This work lays the groundwork for a
new class of plasmonic metamaterials with tailored optical characteristics. By elucidating
the mechanisms that govern the interaction of light with nanostructures, we pave the
way for innovative applications in high-sensitivity imaging and beyond. The findings
from this research hold promise for advancing the field of plasmonics, with the potential
to revolutionize the capabilities of optical devices and enhance our understanding of
light–matter interactions at the nanoscale.

2. Methods

Details of the FDTD simulations performed using a commercially available software
(Poynting for Optics, Fujitsu, Japan) have been described in previous reports [40–44]. A
nonuniform mesh was used with a grid size of 0.5–5 nm. Periodic and absorption boundary
conditions were applied in the X and Y directions, as well as in the Z direction, respectively.
A pulsed light composed of a differential Gaussian function with a pulse width of 0.5 fs
and an electric field of 1 V/m was irradiated under an X-polarized source to calculate the
electric field distributions and the resonance spectra. The peak position of the excitation
pulse spectrum was approximately 600 THz (wavelength: 500 nm). The refractive index of
the glass was set at 1.5 without dispersion. The dielectric function of Ag was approximated
using the Drude formula, based on the values reported by Johnson and Christy [49]. Square
lattices were used as the array structure to easily create repeating units. Simulation results
confirmed that the effect of the hexagonal lattice/square lattice is negligibly small in
the reflectance and transmission spectra. Extinction coefficient spectra were obtained by
converting from reflectance and transmittance spectra for each structure.

3. Results and Discussions
3.1. Nanostructure Geometries for Optimal Electric Field Localization

Firstly, we delved into the comparative analysis of nanosphere, nanocone, and nan-
odisk geometries to form two-dimensional sheet configurations. Figure 1a displays the
simulated models of these nanostructures, alongside the spatial distribution of the electric
field on the structures’ surface when arranged in a two-dimensional array. Notably, the
edge of each structure exhibits intense electric field localizations, commonly referred to as
‘hot spots’, which is a defining characteristic of two-dimensional nano-array configurations
and is critical in determining the functional efficacy of these hot spots [46–48].

Figure 1b further presents the spatial distribution of the electric field around the nanos-
tructures in a cross-sectional view, clearly identifying the formation of hot spots within
the nano gaps of the structures. Figure 1c offers the extinction spectra calculated from the
transmission spectra for arrays of nanosphere, nanocone, and nanodisk sheets. The incident
light is oriented perpendicularly to the sheet, with its electric field oscillating horizontally as
depicted in the figure. These spectra reveal sharp absorption peaks, presumably originating
from localized SP resonances (LSPRs) across all nanoparticle sheets. A singular peak at
435 nm for the nanosphere sheet, double peaks at 372 nm and 501 nm for the nanocone
sheet, and a peak at 477 nm for the nanodisk sheet are observed, with the peak magnitudes
following the order of nanodisk > nanosphere > nanocone. In Figure 1b, the nanosphere
sheet demonstrates the most significant enhanced electric field within the closest gaps.
However, the electric field seeping onto the substrate surface is minimal, indicating that
most of the enhancement is concentrated within the gaps. The nanodisk sheet, in contrast,
showcases an enhanced electric field between the discs, with strong optical electric fields
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arising in the near-field regions on the top and bottom surfaces. This indicates that the
enhanced electric field of the nanodisk sheet is the most substantial at the sheet surface.
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Figure 1. (a) Simulated models of nanospheres, nanocones, and nanodisks and the spatial distribution
of the electric field on the surface when arranged in a two-dimensional array. (b) Cross-sectional
view of the electric field distribution around the nanostructures, illustrating the formation of hot
spots within the nano gaps. (c) Extinction spectra for arrays of nanosphere, nanocone, and nanodisk
sheets, showing the distinct LPR-derived absorption peaks. (d) The electric optical field intensity
distribution between the gaps of each nanostructure.

Figure 1d isolates the electric field distribution between the gaps of each structure,
as delineated by the dashed lines in Figure 1b. The nanosphere sheet exhibits a robust
enhanced electric field between the nearest gaps; however, the electric field emerging on
the sheet surface is minimal, implying that most of the enhanced field remains buried. For
the nanocone sheet, a strong enhancement field arises between the edges on the bottom
surface of the disk, and this enhancement, similar to that of the nanosphere sheet, is
buried with respect to the sheet’s upper surface. The nanocone’s enhancement field could
be utilized if the top and bottom surfaces were inverted. The nanodisk sheet, however,
exhibits enhancement fields between the disks, leading to strong optical electric fields in
the near-field regions on the top and bottom surfaces. Although the peak value of the
partial electric field in the hot spots of the nanocone is stronger than that of the nanodisk,
the nanodisk has two hot spots on both the upper and lower sides. Consequently, the
field enhancement effect of the nanodisk sheet is the strongest among the three structures,
accounting for the strongest peak in the resonance spectrum, as shown in Figure 1c. This
conclusion posits that for the utilization of the surface electric field enhancement effect, the
nanodisk structure is the most suitable.

Figure 2a presents the cross-sectional view of electric field distribution for nanodisk
sheets with varying gap distances. Each Ag nanodisk possesses a diameter and height
of 10 nm. It is observed that as the gap distance narrows, the enhanced electric field
increases, but is primarily localized near the nanosheet surface due to pronounced light
confinement effects. For instance, the magnitude of the enhanced electric field at a position
5 nm above the nanosheet is in the order of 5 nm > 2 nm > 1 nm is inversely related to
the surface enhancement field strength. These findings suggest that the leakage length
from the nanosheet can be controlled by the gap length, implying a tunable interaction
interface for biosensing applications, such as in cell–sheet contact interfaces for microscopic
substrates. Figure 2b,c display the dependency of the maximum localized electric field
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and peak wavelength on the nanogap, respectively. The enhancement effect dramatically
increases for gaps shorter than 3 nm, with the peak wavelength showing a gradual redshift
as the gap decreases. This phenomenon is well known as SP coupling in the narrow
confines between two metallic structures, referred to as the nanogap mode. The robust
electric field enhancement and tunability provided by this nanogap mode are among the
most significant advantages of the nanosheet structures. Moreover, the interaction of this
nanogap mode results in new optical properties across the entire structure due to the
coherent interaction of electric field oscillations within the nanostructures, making it a vital
element for plasmonic metamaterials.
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Figure 2. (a) Electric field distribution cross-sections for nanodisk sheets with different gap spaces,
showing increased field enhancement with narrower gaps. (b) Electric field intensity dependency on
the gap space. (c) Peak wavelength shift as a function of gap space. (d) Dependency of electric field
distribution on the nanodisk height, showing stronger coupling with thinner disks. (e) Optical field
intensity profiles within nanogaps with various gap distances.

Figure 2d illustrates the dependency of the electric field distribution on the nanodisk
height for nanodisks of 10 nm in diameter and with varied gaps. The disk thickness is
reduced from 30 nm to 2 nm, keeping the gap fixed at 2 nm. As the disk becomes thinner, the
electric fields above and below the sheet couple more strongly and the field permeates more
uniformly across the surface, suggesting that a thinner disk is required for applications that
necessitate stronger electric fields. Particularly, the 2 nm nanodisk exhibits an extremely
strong enhanced electric field. Figure 2e shows the line profile of the optical intensities
inside the nanogap with various disk thicknesses. It was clearly shown that the optical
fields on the top and bottom of the sheet combine and become stronger as the disk thickness
becomes thinner, and it was also shown that the electric field seeps out over the entire
surface. This result suggests that the disk thickness should be reduced when a stronger
electric field is required. In particular, a very strong enhanced electric field was achieved
for the 2 nm height of the nanodisk.

3.2. Optimization of Two-Dimensional Nano-Array Structures

In this study, we successfully optimized the shape of nanostructures that make up
two-dimensional nano-arrays for efficient light confinement and high-resolution imag-
ing applications. We then considered effective structures for the actual fabrication of
two-dimensional nano-arrays. Although electron beam lithography can fabricate any
shape [24–29], we advocate for self-organization methods that allow for the simple and
inexpensive creation of large-area, two-dimensional array structures. Various shapes of two-
dimensional nano-array structures have been created by self-organization [50–54]. How-
ever, as previously calculated, utilizing plasmon coupling modes that occur in nanogaps
is essential. In particular, for a 2 nm thick nanodisk structure, setting the gap to 2 nm
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is ideal. In disk array structures, the nanogap region formed between adjacent disks is
narrow, making it difficult to reduce the thickness and nanogap to 2 nm. When considering
the horizontal expansion of the area where nanogaps form in a broader region than the
spherical shape, the nanocube structure can encompass a larger area of nanogaps than the
nanodisk structure. Indeed, two-dimensional array structures of Ag nanocubes have been
reported to be fabricated using various methods, with the length of one side ranging from
10 nm to 200 nm, and the gap spacing controllable in the several nm range or in the tens
of nm range if an Ag/dielectric core–shell structure is used. [55–59]. Thus, we consider
a two-dimensional array structure of a 30 nm Ag nanocube and, for comparison, a disk
structure with a diameter of 30 nm and a height of 30 nm. We present the results of FDTD
simulations for nanodisk and nanocube structures arranged in a square array with a 5 nm
nanogap in Figure 3.
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Figure 3. FDTD simulation results of two-dimensional arrays of nanodisk and nanocube structures
with a nanogap of 5 nm. (a) Schematic of the simulation setup with Ag nanostructures on a glass
substrate and an excitation laser irradiating from above. Electric field distribution at a 500 nm
wavelength, 1 nm above the nanodisk (b) and nanocube (c) arrays, respectively. (d) Line profiles
of field enhancement ratios for both structures. Further electric field distributions at a 500 nm
wavelength of the nanodisk (e) and nanocube (f) arrays. (g) line profiles of enhancement at a
detection plane 5 nm above.

Figure 3a depicts the model used for calculations, with Ag nanostructures arrayed
on a glass substrate and irradiated from above to determine the spatial distribution of
the electric field strength confined within the nanostructures at detection planes 1 nm
and 5 nm above the nanostructures. Figure 3b,c show the electric field distributions at
a 500 nm wavelength at the detection surface, 1 nm from the top end of the nanodisk
and nanocube arrays, respectively. The line profiles of field enhancement compared with
the scenario without nanostructures along the white dotted line are shown in Figure 3d.
Similarly, Figure 3e–g show the electric field distributions and the line profiles of field
enhancement on the detection surface 5 nm from the top end of the nanodisk and nanocube
arrays. In the nanodisk, the enhanced electric field due to plasmon coupling localized in
the nanogap is concentrated at one point; whereas, in the nanocube, it is distributed along
a line. In particular, Figure 3g shows that near the hotspot in the nanodisk, an enhanced
electric field of nearly three times is obtained, but in other areas, the field enhancement
degree drops close to one, indicating regions where the field is not enhanced. Conversely,
the nanocube shows a consistent two to three times enhancement along the line profile.
Although this calculation is limited to polarization in the X-direction, using an unpolarized
light source would result in only point-like enhancement spots in the nanodisk, while in
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the nanocube, a mesh-like pattern of enhancement spots is obtained, suggesting a structure
more suited to high-sensitivity imaging. Furthermore, the two-dimensional array structure
of Ag nanocubes with a few nm gaps has already been fabricated by self-organization and,
thus, we intend to further optimize this structure as a base.

3.3. Plasmonic Metamaterials Using MIM Structures with Nanocube Arrays

Having optimized the lateral two-dimensional array structures for high-sensitivity
imaging, we will now consider optimization of the vertical structure. One approach
is the multilayering of nano-array structures to create three-dimensional metamaterials,
enabling light confinement in three dimensions [41]. However, even with electron beam
lithography or self-organization, fabricating multilayer nano metal array structures is
challenging. We have recently succeeded in vertically confining light by fabricating metallic
nanostructures on metal substrates and exploiting their plasmon coupling modes. By
fabricating metallic nano-hemispheres on a metal substrate through a dielectric spacer layer,
we have reported an even stronger optical confinement and the ability to increase, sharpen,
and control the resonance spectral peak, depending on the thickness of the dielectric
spacer layer [60]. By changing the metal species and size of such a Nano-Hemisphere
on Mirror (NHoM) structure, the resonance peak can be flexibly controlled over a wide
wavelength range from deep UV to near IR wavelengths by changing the thickness of the
dielectric spacer layer [61,62]. Similar metal Nanostructures on Mirror (NSoM) structures
have been reported, where the resonant wavelength is controlled by the thickness of the
spacer layer [63–67]. Most are explained by the interaction with the Fabry–Pérot (FP)
mode in an MIM structure, where the resonant wavelength redshifts as the spacer layer
thickens. Conversely, our proposed NHoM structure, while similar to MIM structures,
exhibits an opposite dependence on the spacer layer thickness. This is due to the LSPR-
enhanced electric field distribution in the metal nanostructures, which splits the peak
when coupled with the mirror image mode of the metal substrate. As the spacer layer
thins, the real and mirror image distances decrease and the coupling strengthens, widening
the split and causing the peak that appears at longer wavelengths to redshift. Thus, in
such an NSoM structure, the dependence of the resonance peak splitting/shift on the
thickness of the spacer layer shows the opposite behavior when coupling with the mirror
image mode occurs, as in our reported NHoM structure, or when coupling with the FP
mode occurs, as in the MIM structure. The details of which contribution dominates the
splitting/shifting of resonance peaks in the NSoM structure, coupling to the mirror image
or coupling to the FP mode, and what conditions determine the contribution are still unclear.
Therefore, we calculated the resonance spectra of the most promising two-dimensional
metal nanosheet structure, nanocubes, when placed on a metal substrate to form an NSoM
structure and investigated the mechanism of mode coupling and the controllability of
resonance wavelengths.

Figure 4 shows the calculated reflection and transmission spectra for various Ag
nanocube models. Figure 4a shows the result of calculating the Ag nanocube array struc-
ture as a virtual dielectric thin film with a strong interaction with uniform light without any
structure by using the effective medium approximation. Such an effective medium approxi-
mation is often used for metal–dielectric composite materials and is obtained by optimizing
the parameters of the Lorentz function to reproduce the reflection and transmission spectra
obtained experimentally. To obtain the reflection and transmission spectra in Figure 4a, the
optical properties were estimated by optimizing the experimental results of the reflection
and transmission spectra reported for Ag nanocube arrays [60]. The obtained parameters
for instantaneous dielectric constant (ε∞), plasma angular frequency (ωp), natural angular
frequency (ω0), and damping factor (γ) are 5, 6.6 × 1015 [rad/s], 3.0 × 1015 [rad/s], and
8.0 × 1014 [rad/s], respectively. Since the nanocubes are 30 nm on a side, the thickness of
the effective medium is also assumed to be 30 nm. Natural materials with such spectra
at a mere thickness of 30 nm are nonexistent, highlighting the extraordinary plasmonic
metamaterial interaction with light. Figure 4b,c show the spectra for 30 nm and 50 nm Ag
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nanocubes arranged far apart to eliminate interaction, both displaying an LSPR resonance
peak near 500 nm. The effective medium approximation in Figure 4a assumes an interac-
tion between particles, hence the peak is at a shorter wavelength than in Figure 4b, where
there is no plasmonic interaction. In Figure 4c, the larger particles result in a larger peak
slightly shifted to longer wavelengths. Considering a 30 nm Ag nanocube array structure,
Figure 4d,e depict structures with nanogaps of 10 nm and 5 nm, respectively. As the
nanogap decreases, the electric field enhancement and interaction strengthen, increasing
the reflection and transmission peaks and causing a redshift. In particular, the 5 nm gap in
Figure 4e closely replicates the experimental reflection and transmission peaks, suggesting
this is the closest to the actual optical properties of the nanocube array structure.
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Figure 4. Reflection and transmission spectra calculated using the FDTD simulations for effective
medium approximation model on Ag substrate (a), nanostructure/spacer/metal substrate models
with isolated 30 nm (b) and 50 nm (c) Ag nanocubes, and nanostructure/spacer/metal substrate
models with Ag nanocube array structure with 10 nm gaps (d) and 5 nm gaps (e).

We then proceeded to construct a model of the metal nanostructure/spacer/metal
substrate, i.e., NSoM structure and created extinction spectra from the reflection and
transmission spectra to examine the dependence on the spacer layer’s thickness, as shown
in Figure 5. In all cases, two peaks are present, which are thought to be due to the coupling
with either the FP mode or the mirror image mode, or a mixture of both. Figure 6 plots
the peak wavelengths against the spacer thickness. Particularly, we focus on the long-
wavelength mode’s spacer layer thickness dependence, which is prominent. In the model
using an effective medium approximation shown in Figures 5a and 6a, the peak wavelength
redshifts with increasing spacer thickness. This suggests a dominance of resonance with
the FP mode, indicating that the effective medium in this case has metallic-like properties,
forming a type of MIM structure. In contrast, for the case of the 30 nm nanocube with no
interaction in Figures 5b and 6b, the opposite dependency is shown, with the peaks that
were splitting approaching a single value as the spacer thickness increases. Similarly, for
the 50 nm nanocube with no interaction in Figures 5c and 6c, the same trend is observed
and as the spacer thickness increases, the peaks approach each other, causing the long
mode to blueshift. However, since the splitting width converges to a constant value with
increasing spacer thickness and does not approach any closer, there may be a contribution
from resonance with the FP mode.
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Figure 5. Extinction spectra demonstrating the dependency on spacer thickness for effective medium
approximation model on Ag substrate (a), nanostructure/spacer/metal substrate models with isolated
30 nm (b) and 50 nm (c) Ag nanocubes, and nanostructure/spacer/metal substrate models with Ag
nanocube array structure with 10 nm gaps (d) and 5 nm gap (e).

For the case with interactions between the nanostructures, for a nanogap of 10 nm
shown in Figures 5d and 6d, the peak of the long mode redshifts slightly with spacer
thickness, but then maintains a constant value. This could indicate that both resonances
with the FP mode and mirror image mode are contributing, neutralizing each other’s shifts
to maintain a constant peak, wavelength, and splitting width. In the case of a nanogap of
5 nm shown in Figures 5e and 6e, a redshift occurs with increasing spacer thickness, similar
to Figures 5a and 6a, suggesting that when the nanogap is 5 nm, the interactions between
the nanostructures are stronger and the electric field application to light is more coherently
integrated, resulting in a similar outcome to the effective medium approximation. This
suggests that for a nanocube array structure with a nanogap of 5 nm, coupling with the FP
mode becomes dominant when formed into an MIM structure. Thus, the resonance with the
FP mode and the resonance based on the mirror image mode have different mechanisms,
exhibiting opposite spacer layer dependencies, and which mechanism becomes dominant
depends on the strength of the interaction between the metal nanostructures, which, in this
case, varies with the size of the nanogap.
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Next, we elaborate on the distinct mechanisms of the two modes and their resonance
wavelength control based on this difference, along with their applications in high-sensitivity
imaging. Figure 7a examines the electric field enhancement ratios on the glass substrate for
both the short and long modes of the 30 nm side nanocube interacting at a 5 nm nanogap
and in the absence of interaction. In both scenarios, a greater field enhancement than what
would be expected from mere reflection off the glass substrate is achieved. Additionally,
there is a dependency on the spacer thickness; for the FP mode-based case, the field en-
hancement slightly decreases as the spacer thickness and mode length increase. Conversely,
for interactions with the mirror image mode, the degree to which the oscillations of the elec-
tric field neutralize each other and form a dark mode varies, thus altering the resonance’s
Q value, suggesting that there may be a maximum value at a certain spacer thickness.

Figure 7b,c depict the distribution of the X-polarized localized electric field around the
nanocube side for the case of interaction at a 5 nm nanogap and for the case of no interaction,
respectively. In Figure 7b, all electric field distributions are in phase, whereas in Figure 7c,
they are divided into modes with different phases within the nanostructure. In Figure 7b,
the mirror image mode is not pronounced, but in Figure 7c, interactions with the mirror
image mode are evident. This determines which mode becomes dominant; interaction with
the mirror image mode requires a mode of the localized electric field distributed within
the nanostructure, and an opposing mirror image mode forms to neutralize it. However,
for the FP mode, the distribution of the electric field is coherently integrated within the
nanostructure, so no counteracting localized electric field appears within the metal substrate
and there is hardly any interaction with the mirror image mode. This indicates that the
lateral interaction can be adjusted by the gap distance between the metal nanostructures
and the coupling with the FP mode and mirror image mode can also be controlled. This
allows for the plasmon mode coupling to be freely adjusted according to the application
and purpose. It suggests that the resonance peak wavelength and intensity can be flexibly
tuned independently. Also, by controlling the ratio of both, it may be possible to control
the degree of the dark mode and, consequently, the ratio of radiation to absorption from
the LSPR. This could enable the control of optical properties tailored to the application,
such as enhanced scattering, emission, light absorption, light harvesting, and improved
sensor detection sensitivity.
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array structure with 5 nm gaps. X-polarized electric field distribution cross-sections for Ag nanocubes
alone (b) and array structure with 5 nm gaps (c) on spacer/metal substrate models.

For imaging, nanostructures with nanodisks concentrated at contact points, rather
than nanospheres with localized electric fields concentrated at a single point, and even
nanocubes concentrated on the surfaces they touch, are beneficial for creating a uniform
enhancement field over a wide area. When adjusting the resonance wavelength, the size
and gap of the nanostructure are usually adjusted, but this change affects the region and
penetration depth of the plasmon coupling and localized electric field. By using a two-
dimensional nano-periodic structure combined with an MIM structure, it is possible to
flexibly adjust only the resonance wavelength based on the dielectric thickness, while
maintaining the size and gap of the nanostructure. In actual microscopic measurements,
it is essential to tune the resonance conditions to match the excitation and fluorescence
wavelengths. Bearing these points in mind, in this study, we designed and optimized
nano-array structures of plasmonic metamaterials by simulation, but attempts to fabricate
them and demonstrate control of their optical properties are currently in progress and will
be reported at the next opportunity.

Our work on nanocube arrays has revealed important parameters such as nanogap
size and spacer layer thickness that significantly affect optical properties via Fabry–Perot
modes and mirror-image modes. These findings not only advance our understanding
of plasmonic metamaterial behavior but also provide practical guidelines for designing
next-generation devices. By fine-tuning these parameters, future research can leverage our
findings to develop plasmonic devices with unparalleled sensitivity and resolution, thereby
opening new avenues for high-sensitivity imaging applications. In addition to imaging, the
ability to control plasmon coupling modes via Fabry–Perot modes and mirror-image modes
holds potential for a variety of applications. For example, since the spectrum of optical
absorption and scattering can be controlled, it is anticipated to lead to high-efficiency
light-emitting devices and solar cells, and to low-threshold nano-lasers, by achieving high
Q-values. Furthermore, it is poised to open the door to various applications such as optical
entanglement and optical quantum devices based on the strong coupling of plasmon
modes and highly integrated nano-optical circuits utilizing the extreme optical confinement
properties.
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4. Conclusions

Our investigation into the intricate domain of plasmonic metamaterials has yielded
pivotal insights into the manipulation of light at the nanoscale. We have meticulously
crafted and analyzed various nanostructural arrays, delving into their electric field inter-
actions and the resulting plasmonic behaviors, providing insights that are crucial for the
advancement of high-sensitivity imaging techniques. Our findings articulate the significant
role of geometric configuration, particularly the gaps between nanostructures, in defining
the strength and localization of electric fields, which are instrumental in enhancing optical
responses for high-resolution imaging. By extensively analyzing the interactions within
metal nanostructure/spacer/metal substrate constructs, we have revealed the intricate
behaviors of electric field enhancements at different spacer layer thicknesses. Our find-
ings reveal that the resonance peak wavelength and mode intensity are highly dependent
on spacer thickness, which can be manipulated to fine-tune the optical responses of the
nanostructures. Through FDTD simulations, we have demonstrated the capacity to pre-
dict and control the LSPRs by adjusting nanostructural dimensions. In summary, the
strategic design and optimization of nanostructured arrays in plasmonic metamaterials
represents a significant leap forward in the quest for sensitive and high-resolution imaging
technologies. Our research not only demonstrates the feasibility of enhancing imaging
capabilities through nanophotonics, but also highlights the endless possibilities that lie at
the intersection of material science, optics, and nanotechnology. As we continue to explore
this fascinating domain, the prospects for new applications and technologies that leverage
the unique advantages of plasmonic metamaterials are boundless, promising to usher in a
new era of scientific exploration and technological innovation.
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