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Abstract: To overcome the limitation of dynamic reciprocity, a new method for designing broadband
on-chip optical isolators is proposed and demonstrated based on saturated gain, which is able
to support simplex and duplex operation modes. By connecting a saturated gain waveguide to
an appropriate linear loss waveguide, broadband isolation is predicted and proved theoretically
through saturated gain-induced non-reciprocal transmission. The proposed isolator is numerically
demonstrated with an operating band of 59 nm and an isolation ratio of −20 dB at the central
wavelength of 1550 nm. It is noteworthy that when the current pump changes, the isolator still
works well and keeps the high isolation ratio at a different input power. The footprint of the
whole device is 465 µm × 0.35 µm which satisfies the requirement of photonic integrated circuits.
The proposed isolator, with the combined advantages of compact footprint, broadband, duplex
operation and high isolation, can enable on-chip unidirectional transmission and complex topological
routing designation.

Keywords: optical isolator; reciprocal; saturated gain; on-chip; broadband

1. Introduction

Non-reciprocity is a remarkable physical phenomenon, which provides abundant
applications in the photonics industry [1–8], especially on-chip photonics. The photonic
isolator is one of the biggest concerns in non-reciprocal on-chip photonic devices due
to wide applications of integrated backscatter eliminating and complex communication
topology construction in photonics. To implement on-chip isolation, three well-known non-
reciprocal phenomena have been investigated extensively as solutions, including nonlinear
optical (NLO) effects [9–13], magneto-optical (MO) effects [14–22] and the time-dependent
optical (TDO) system [23–25]. The NLO effects usually provide two schemes, which are
optically induced transparency [8] and optical bistability [9,10]. The former exploits four-
wave mixing in micro-ring which leads to the narrow operation band. The latter is seriously
limited by dynamic reciprocity [26], and hence, the isolator function cannot be constructed
when a forward signal transmits through the system, which means the duplex operation
modes cannot be supported. The MO effects are also actualized by two schemes. One
is an MO micro-ring [12], which is not only a narrow operation band device but also
requires complex manufactured technology. The other is the MO-induced reciprocal loss
waveguide [14,18], which is limited by its large size for on-chip photonics. The TDO system
demands a very high modulation frequency. Therefore, although numerous pieces of
research focus on optical isolators, there is still a lack of a small-sized scheme holding
not only a wide operating band but also supporting duplex workings and keeping a high
isolation rate.
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In this paper, we propose and demonstrate that saturated gain can be a new solu-
tion to implement non-reciprocal transmission, which is a fabrication-friendly, duplex
work supporting, wide operating band and relatively small-sized scheme. Table 1 shows
the comparison between current schemes and the saturated gain-induced non-reciprocal
transmission proposed in this paper.

Table 1. Characteristics of the current schemes and proposed scheme.

Fabrication Duplex Working Operating Band Size

NLO Easy No Narrow (~1 nm) ~100 µm

MO micro-ring Very Hard Yes Narrow (<1 nm) ~100 µm

Normal MO Easy Yes Wide (>50 nm) >1 mm

TDO Hard Yes Narrow (<10 nm) ~100 µm

Saturated gain Easy Yes Wide (>50 nm) ~500 µm

In this work, we utilize the broadband saturated gain of a semiconductor optical
amplifier (SOA) waveguide to construct a non-reciprocal propagation area, and then
compensate the power change with an appropriate linear loss waveguide which is designed
as a hybrid surface plasmon polariton (SPP) waveguide [27]. The designed isolator supports
duplex operation mode in a 59 nm operating band, and the isolation rate is as high as
−20 dB, while the whole size of the device is as small as 465 µm × 0.35 µm.

2. Non-Reciprocal Transmission in Saturated Gain Waveguide

There is an important property of non-reciprocal transmission in a saturated gain
waveguide. When light only inputs to one port of the waveguide with different powers
(simplex operation mode), the output powers are identical after propagating over a long
enough distance. The model of saturated gain is described in [28–31] as

G =
G0

1 + P/Ps
− α (1)

where P is the power of light propagating in the saturated gain waveguide, Ps is the
saturated parameter, G0 is the gain coefficient for small signals, and α is the linear loss of
the waveguide. Figure 1 shows the relationship between G and P. The zero point of the
G–P curve is defined as cut-off power Pc, which can be expressed as

Pc = (
G0

α
− 1)Ps (2)

When the power of the input light P is higher (lower) than Pc, the gain coefficient G is
smaller (greater) than zero, and then P is going to decrease (increase) to Pc. It can be found
that the gain coefficient G convergences to zero as shown in Figure 2a,b after a long enough
propagating distance, and the output power P convergences to Pc which corresponds to
the zero-gain coefficient.

When light signals are input into both of the two ports of a waveguide (duplex
operation mode), Equation (1) is changed as

G(L) =
G0

1 + [P1(L) + P2(L)]/Ps
− α (3)

where P1 and P2 are the power of light signals input from the right and left ports, respec-
tively. In addition, P1 and P2 satisfy the following relations and conditions:

dP1
dL = GP1, dP2

dL = −GP2 (4)
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dP1
dL |L→∞ = 0, dP2

dL |L→∞ = 0 (5)

Assuming that Lw is long enough to meet the boundary conditions, the solutions can
be obtained by combining Equations (3)–(5) as

P1(Lw) + P2(Lw) = Pc, P2(0) + P1(0) =Pc (6)

Evidently, the sum of the input power at the right port and the output power at the
left port is equal to the sum of the output power at the right port and the input power at
the left port, and the value is exactly equal to Pc.
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Figure 2. Blue line: Theoretical curves of functions P(L) and G(L) when the input power is (a) lower
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3. Isolator Model

Using the saturated gain model, we propose a sketchy model, supporting both the
simplex and duplex operation modes, and then investigate the relationship between device
size and performance. Exploiting the preceding demonstrations of Equations (1)–(6), the
property of a saturated gain waveguide can be summed up as the illustration in Figure 3a.
Po1 is the output power of PH, and Po2 is the output power of PL, where PH >> PL, and Po1
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≈ Po2 ≈ PH ≈ Pc. Connecting a linear loss element to the saturated gain waveguide, the
isolator model is obtained as shown in Figure 3b.

Photonics 2024, 11, x FOR PEER REVIEW 4 of 10 
 

 

1 2| 0, | 0→ →= =L L

dP dP

dL dL
 (5) 

Assuming that Lw is long enough to meet the boundary conditions, the solutions 

can be obtained by combining Equations (3)–(5) as 

1 w 2 w c 2 1 c( ) ( ) , (0) (0)P L P L P P P P+ + ==  (6) 

Evidently, the sum of the input power at the right port and the output power at the 

left port is equal to the sum of the output power at the right port and the input power at 

the left port, and the value is exactly equal to Pc. 

3. Isolator Model 

Using the saturated gain model, we propose a sketchy model, supporting both the 

simplex and duplex operation modes, and then investigate the relationship between de-

vice size and performance. Exploiting the preceding demonstrations of Equations (1)–

(6), the property of a saturated gain waveguide can be summed up as the illustration in 

Figure 3a. Po1 is the output power of PH, and Po2 is the output power of PL, where PH >> 

PL, and Po1 ≈ Po2 ≈ PH ≈ Pc. Connecting a linear loss element to the saturated gain wave-

guide, the isolator model is obtained as shown in Figure 3b. 

In the simplex operating mode, only one of the two ports of the device allows for 

the input of light signals. As shown in Figure 3b, when the light transmits from the left 

side to the right side, and its power is as high as PH ≈ Pc, the power can only be gained a 

little and becomes Po1 because of the saturated gain property; then, it decays to PL << PH 

after transmitting through the additional loss element. By contrast, if light with power 

PH is input from the right side, its power will decay to PL first, and then grow to Po2 

which is very close to PH. 

In the duplex operating mode, both of the two ports are inputs as shown in Figure 

3c, it can be understood that PH1 + Po2 = PL2 + Po1 = Pc in terms of Equation (6). If PH1 = Pc, it 

is clear that Po2 = Pc/2 >> PL1. The isolation for backward signals is kept when the forward 

signals are transmitted through it. It should be noted that the operating power of duplex 

mode is half that of simplex in the same device. 

(b)(a)

PH Po1

PL Po2

(c)

PH1 Po1 PL1

Po2 PL2 PH2

PH Po1 PL

Po2 PL PH

Saturated Gain

PL

Po2

PH Po1 PH Po1

Saturated Gain Saturated Gain

PL

Po2

Loss Loss

Po1

PL

PH

PL

PH1 Po1

PL2

Po2

Po1

PL1

PH2

PL2

 

Figure 3. (a) Saturated gain property, (b) schematic diagram of simplex operating mode and (c) 

duplex operating mode. PH >> PL, Po1 ≈ Po2 ≈ PH ≈ Pc. 

The above discussion is based on the theory demonstrated in Equations (4) and (5), 

a theory that demands enough waveguide length. Here, a more detailed analysis is giv-

en to demonstrate how long that required length is. The design isolation ratio of the iso-

lator r is defined as 

L

R

=
T

r
T

 (7) 

where TL is the transmission of input from the left and TR is the transmission of input 

from the right. Firstly, we discuss the simplex operation mode. The P–L curve of a satu-

rated gain waveguide for small signal input is plotted in Figure 4a in accordance with 

the numerical solution of 

Figure 3. (a) Saturated gain property, (b) schematic diagram of simplex operating mode and (c) duplex
operating mode. PH >> PL, Po1 ≈ Po2 ≈ PH ≈ Pc.

In the simplex operating mode, only one of the two ports of the device allows for the
input of light signals. As shown in Figure 3b, when the light transmits from the left side to
the right side, and its power is as high as PH ≈ Pc, the power can only be gained a little
and becomes Po1 because of the saturated gain property; then, it decays to PL << PH after
transmitting through the additional loss element. By contrast, if light with power PH is
input from the right side, its power will decay to PL first, and then grow to Po2 which is
very close to PH.

In the duplex operating mode, both of the two ports are inputs as shown in Figure 3c,
it can be understood that PH1 + Po2 = PL2 + Po1 = Pc in terms of Equation (6). If PH1 = Pc, it
is clear that Po2 = Pc/2 >> PL1. The isolation for backward signals is kept when the forward
signals are transmitted through it. It should be noted that the operating power of duplex
mode is half that of simplex in the same device.

The above discussion is based on the theory demonstrated in Equations (4) and (5), a
theory that demands enough waveguide length. Here, a more detailed analysis is given to
demonstrate how long that required length is. The design isolation ratio of the isolator r is
defined as

r =
TL

TR
(7)

where TL is the transmission of input from the left and TR is the transmission of input from
the right. Firstly, we discuss the simplex operation mode. The P–L curve of a saturated gain
waveguide for small signal input is plotted in Figure 4a in accordance with the numerical
solution of

P + Ps

P
dP = (PsG0 − αPs − αP)dL (8)

and the “enough amount of length” of the saturated gain waveguide can be found in
Figure 4a as Lt1, which considers the output power tolerance as t × Pc. Connecting a linear
loss waveguide which decays the input power from Pc to rsPc (rs is the isolation ratio of
simplex operation mode), the asymmetric transmission phenomenon can be observed in
Figure 4b,c.

Next, we discuss the duplex operation mode. Similar to the simplex operation mode,
the P–L curve of the saturated gain waveguide is also needed to find the “enough amount
of length” Lt2 as shown in Figure 5a. Further, connecting a linear loss waveguide which
decays the input power from Pc to rdPc/2 (rd is the isolation ratio of duplex), the P–L curve
becomes Figure 5b for different propagating directions, and the asymmetric transmission
can be observed. It should be noted that the main difference between simplex and duplex is
the operation power. The operation power of duplex is half of that in simplex. Comparing
simplex operation mode with duplex operation mode in the same system, it can be found
that their operation powers are different. The operation power of duplex changed to Pc/2,
which is half that of the simplex operation mode.
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4. Device Designing

Then, we give a practical design of an on-chip optical isolator in accordance with the
model described in Figure 3. The design is made up of an SOA waveguide covered by
metal, which provides saturated gain with a linear loss α fitting the mathematical model
in Equation (1). Figure 6a exhibits the schematic of our design. The isolator consists of
two parts, the gain part and the loss part. The cross-sections of the two parts are the
same, shown in Figure 6b, while the lengths and pump currents are different. For the gain
part, the length is LSOA = 450 µm, and the pump current is 90 mA, corresponding to the
parameters Ps = 3.41 mW and G0 = 0.3 µm−1 at 1.55 µm operation wavelength [19–22]. For
the loss part, the length is only LD = 15 µm, and no pump is utilized in it. Figure 6b shows
the layer structure of the cross-section of the proposed design. It can be seen that the SOA
waveguide is an SPP waveguide consisting of a metal layer (exploited as an electrode), a
p-type InP layer, an n-type InP layer and an InGaAsP quantum well layer [18]. It should be
noted that the parameters Ps and G0 are of the material, not of the SPP mode employed as
shown in Figure 6c. The effective index of the SPP mode is 3.03 + i0.0176, and the decayed
coefficient α is 0.1426 µm−1 in terms of the imaginary effective index 0.0197. Meanwhile,
the Ps and G0 become 3.5365 mW and 0.1687 µm−1, respectively, and the cut-off power Pc
is 643 µW. Accordingly, it can be calculated using Equation (8) and the FDTD method or
the Runge–Kutta method that 15 µm LD provides a bidirectional 20 dB decay to make the
643 µW input power decay to 6.43 µW; additionally, the 450 µm LSOA ensures the 6.43 µW
low-power signal increases back to 643 µW, and the 643 µW signal maintains its power,
which realizes non-reciprocal transmission.
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if a signal with a power of 643 μW is input, the P–L curve changes to Figure 7b. Connect-

Figure 6. (a) Schematic of the isolator, LSOA = 450 µm, LD = 15 µm. (b) Layer structure of SOA
waveguide, h1 = 0.5 µm, h2 = 0.2 µm, h3 = 0.01 µm, w = 0.35 µm. (c) Normalized electrical field
distribution of fundamental TM mode. The length of SOA LSOA and loss part LD are designed to
support an on-chip optical isolator with a 643 µW input power and 20 dB isolation rate. LD = 15 µm
provides a bidirectional 20 dB decay to make 643 µW input power decay to 6.43 µW. LSOA = 450 µm
ensures the 6.43 µW low-power signal increases back to 643 µW, and the 643 µW signal maintains
its power.

According to Equation (8) and the parameters (α, Ps and G0), the solid blue line in
Figure 7a can be calculated numerically. It is clear that a 6.43 µW signal increases to 642.5 µW
(99.92% of Pc) after propagating a 450 µm distance. The finite-difference time-domain
(FDTD) [32,33] result (the red dashed line) also fits the analytical solution (calculated using
Equations (4) and (5) with original code) as shown in Figure 7a. Meanwhile, if a signal
with a power of 643 µW is input, the P–L curve changes to Figure 7b. Connecting a 15 µm
loss waveguide with the SOA mentioned above, the function of an isolator can be realized;
the P–L curves (signal inputs from the left and right), similar to Figure 4b,c, are given in
Figure 8a,b, respectively.

Our design also supports broadband operation. Exploiting the broadband gain spec-
trum of the SOA, we have calculated the broadband transmission characteristics of the
SOA when the input power is 643 µW and 6.43 µW in Figure 9a. Combining with the
transmission spectrum of the loss part, Figure 9 can be obtained to illustrate the output
power spectrum of both directions of the isolator and the spectrum of the isolating factor,
F, expressed by Pout/Pin. Further, considering F > 99 as a criterion, the bandwidth of the
isolator is calculated to be as broad as 59 nm. All the results are simulated.
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Figure 9. (a) Simulated broadband transmission characteristic of the SOA. (b) Simulated broadband
transmission and isolating factor of the whole device.

It has already been pointed out in Figure 5 that duplex operation mode exhibits
lower operation power compared to simplex, so it is important to find an effective way
to adjust operation power. The pump current is the key to controlling operation power.
The operation power varies with the pump current of the gain part. Figure 10a gives the
relation between P and L of the SOA with different pump currents at 1.55 µm, and the
corresponding operation power can be calculated in Figure 10b. If we change the operation
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mode from simplex to duplex, and hope to maintain operation power, we can increase
pump currents to fit it.
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Figure 10. (a) P–L curves of the SOA with different pump currents. (b) Operation power of the
isolator with different pump currents. All the curves are simulated using FDTD.

5. Conclusions

In summary, we have proposed a novel method of designing the broadband optical
isolator based on nonlinear gain, and the fundamental theory of the isolator is completely
demonstrated. With the guidance of this theory, we have designed a broadband optical
isolator working at a wide wavelength scope, from 1.500 µm to 1.559 µm. In addition, the
isolator works at different powers with the same isolated factor, 100, when the current pump
is changed. Moreover, the length of the whole device is only 465 µm, and the footprint
area is as small as 465 µm × 0.35 µm. The size of the device satisfies the requirement of the
application of photonic integrated circuits, and in particular, it can be applied to eliminate
integrated backscatter, protect the source and construct complex communication topology
in photonic integration.
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