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Abstract: In a long-distance wireless power transmission system with a non-uniform distribution of
laser irradiation, it will significantly reduce the output power of the photovoltaic array, resulting in a
large amount of power loss in the system and a decrease in conversion efficiency. This paper proposes
an efficient and reliable optimal circuit connection algorithm for the 5 × 5 scale photovoltaic array.
Under the laser illumination of 300 W, a 20 m wireless power transmission experiment was performed
on four 5 × 5 scale photovoltaic arrays. The results show a 56.49% increase in the maximum output
power of the 5 × 5 scale photovoltaic array.

Keywords: non-uniform laser irradiation; circuit optimization; optimization algorithm; maximum
output power

1. Introduction

In recent years, laser wireless power transmission (LWPT) has attracted considerable
interest due to its long transmission distance, good mobility flexibility, and high energy
density [1]. Laser wireless power transmission systems consist of a laser system at the trans-
mitter, a transmission medium, laser power converters (LPCs), and a power management
system at the receiver.

Researchers are most concerned with the efficiency of the laser wireless power trans-
mission system, which is directly related to the efficiency of the system and the maximum
output power (MPP) of the array of LPCs. Due to the uneven distribution of light intensity
during long-distance laser transmission or local contamination on the surface of LPCs,
there is a risk of current mismatch among the LPCs in the array. Incorrect connections
can result in a significant reduction in the array output power or even cause damage to
the LPCs. Therefore, circuit reconfiguration of the array plays a decisive role in obtaining
maximum power at the photovoltaic (PV) array. In [2], an optimization algorithm based on
Series-Parallel (SP) and Total-Cross-Tied (TCT) structures is proposed to obtain the optimal
SP and TCT structures for Gaussian beams emitted from lasers. The reconfiguration algo-
rithm in [3] reconnects the local shadows in the array to maximize the obtained electrical
power. Modeling simulations and experiments under four shading conditions are also
used to verify the effectiveness of the algorithm. Reference [4] comparatively investigates
the maximum power of SP, TCT, and Bridge-Link (BL) array structures under six shading
conditions. The simulation results show that TCT has the highest power point under the
six shading conditions.

Reference [5] improves the interconnection module inside the photovoltaic array to
reduce the mismatch loss due to local shading. SP, TCT, and BL structures were experi-
mentally obtained with better connections. Reference [6] simulates and experimentally
investigates the effect of the variation of each cell connection on the output power of par-
tially shaded PV arrays. Reference [7] investigates the proposed structure under shading
conditions compared to the conventional triple connection structure, and the obtained
electrical power is substantially increased compared to the TCT configuration. Reference [8]
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demonstrates that the local shading condition substantially reduces the MPP of the pho-
tovoltaic array and provides a method for rearranging the array under various shading
conditions. Reference [9] proposes a dynamic interconnection method for PV modules
based on an irradiance equalization algorithm. Meanwhile, [9] proposes an irradiance
equalization algorithm to obtain the MPP by controlling the switching matrix. By opti-
mizing PV connections under different shielding conditions, [10] achieves a higher MPP.
Reference [11] quantifies the power loss of three types of arrays in conditions of shadowing.
Reference [12] suggests a novel TCT connection method for various shielding conditions.
Reference [13] utilizes the Tom-Tom configuration connection method to achieve greater
output power under varying shielding conditions. An improved strategy is proposed
to optimize the dynamic photovoltaic array (DPVAS) using an “irradiation equalization”
(IEQ) reconstruction strategy [14].

In summary, the current research on the reconfiguration of PV arrays is primarily
based on the irradiance balancing principle for circuit reconstruction [15–17]. The essence
of this approach is to enhance the output power by reducing current mismatch. In the field
of solar PV arrays, both static and dynamic circuit reconstruction technologies have become
relatively mature, attracting widespread attention and applications [18,19]. However, in the
realm of LWPT, there remains a significant gap in the study and application of static and
dynamic circuit reconstruction techniques. This indicates that, in this particular domain,
further in-depth research and practical applications are necessary to optimize the circuits
of PV arrays in LWPT. Future efforts should focus on filling this research gap to advance
the development of LWPT technology and enhance its efficiency in real-world applications.
When semiconductor lasers are used in long-range wireless power transmission systems,
the light intensity distribution at the receiver is not uniform, even though the laser is shaped
and homogenized. Additional research needs to be explored concerning the most effective
configuration of the array circuit. In this paper, we present an efficient and feasible circuit
design for arrays under certain static non-uniform light intensity or shadowing conditions
to efficiently obtain the maximum power at the receiver array and decrease the number of
local MPP points.

This paper employs an 808 nm six-junction LPC to assemble a 10 × 10 PV array.
Under laser illumination of 300 W, a power transmission experiment is conducted at a
distance of 20 m. Furthermore, this paper optimizes the circuit reconfiguration of a 5 × 5
array with static non-uniform light intensity distribution through the algorithms. This
paper investigates LWPT characterized by a comparatively substantial output power, a
sizable sample size, and specific long-range transmission. The research approach involves
a synergistic combination of experimental methodologies and theoretical studies.

2. Materials and Methods

The PV vertical multi-junction structure, which includes the GaAs contact layer and
the InGaP lateral conduction layer (LCL), was designed to operate at 808 nm. Six GaAs
subcells were interconnected by tunnel junctions, as shown in Figure 1a. Each subcell
has an Si-doped GaAs emitter and a C-doped GaAs base sandwiched between the InGaP
window and back surface field layers. A p++−AlGaAs/n++−AlGaAs alloy makes the
tunnel junctions transparent to the input beam. Lambert’s law was used to simulate the
thickness of each subcell, with an absorption coefficient of 14,000 cm−1. The group III and
V sources were trimethylindium (TMIn), trimethylgallium (TMGa), AsH3, and PH3. The
GaAs LPC wafers were grown in an MOCVD (metal–organic chemical vapor deposition)
system at a temperature of 690 ◦C and a pressure of 50 mbar, with C (CBr4 source), Si (Si2H6
source), and (or) Te (DeTe source) used as p-type and n-type dopants, respectively [20].
To improve thermal conductance, LPCs were placed on copper-plated ceramic heat sinks
with silver paste between them, as shown in Figure 1b. I–V measurements were performed
using an 808 nm laser and an electronic load meter.
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Figure 1. (a) Structure of the 808 nm six-junction LPCs. (b) Top view of 40.72 × 45.07 mm2 LPCs.

The output characteristics of the LPCs can be equivalently analyzed by a single-
diode circuit model, as shown in Figure 2a. When setting the temperature to 25 ◦C,
Equations (1)–(3) express the LPC output characteristics [15]:

I = Iph − ID0 ∗
{

exp

[
(V + IRs)q

nKT

]
− 1

}
− Ish (1)

Iph =
G

Gref
Iref (2)

Im =
G

Gref
Imref (3)
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Figure 2. (a) PV single-diode equivalent model; (b) PV ideal diode equivalent model.

The meanings of the parameters are shown in Table 1.
The I–V curve of an LPC can be accurately modeled using the seven input parameters

Isc, Uoc, Um, Im, Rs, Rsh, and G. However, for fast calculations, the seven-parameter model
is simplified to a five-parameter model in practical applications. The five-parameter ideal
diode model can reduce the workload of theoretical simulation calculations, allowing for a
rapid evaluation of the analysis of the actual situation and the output characteristics of the
PV array. The process for reducing the seven-parameter model to the five-parameter model
is described below.

Since Rs of the LPC is small enough to approximate 0, and Rsh is huge enough to
consider infinity, the single-diode equivalent circuit model can be simplified to an ideal
diode circuit model, as shown in Figure 2b. The PN junction short circuit can be expressed
using the following equation:

Iph = Isc (4)
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Therefore, the ideal diode output characteristic can be expressed as the following
equation:

I = Isc − ID0

[
exp

(
qV

nKT

)
− 1

]
(5)

Table 1. Basic parameter characteristic.

Parameter Meaning Value

q Electron charge 1.6 × 10−19 C
K Boltzmann constant 1.38 × 10−23 J/K
n A constant factor \

Rs, Rsh Series resistance, parallel resistance \
Eg Semiconductor bandwidth \

U, I LPC output voltage and current \
G Light intensity \

Gref 1 W \
Iph Photoproduction current \
Iref Photoproduction current at 1 W/cm2 \

Im
Photoproduction current corresponding to the

maximum power \

Imref
Photoproduction current corresponding to the

maximum power at 1 W/cm2 \

When the LPC is open circuit, Voc can be expressed using the following equation:

Voc =
nkT

q
ln
(

Isc

ID0
+ 1
)

(6)

According to the I–V characteristics of the LPC output, there is a maximum power
point that maximizes the output power of the LPCs. Set the maximum output power as Pm
and the other equations as follows:

Pm = Um ∗ Im (7)

Z1Isc = ID0 (8)

Z2Voc = nKT/q (9)

In this case, the output expression of the LPC can be expressed as the following
equation:

I = Isc

{
1 − Z1

[
exp

(
V

Z2Voc

)
− 1
]}

(10)

Z1 =

(
1 − Im

Isc

)
exp

(
− Vm

Z2Voc

)
(11)

Z2 =

(
Vm

Voc
− 1
)

ln
(

1 − Im

Isc

)−1
(12)

At this time, five parameters, Isc, Uoc, Um, Im, and G, can represent the output charac-
teristics of the LPC, which better fit the output I–V characteristics. To verify the matching
degree between the output characteristics of the model and the measured LPC, this paper
compares the simulation results and the actual measured results under the condition of
1 W/cm2, as shown in Figure 3a,b. It can be seen from the comparison that the simulation
results fit well with the actual test results, which can fully meet the prediction and verifi-
cation function of the theoretical simulation of the array on the experimental results. The
parameters of the LPC are detailed in Table 2.
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Table 2. LPC parameters at 1 W/cm2.

Parameter Value Unit

Voc 6.15 V
Isc 1134.24 mA
Vm 5.40 V
Im 980.51 mA
Pm 5290.00 mW

3. Results
3.1. Experiment

The distribution of laser intensity after long-distance transmission is not uniform.
During transmission, atmospheric interference occurs, and the light intensity distribution
on the PV array must be distinct. Significant power will be lost if the PV array employs an
unsuitable array connection. Based on the conclusion in [4] that the TCT configuration has
the best output quality, the circuit of the TCT configuration is optimized in this paper. This
paper presents an efficient and reliable TCT array circuit connection optimization method
under a non-uniform laser to reduce power loss. In this paper, the specific concept of the
optimization strategy algorithm is presented.

In this paper, the experimental validation is conducted in a realistic and specific setting.
In this experiment, the long-range transmitting laser source is an 808 nm semiconductor
laser that, after 20 m of transmission, reaches an LPC’s array composed of 100 LPCs. The
arrays were divided into four 5 × 5 arrays, shown in Figure 4a. Figure 4b depicts the
arrangement and number of 5 × 5 LPC arrays. Additionally, the I–V curve of the LPC’s
array is tested to identify the Isc and express the graph of Isc distribution. Figure 5 depicts
the obtained Isc distributions under 300 W non-uniform laser irradiation, which is a vital
parameter of the optimization algorithm.

3.2. 5 × 5 Algorithm Block Diagram

There are 25 possible TCT configurations for an LPC 5 × 5 array. The combinations
would be very computationally intensive and require much time if every possible com-
bination method was to be considered. Reference [14] provides an algorithm for rapidly
obtaining optimized TCT connections using a simple sorting method, but the accuracy of
the optimization needs to be improved. This paper develops a more precise automatic
algorithm to take advantage of the faster computation time. The algorithm proposed in [14]
repeats the search calculation until the threshold value is satisfied and then terminates. In
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this paper, a 5 × 5 array reconstruction algorithm is obtained by optimizing the algorithm
to obtain the initial array, which connects to an optimized circuit design distribution. As
discussed earlier in this paper, most search algorithms for TCT architectures are either com-
putationally expensive or provide solutions that are close to optimal only under Gaussian
beam irradiation. Therefore, under non-uniform irradiation conditions, there is a need for a
search algorithm that can provide optimal solutions within an acceptable time complexity.
The TCT configuration algorithm proposed in this paper utilizes the concepts of irradiance
balancing and current matching to establish the optimal structure. Ensuring that the sum
of currents in each row is nearly equal is crucial for maximizing the output power of the
PV array. This algorithm is based on the idea of array reconstruction. Figure 6 depicts the
block diagram.
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The algorithm block diagram’s fundamental logic is calculated as follows:

1. Input and arrange 25 short-circuit current values in descending order.
2. Give an initial TCT distribution N0 and set the number of rows to k = 1.
3. Provide the stopping threshold yz for row K and calculate the difference Dk between

the sum of row K and the mean of row M.
4. Calculate the absolute value of the difference between each element of the row k and

the element of the row z, Dkz. (k < z < 6; all integers).
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5. Compare the size of 2|Dk| and |Dkz|; if Dk > 0, Dkz > 0, |Dkz| < 2|Dk|, swap the
two elements of Dkz. On the contrary, judge the size of |Dk| and yz. If |Dk| ≥ yz,
the jump is executed (3). If |Dk| < yz, then k = k + 1 and execute (7).

6. Compare the size of |Dk| and yz; if |Dk| < yz, then k = k + 1. If |Dk| ≥ yz, then
execute (3).

7. If k < 5, repeat (3) to (6), or else, end the run.
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The input values are the initial distribution’s Isc values. The optimized current dis-
tribution is obtained by rearranging the circuit connection optimization algorithm, and
then the optimized TCT circuit connection method is accepted. The short-circuit current
distributions for the four 5 × 5 arrays after the optimization, according to the algorithm
provided in this paper, are depicted in Figure 7.
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3.3. Theoretical Simulation and Experiment

To assess the effectiveness and dependability of the TCT connection optimization
algorithm, first, the TCT connection and the optimized TCT connection are simulated and
validated using an ideal equivalent diode model for four cases to predict the experimental
outcomes. Figure 8 depicts the simulation results.
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TCT; blue curve is the connection after optimization using the algorithm provided in this paper).

The simulation results indicate that the maximum power of the four TCT structures is
21.33 W, 26.70 W, 16.42 W, and 15.71 W. After optimizing the connection, the maximum
power obtained is 29.15 W, 30.40 W, 22.33 W, and 24.11 W. In comparison, the maximum
power increased by 36.66%, 13.86%, 35.40%, and 53.49%. Compared to the standard TCT
connection, the optimized TCT connection increases the maximum power significantly.
In addition, the output has a single maximum power point, making it easier to obtain
maximum power in the future.

In order to further validate the predictive reliability of the optimization algorithm and
simulation results, four 5 × 5 arrays are experimentally validated in this paper. Figure 9
depicts the experimental results.

Similarly, the experimental results reveal that the maximum power obtained by TCT
configuration in four actual scenarios is 18.21 W, 21.18 W, 13.07 W, and 11.74 W. The optimal
TCT connection yields a maximum power of 23.60 W, 19.18 W, 17.73 W, and 18.37 W.
Compared to the pre-optimization period, the maximum power in the four arrays increased
by 56.49% after optimization.
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this paper).

4. Discussion

Almost all of the TCT connections optimized with this algorithm have high maximum
power and nearly unique maximum power points, which can significantly improve the effi-
ciency of obtaining the maximum power point in the future. In addition, the dependability
and predictability of simulation results are verified. Figure 10 shows the comparison of the
maximum power of four arrays. The difference between the experimental and simulation
results can be attributed to the utilization of an ideal model and the fact that the actual
performance of each LPC is different.
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connection using the algorithm provided in this paper).

The algorithm proposed in this paper enables higher power outputs from a PV array
under non-uniform laser illumination. In comparison to the other circuit reconstruction
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algorithms, the proposed algorithm has the advantage of being simpler and more efficient.
Additionally, we have, for the first time, constructed a long-distance, high-power laser
transmission system using 808 nm six-junction LPCs and applied the proposed recon-
struction circuit algorithm in practical scenarios. We only conducted power transmission
experiments in a static environment, specifically for indoor laser power transmission. In
real-world environments, atmospheric disturbances, turbulence, and other factors can
cause real-time changes in the distribution of lasers on PV arrays. To achieve an MPP
output under such conditions, real-time adjustments to the circuit control are necessary,
and this can be facilitated through artificial intelligence [14].

The algorithm proposed in this paper is currently applicable only to a 5 × 5 TCT PV
array. If it is to be applied to larger or smaller PV arrays, adjustments to the algorithm
statement in the flowchart are required, specifically changing “K < 5” to the corresponding
array specifications. Furthermore, attention will be given to potential issues related to
LWPT systems, such as addressing human exposure to lasers, environmental impacts, and
compliance with safety standards. The research will also focus on the development of LPCs
in the eye-safe wavelength range and the reliability study of LWPT systems. Firstly, the laser
transmission process may pose risks such as burns to the human body and the potential for
fire accidents. Therefore, it is necessary to wear appropriate protective gear and implement
warning symbols during the implementation of wireless energy transmission. Secondly,
the optimization strategy proposed in this paper is highly reliable as it remains unaffected
by temperature variations. However, in the presence of interference where parts of the laser
spot are obstructed, resulting in changes in the laser distribution on the PV array, it becomes
necessary to reoptimize the PV array connection based on this laser distribution. The array
optimization algorithm proposed in this paper is primarily influenced by changes in the
laser spot distribution. While the components, maintenance requirements, and overall
system lifespan of the PV array components may lead to a decrease in the maximum
power output, the output characteristics of the optimization algorithm remain unchanged.
Therefore, this optimization strategy ensures the long-term reliability and stability of the
PV array.

5. Conclusions

This paper proposes an optimization strategy for efficient and reliable circuit con-
nection of LPC arrays based on the significant power loss in static arrays due to LPC
contamination or non-uniform light intensity distribution of long-distance laser transmis-
sion in space. An experiment on LWPT was conducted using a PV array composed of 100
LPCs. The results of the experiment indicate that, when the PV array was reconfigured by
the algorithm, the number of maximum power points for each array decreased significantly.
The best outcome showed a 56.49% increase in output power. Compared to conventional
links, it obtains a higher MPP and reduces the number of local MPP. The experiment results
demonstrate that the optimized circuit connection is quite effective in LWPT and results
in a higher MPP. Furthermore, an optimization algorithm was proposed for a 5 × 5 array
connection to obtain the optimal circuit connection efficiently and achieve higher MPP. This
algorithm can adapt well to LWPT in static environments.
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