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Abstract: Coherence-polarization properties of different beams are experimentally measured in the 
far-field from the source and results are presented for incoherent sources with three different polar-
ization features, such as unpolarized, diagonally polarized, and spatially depolarized. These results 
highlight the role of polarization tailoring on far-field coherence-polarization properties of the in-
coherent vector source. The effect of polarization on far-field coherence is analyzed using a beam 
cross-spectral density (CSD) matrix, and the role of polarization tailoring on the CSD matrix is 
demonstrated. Two-dimensional spatial distributions of all four elements of the CSD matrix are ex-
perimentally realized using a field-based interferometer with Sagnac geometry in combination with 
a four-step phase-shifting technique. 
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1. Introduction 
Light beam shaping involves controlling the characteristics of light in its different 

degrees of freedom, such as in time, space, and polarization. Shaped beams exhibit re-
markable physical properties during their propagation and interactions with matter [1,2]. 
Consequently, these beams find extensive applications across various fields, including op-
tical communications, optical trapping and tweezing, metrology, imaging, etc. [3]. To re-
shape the profile of a light beam for specific applications, tools like liquid-crystal spatial 
light modulators [4], digital micromirror devices [5], metamaterials [6], nonlinear ele-
ments [7], geometric phase elements like q-plate [8], and specially designed laser cavities 
[9] have been widely used. Beam shaping has been mainly accomplished for fully coher-
ent light sources. Nevertheless, a low coherence beam and its shaping are desired for var-
ious reasons. For instance, when fully coherent-shaped beams propagate through turbu-
lent atmospheres, they suffer from distortion, scintillation, and beam wander, further de-
grading the beam quality [10]. Lowering spatial coherence effectively reduces coherent 
artifacts and offers greater controllability in light beam shaping compared to fully coher-
ent beams [11]. Spatial coherence, one of the fundamental properties of light, is the de-
scription of the statistical correlation between fields at a pair of spatial points [12]. With 
growing interest in low-coherence sources, numerous techniques for synthesizing corre-
lation structures have emerged. Among partially coherent beams, those featuring a Schell 
model structure are the most widely used. In these beams, the spatial coherence structure 
is determined by the spatial separation between two positions. Significant synthesized 
Schell model sources are Laguerre–Gaussian correlated [13,14], Bessel–Gaussian corre-
lated [15], Hermite–Gaussian correlated [16], and multi-Gaussian correlated [17]. Other 
than these correlation functions, some other synthesis methods include non-uniform 
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correlated sources [18,19], correlation holography [20,21], and other different exotic struc-
tures [22–25]. 

In recent years, an enormous amount of interest has grown in electromagnetic or vec-
tor fields with inhomogeneous polarization. These fields exhibit the influence of coherence 
and polarization, wherein different field components may show varying coherence prop-
erties [26]. The coherence and polarization characteristics of such fields have been ob-
served to be inherently intertwined [27,28]. For a complete explanation of the statistical 
properties of these random vectorial light fields, the electromagnetic coherence theory is 
thoroughly developed [12,28]. In the space–frequency domain, the central quantity for 
characterizing the vectorial light field is a 2 × 2 cross-spectral density (CSD) matrix having 
four elements. The CSD matrix provides solutions to numerous unresolved problems in 
optics [29,30]. These fields have found a wide range of applications in optical imaging [31], 
super-resolution imaging [32], optical trapping [33], classification of biological samples 
[34], microscopy [35,36], surface plasmon structuring [37], etc. These properties arise be-
cause of the extensive tailoring potential of these vectorial fields, offering precise control 
over beam shape, polarization, and coherence, not only at the source plane but also in 
other regions. Many attempts have been made to synthesize vectorial coherence, including 
electromagnetic Gaussian–Schell model sources [38,39], special correlation functions [40], 
and vectorial coherence holography [41]. Different techniques have been developed to tai-
lor and examine vectorial coherence using liquid crystal spatial light modulators [42–45]. 
Complete access and adaptive control over the orthogonal polarization components of 
light helps in creating the desired vectorial coherence. 

To access and analyze coherence structures, it is important to experimentally meas-
ure complex coherence, which is not a directly observable quantity like intensity. The vis-
ibility of the intensity fringes in Young’s two-pinhole interference experiment has histori-
cally been used to measure the coherence of light [12]. A similar approach is also extended 
to the polarization domain to characterize the vector light field [46,47]. Although Young’s 
interferometer is conceptually simple, it possesses certain inherent limitations. The most 
prominent of these limitations is the low light efficiency of Young’s two-pinhole setup, 
which poses challenges for characterizing weak light fields. Additionally, sequential scan-
ning for point sampling is extremely time consuming. Alternative methods relying on the 
concept of Young’s approach have been developed to address some of these limitations 
[48,49]. Another method based on the Hanbury Brown–Twiss (HBT) experiment was in-
troduced for random vector light fields following Gaussian statistics. The method used 
intensity correlations to determine the amplitude of the two-point field correlation [50]. 
Later, a method was proposed to retrieve the complete information of the complex coher-
ence function by adding a reference random light field and using the intensity correlation 
[51]. This approach was also extended to the vector source [52]. In another development, 
the concept of generalized HBT was introduced and experimental results were presented 
on the measurement of complex coherence functions of the scalar and vector light [53,54]. 
Cai et al. discussed and experimentally demonstrated the synthesis and measurement of 
complex correlation matrix of the specially correlated radially polarized (SCRP) vector 
source [54]. This method involved combining the incoherent vector beam with a pair of 
fully coherent reference beams and analyzing the intensity–intensity cross-correlation of 
the recorded patterns. Recently, another alternative method has been introduced by Cai 
and his group for measuring the elements of the CSD matrix of the SCRP vector beam 
using self-referencing holography [55]. In this technique, a spatial light modulator intro-
duces phase perturbations at a reference point set inside the regions of the test beam. The 
interaction between the light from the perturbed point and the overall plane leads to in-
terference intensity patterns at the Fourier plane, which unveils information about the 
CSD matrix elements. Other than these, most recently our group developed a technique 
to measure the CSD matrix based on a shearing interferometer [56] and an intensity inter-
ferometer [57]. 
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The exploration of light’s polarization state encompasses both uniform and non-uni-
form characteristics. In the case of non-uniform polarization, the polarization state may 
vary in space over the beam’s profile with various features, such as periodic variations 
[58–60], circular symmetry [61], or other complex structures [62–64]. Many intriguing 
properties have been elucidated for such non-uniformly polarized beams, particularly as 
they propagate in free space, random media, or through optical systems [65,66]. Conse-
quently, substantial efforts have been dedicated to comprehensively characterize them 
and to design and experimentally generate beams with diverse states of coherence and 
polarization over the past few years. One of the methods to generate such a non-uniformly 
polarized beam with transverse polarization periodicity is by using a double-wedge de-
polarizer (DWD). A DWD is comprised of a pair of uniaxial crystal wedges, each having 
its optic axis oriented at an angle relative to the other. The DWD behaves as a spatial po-
larization state scrambler and induces a periodic variation in the polarization state across 
the transverse plane [59]. Until now, extensive research has been conducted to investigate 
various characteristics of light as it passes through the DWD, primarily driven by its 
unique polarizing properties. Single-point correlation parameters such as the Stokes pa-
rameter (SP) have played a fundamental role in characterizing the polarization. The SPs 
of a DWD were initially investigated for both polarized and unpolarized monochromatic 
beams, revealing the Talbot effect [59]. Subsequently, the polarization features of DWD 
were investigated concerning partially coherent vector beams propagating through it. Ad-
ditionally, the reappearance of the Talbot effect was observed, like the case of monochro-
matic vector light [67,68]. The DWD has also been used with a partially coherent super-
luminescent diode source to generate a spatio-spectral coherence structure. Furthermore, 
the spectral coherence SP in one dimension was measured using Young’s interferometer 
based on a digital micromirror device [69]. 

In this paper, we analyze the role of source polarization on far-field coherence-polar-
ization of the incoherent source by measuring the two-dimensional spatial distributions 
of the CSD matrix elements. Here, we use a light-emitting diode (LED) as an incoherent 
source and tailor its polarization for two different cases, namely a diagonally polarized 
and spatially depolarized beams, respectively. Spatial depolarization in the incoherent 
source is realized by using a double-wedge depolarizer (DWD) due to its special polari-
zation features. For comparison of the tailored polarization features of the LED source, we 
also present results for unpolarized LED sources. Unlike a point source, an LED features 
an enlarged light-emitting surface. Each point of the extended LED source acts as an in-
dependent light scatterer and there exists no correlation between any two points. Hence, 
such sources are in general incoherent with unpolarized light [11,12]. For complete anal-
ysis of the CSD matrix elements, we build a highly stable Sagnac radial shearing interfer-
ometer to measure the second-order field correlations of the vector source. The CSD ma-
trix elements are measured as the complex spatial coherence function, which is obtained 
from the digitally constructed visibility and phase from four phase-shifted interfero-
grams. Phase shifts in our experimental configuration are realized by introducing geomet-
ric phase shifts in the interfering beams [70]. Hence, the study investigates the impact of 
polarization states of input light on the elements of the CSD matrix. A detailed discussion 
of the theoretical basis, experimental design, and results is presented below. 

2. Principle 
Consider a planar, stochastic transverse electromagnetic light beam propagating 

along the longitudinal 𝑧-direction. The second-order statistical characteristics of this sto-
chastic electromagnetic light field in the space–frequency domain, at angular frequency 𝜔 and two spatial positions, namely 𝝆 = (𝑥 , 𝑦 ) and 𝝆  = (𝑥 , 𝑦 ), are described by the 
CSD matrix as follows [28]: 𝑊(𝝆 , 𝝆 ;  𝜔)  = 𝑊 (𝝆 , 𝝆 ;  𝜔) 𝑊 (𝝆 , 𝝆 ;  𝜔)𝑊 (𝝆 , 𝝆 ;  𝜔) 𝑊 (𝝆 , 𝝆 ;  𝜔) ,  (1)
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The matrix elements are represented as follows: 𝑊 (𝝆 , 𝝆 ;  𝜔) =  〈𝐸∗ (𝝆 ;  𝜔)𝐸 (𝝆 ;  𝜔)〉,  (2)

where (𝑚, 𝑛)  ≡  (𝑥, 𝑦)  represents the orthogonal polarization components, and 𝐸 (𝝆) 
is the fluctuating electric field component at point 𝝆 along the 𝑚-axis. The asterisk de-
notes the complex conjugate, and the angle bracket denotes the ensemble average. The 
individual elements of the 2 × 2 CSD matrix represent the two-point correlation function 
between the same field components in addition to the different field components. 

From the theory of non-negative kernels, the CSD matrix elements should satisfy the 
non-negative definiteness condition, and the elements are represented as follows [71]: 𝑊 (𝝆 , 𝝆 ;  𝜔) =  ∬ 𝑝 (𝝊;  𝜔)𝐻∗(𝝆 , 𝝊)𝐻(𝝆 , 𝝊)𝑑 𝜐,  (3)

where 𝑝  represents the elements of a 2 × 2 matrix, signifying the polarization through 
the single-point correlation of the incoherent source; and 𝐻  is a propagation kernel, 
which connects the output and input transverse plane coordinates 𝝆 and 𝝊, respectively. 

For a Fourier kernel 𝐻(𝝆, 𝝊) = 𝑒𝑥𝑝 − (𝝆. 𝝊) ,  (4)

where 𝜆 is the wavelength of the source, and 𝑓 is the focal length of Fourier transforming 
lens L. 

From Equations (3) and (4), the CSD matrix of a quasi-monochromatic source at the 
observation plane is given by the following equation: 𝑊 (𝝆 , 𝝆 ) = 𝑝 (𝝊) 𝑒𝑥𝑝 −𝑖 𝝊. (𝝆 − 𝝆 ) 𝑑𝝊,  (5)

Our specific choice of the Fourier kernel aligned with our goal to analyze the two-
point correlations in the far-field from the source. The spatial distribution of the incoher-
ent vector source is represented as 𝑝 (𝝊), and this quantity is real for diagonal elements, 
i.e., 𝑚 = 𝑛, but may take a complex value for non-diagonal elements, i.e., 𝑚 𝑛. Equa-
tion (5) represents the vectorial van Cittert–Zernike theorem, showing that the elements 
of the CSD matrix are represented by the complex spatial coherence function given by the 
Fourier transform of the incoherent source. The VCZ theorem establishes a connection 
between the spatial shape and size of an incoherent source and its complex spatial coher-
ence function. Therefore, the complex two-point correlation functions of the vector source 
at the observation plane relate to the incoherent vector source by the vectorial van Cittert–
Zernike (VCZ) theorem [72]. 

Figure 1 highlights the source structure and far-field configuration of the two-point 
correlations. A yellow light-emitting diode (LED) source is kept at the front focal plane of 
lens L of focal length f = 60 mm, and measurement is performed at the back focal plane of 
lens L, as represented by the black dotted line in Figure 1. To understand the role of po-
larization tailoring in the far-field coherence properties of the vector source, we consid-
ered three different states of polarization of the incoherent source. These states were 
namely unpolarized, diagonally polarized, and spatially depolarized light sources. 
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Figure 1. Schematic representation of measurement of two-point correlation in the far-field from an 
incoherent source, L: Lens. 

The first polarization state of the source is realized by directly considering the light 
from the LED source, as shown in Figure 1. The second polarization state is realized by 
placing a linear polarizer oriented at 45° from its fast axis after the source. Finally, the 
third polarization state is realized with the DWD (Thorlabs DPU-25-A Quartz-Wedge 
Achromatic Depolarizer) in the source configuration. The depolarizer, with a thickness of 
7.4 mm, contains a broadband anti-reflectance coating that spans from 350 nm to 700 nm. 
As illustrated in Figure 2, the DWD is comprised of two birefringent quartz wedges (with 
a wedge angle a = 2.17°) with their optic axes (fast axes) oriented at ξ = 45° relative to 
each other. The 45° offset enables the plates to spatially depolarize the incoming polariza-
tion state. A linearly polarized beam along one plate’s fast axis will undergo polarization 
changes due to the birefringence of the other plate. Since the plates are wedged, the optical 
path length through each birefringent plate varies with the beam’s position. Conse-
quently, each point on the aperture exhibits spatially dependent net birefringence and the 
final polarization state [59]. Therefore, DWD introduces a periodic polarization pattern in 
the source structure. The mathematics underlying this statement are presented in the be-
low equations [69]. 

 
Figure 2. Schematic illustration of DWD. 

The DWD is considered to be a composition of two wave plates, where the retarda-
tion varies with spatial coordinate 𝑥. When the DWD is rotated about the 𝑧-axis at angle 𝜒 with respect to the 𝑥-axis, the thicknesses of the quartz wedges are represented as fol-
lows: t′ (𝑥)  =  𝑥 𝑐𝑜𝑠 𝜒 𝑡𝑎𝑛a + 𝑡 ,  (6)

and t′ (𝑥)  =  𝑥 𝑐𝑜𝑠 𝜒 𝑡𝑎𝑛a + 𝑡  (7)

where 𝑡   and 𝑡   are the center thicknesses of the 1st and 2nd quartz wedges, respec-
tively, at 𝑥 = 𝑦 =  0 ; and a is the wedge angle. Therefore, the wedge retardations are 
given by the following equation: 𝜓 (𝑥)  =  2𝜋t′ (𝑥) (𝑛 − 𝑛 )/𝜆, 𝑝 ∈  {1, 2} ,  (8)

where 𝑛  and 𝑛  are the refractive indices of quartz with respect to the slow and fast 
axes, respectively. Due to the position-dependent retardation, an input beam with uni-
form polarization would result in an output beam with a spatially periodic polarization 
modulation with period 𝐿 = 𝜆/ (𝑛 − 𝑛 )𝑡𝑎𝑛a . 
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The Jones matrix of an individual quartz wedge with its fast axis directed along the 𝑥 direction is represented as follows [69]: 𝐌 (𝑥)  = 1 00 𝑒𝑥𝑝 𝑖𝜓 (𝑥)  , 𝑝 ∈  {1, 2},  (9)

If the optic axis is oriented such that it forms angle ξ with the 𝑥-axis, the Jones matrix 
is now transformed as follows: 𝐌 (𝑥 ; ξ ) =  𝐑(−ξ )𝐌 (𝑥)𝐑(ξ ), 𝑝 ∈  {1, 2},  (10)

where 𝐑(ξ) =  𝑐𝑜𝑠 ξ 𝑠𝑖𝑛 ξ−𝑠𝑖𝑛 ξ 𝑐𝑜𝑠 ξ ,  (11)𝐑(ξ) is the rotational matrix that represents the DWD’s rotation about the 𝑧-axis. 
The overall matrix of the DWD is finally described as follows [69]: 𝐌 (𝑥; ξ , ξ ) =  𝐌 (𝑥; ξ )𝐌 (𝑥; ξ ),  (12)

When the depolarizer is rotated at angle 𝜒, the resulting matrix becomes: 𝐌 , (𝑥; ξ , ξ , 𝜒) =  𝐑(−𝜒)𝐌 (𝑥; ξ , ξ )𝐑(𝜒),  (13)

Thus, at the output plane of DWD, the Jones vector is given by the following equa-
tion: E ∝ 𝐌 , (𝑥; ξ , ξ , 𝜒)E ,  (14)

where the Jones vector of the incident beam is represented as E . As a result, we obtain a 
periodic polarization modulation at the incoherent source due to the properties of the 
DWD. 

The next section describes the use of an interferometer to measure the CSD matrix 
elements and provide their two-dimensional distribution at the observation plane. 

3. Experimental Setup and Description 
Figure 3 shows the experimental setup to obtain the CSD matrix elements. The initial 

part of the setup corresponds to the schematic depicted in Figure 1. Here, we capture the 
two-point far-field correlation at the back focal plane of lens L, marked by the black dotted 
line in Figure 3. The second part represents the interferometric design to measure the CSD 
matrix elements and provide their two-dimensional distribution at the observation plane. 
This interferometer uses a cyclic Sagnac geometry with a radial shearing design. The sto-
chastic field from the source is directed into the interferometer by a polarizing beam split-
ter (PBS). The PBS splits the incoming beam into two beams with orthogonal 𝑥 and 𝑦 po-
larization states. The two beams counter propagate through a square cyclic path designed 
by mirrors M1, M2, and M3. Lenses L2 and L3 with focal lengths f2 = 120 mm and f3 = 125 
mm, respectively, are introduced in the path of the counter-propagating beams to form a 
telescopic lens system with magnifications 𝛼 = f3/f2 = 1.041 and 𝛼  = f2/f3 = 0.96, respec-
tively, which gives a radial shear between the two beams. Therefore, two copies of the 
radially sheared fields are obtained at the output of the interferometer. Therefore, the far-
field of lens L is imaged onto an 8-bit CMOS camera (Thorlabs, Newton, New Jersey, USA, 
DCC3240M). At the imaging plane, the interference pattern at arbitrary position 𝝆 arises 
due to the superposition of the fields from the spatial positions 𝝆 = 𝛼 𝝆 and 𝝆 = 𝛼𝝆 
of the two copies of the beam. The field points separated by distance Δ𝝆 =  𝝆 − 𝝆 =(𝛼 − 𝛼 )𝝆 represent the relative shear among the two fields, which shows a linear rela-
tion between the relative shear Δ𝝆 and position vector 𝝆, scaled by factor (𝛼 − 𝛼 ). To 
reconstruct the elements of the CSD matrix, i.e., 𝑊 (𝛼 𝝆, 𝛼𝝆;  𝜔) , a four-step phase 
shifting approach is implemented.  
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Figure 3. Experimental setup of square Sagnac radial shearing interferometer: P: polarizer, DWD: 
double-wedge depolarizer, L: lens, PBS: polarization beam splitter, M: mirror, HWP: half-wave 
plate, QWP: quarter-wave plate, CCD: charge-coupled device. 

A combination of quarter-wave plate (QWP) and polarizer P3 is kept before the cam-
era introduces phase shifts in the interferometer [70]. The orthogonal linear polarization 
states 𝑥 and 𝑦 at the output are converted to right circularly polarized (RCP) and left 
circularly polarized (LCP) states, respectively, by the QWP. Consider the RCP and LCP 
beams with amplitudes denoted as 𝑎 (𝝆 )  and 𝑎 (𝝆 ) , and phases represented by 𝜙 (𝝆 ) and 𝜙 (𝝆 ), respectively. Using the Jones vector representation, the fields emerg-
ing out of the QWP are expressed as follows [73]: 𝐸 (𝝆 ) = 1𝑖 𝑎 (𝝆 ) 𝑒𝑥𝑝 𝑖𝜙 (𝝆 ) , (RCP)  (15)

and 𝐸 (𝝆 ) = 1−𝑖 𝑎 (𝝆 ) 𝑒𝑥𝑝 𝑖𝜙 (𝝆 ) , (LCP)  (16)

Following the QWP, polarizer P3 is positioned at angle 𝜃 relative to the 𝑥-axis. The 
Jones matrix related to the polarizer is given as follows [73]: 𝑃(𝜃) = 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 𝑠𝑖𝑛 𝜃 ,  (17)

Therefore, the horizontal and vertical components of the field transmitted by the po-
larizer are represented as follows: 
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𝑈 (𝝆 )𝑈 (𝝆 ) ∝ 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 𝑠𝑖𝑛 𝜃 1𝑖 𝑎 (𝝆 ) 𝑒𝑥𝑝 𝑖𝜙 (𝝆 ) +1−𝑖 𝑎 (𝝆 ) 𝑒𝑥𝑝 𝑖𝜙 (𝝆 ) , 
(18)

𝑈 (𝝆 )𝑈 (𝝆 ) ∝ 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃 𝑒𝑥𝑝(𝑖𝜃) 𝑎 (𝝆 ) 𝑒𝑥𝑝 𝑖𝜙 (𝝆 )+ 𝑒𝑥𝑝(−𝑖𝜃) 𝑎 (𝝆 ) 𝑒𝑥𝑝 𝑖𝜙 (𝝆 )  
(19)

Equation (19) highlights that introducing a polarizer after the QWP projects the RCP 
and LCP fields at angle 𝜃 with an additional phase offset of +𝜃 and −𝜃 in the compo-
nents of the RCP and LCP fields, respectively. 

Therefore, the average intensity at the detector plane as described by the following 
equation [26,74]: 𝐼 (2𝜃) ≈ 𝐼 (𝝆 ) + 𝐼 (𝝆 ) +2 𝐼 (𝝆 ) 𝐼 (𝝆 )𝑔 (𝝆 , 𝝆 ) 𝑐𝑜𝑠 𝜙 (𝝆 , 𝝆 ) + 2𝜃 , 

(20)

where 𝐼 (2𝜃) is the averaged intensity, 𝐼 (𝝆 ) = 〈|𝑎 (𝝆 )| 〉 and 𝐼 (𝝆 ) = 〈|𝑎 (𝝆 )| 〉. 𝑔 (𝝆 , 𝝆 ) represents the amplitude of the two-point correlation function, and its argu-
ment is represented as 𝜙 (𝝆 , 𝝆 ) = 𝜙 (𝝆 ) − 𝜙 (𝝆 ). Thus, rotating polarizer P3 intro-
duces phase shift 2𝜃 into the interfering beams. 

Considering 𝐼 = 𝐼 (𝝆 ) = 𝐼 (𝝆 ), we express the intensity at the detector as follows: 𝐼 (2𝜃) ≈ 𝐼  {1 + 𝑔 (𝝆 , 𝝆 ) 𝑐𝑜𝑠 𝜙 (𝝆 , 𝝆 ) + 2𝜃 },  (21)

We recorded four-phase shifted interferograms at phase shifts 0 , 𝜋/4 , 𝜋/2 , and 3𝜋/4, which are represented as follows: 𝐼 (0) ≈ 𝐼  {1 + 𝑔 (𝝆 , 𝝆 ) 𝑐𝑜𝑠 𝜙 (𝝆 , 𝝆 ) },  (22)𝐼 (𝜋/2 ) ≈ 𝐼  {1 + 𝑔 (𝝆 , 𝝆 ) 𝑐𝑜𝑠 𝜙 (𝝆 , 𝝆 ) + 𝜋/2 },  (23)𝐼 (𝜋 ) ≈ 𝐼  {1 + 𝑔 (𝝆 , 𝝆 ) 𝑐𝑜𝑠 𝜙 (𝝆 , 𝝆 ) + 𝜋 },  (24)𝐼 (3𝜋/2 ) ≈ 𝐼  {1 + 𝑔 (𝝆 , 𝝆 ) 𝑐𝑜𝑠 𝜙 (𝝆 , 𝝆 ) + 3𝜋/2 },  (25)

The fringe visibility, i.e., amplitude of the complex correlation function 𝑔 (𝝆 , 𝝆 ) 
and its phase 𝜙 (𝝆 , 𝝆 ), is constructed using the recorded interferograms as follows: 𝑔 (𝝆 , 𝝆 ) ∝  ( ) (  ) ( /  ) ( /  )  ( ) ( /  ) (  ) ( /  ) ,  (26)

𝜙 (𝝆 , 𝝆 ) = 𝑡𝑎𝑛 ( /  ) ( /  )( /  ) (  ) ,  (27)

Equations (26) and (27) provide the amplitude and phase of the complex two-point 
correlation function, respectively. Subsequently, we reconstruct the two-point correlation 
elements of the CSD matrix as follows [26]: 𝑊 (𝛼 𝝆, 𝛼𝝆) = 𝑔 (𝛼 𝝆, 𝛼𝝆) 𝑒𝑥𝑝(𝑖𝜙 (𝛼 𝝆, 𝛼𝝆)),  (28)

where 𝛼 𝝆 = 𝝆  and 𝛼𝝆 = 𝝆 . 
The experimental setup in Figure 3 provides the 2D distribution of 𝑊 (𝛼 𝝆, 𝛼𝝆) 

without scanning and offers an effective and fast method to evaluate the complex two-
point correlation function. To measure 𝑊 (𝛼 𝝆, 𝛼𝝆), polarizer P2 is rotated such that it 
selects only the 𝑥-polarized component from the diagonally polarized beam. Similarly, to 
measure 𝑊 (𝛼 𝝆, 𝛼𝝆), polarizer P2 is rotated such that it selects only the 𝑦-polarized 
component from the diagonally polarized beam. Later, an HWP is inserted and oriented 
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at an angle of 22.5° from its fast axis (along the 𝑥 direction) to equal the intensities in the 
two arms of the interferometer. Again, following the same previously described process, 
we recorded four interferograms for 𝑊 (𝛼 𝝆, 𝛼𝝆) and 𝑊 (𝛼 𝝆, 𝛼𝝆), respectively. At 
last, to measure 𝑊 (𝛼 𝝆, 𝛼𝝆), only an HWP is inserted before PBS, and it is oriented at 
45° from its fast axis (along the 𝑥 direction), such that it flips the polarization in the two 
arms of the interferometer from the 𝑥 to 𝑦 and 𝑦 to 𝑥 components, respectively. The 
four interferograms are recorded for 𝑊 (𝛼 𝝆, 𝛼𝝆)  following the formerly described 
method. It must be noted that since the Sagnac radial shearing interferometer is common 
path, in the measurement of vector components of coherence function at different times, 
the phase relations are not affected by surrounding vibrations. In addition, the common 
path geometry ensures that the temporal coherence is sufficiently maintained during the 
measurement of the spatial coherence function even for a finite spatial coherence length 
(shear along 𝑥 or 𝑦). 

4. Results and Discussion 
Figure 4 shows the recorded interferograms 𝐼 (0) , 𝐼 (π/2), 𝐼 (π),  and 𝐼 (3π/2) 

with phase shifts 0, π/2, π, and 3π/2, respectively, corresponding to 𝑊 (𝛼 𝝆, 𝛼𝝆) for 
all three different polarization states of the source. Figure 4(a1–d1) show interferograms 
for an unpolarized LED source, Figure 4(a2–d2) show interferograms for a diagonally po-
larized polarizer P1, and Figure 4(a3–d3) show interferograms for an incoherent source 
with the DWD. These results clearly distinguish the difference between the recorded in-
terferograms for varying polarization states of the incoherent source. The first row of Fig-
ure 4 presents results for an unpolarized LED source, revealing the absence of fringes in 
the captured interferograms. This occurs due to the lack of correlation between the or-
thogonally polarized field components of unpolarized light. The second row of Figure 4 
shows results for a diagonally polarized light source. For the vectorial source, modulation 
in the central part is clearly visible in the interferograms for different phase shifts. The last 
row of Figure 4 shows the interferograms for an LED source with the DWD. The recorded 
interferogram shows a periodic pattern, and this spatially induced periodic pattern is due 
to the special properties of DWD, as discussed in Section 2. Similarly, we recorded the 
interferograms for 𝑊 (𝛼 𝝆, 𝛼𝝆) , 𝑊 (𝛼 𝝆, 𝛼𝝆),  and 𝑊 (𝛼 𝝆, 𝛼𝝆)  for all three dif-
ferent sources, as previously discussed. After recording all four sets of interferograms for 
the four elements of the CSD matrix, we experimentally recovered the complex elements 
of the CSD matrix for different cases using Equations (26)–(28). 
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Figure 4. Four experimentally recorded interferograms for phase shifts 0, π/2, π, and 3π/2 for 𝑊 (𝛼 𝒖, 𝛼𝒖):  (a1–d1) unpolarized LED, (a2–d2) diagonally polarized polarizer, and (a3–d3) 
DWD. 

Figure 5 shows the results for amplitude (fringe visibility) and corresponding phase 
of the CSD matrix elements using Equations (26) and (27) for three sources, namely unpo-
larized LED, diagonally polarized LED light, and polarization tailored by the DWD. Fig-
ure 5(a1–d1) show the experimentally recorded amplitudes and Figure 5(a2–d2) show the 
corresponding phases for the CSD matrix elements of the unpolarized LED source. Figure 
5(a1) shows the amplitude and Figure 5(a2) shows the corresponding phase for 𝑊 (𝛼 𝝆, 𝛼𝝆). The observed results show the presence of fringe visibility for the unpo-
larized LED light because of the existing correlation between similar polarization compo-
nents. In Figure 5(a1), the colormap illustrates that the maximum value of the correlation 
reaches 0.30. Figure 5(a2) shows the phase variation ranging from −π to π. Figure 5(b1) 
shows the amplitude, Figure 5(b2) shows the corresponding phase for 𝑊 (𝛼 𝝆, 𝛼𝝆), 
Figure 5(c1) shows the amplitude, and Figure 5(c2) shows the corresponding phase for 𝑊 (𝛼 𝝆, 𝛼𝝆). Negligible amplitudes of 𝑊 (𝛼 𝝆, 𝛼𝝆) and 𝑊 (𝛼 𝝆, 𝛼𝝆) emerge due 
to the lack of correlation among the orthogonal polarization components in the unpolar-
ized LED source. Figure 5(d1) shows the amplitude and Figure 5(d2) shows the phase for 𝑊 (𝛼 𝝆, 𝛼𝝆) . The results reveal fringe visibility arising from the existing correlation 
among similar polarization components. The colormap in Figure 5(d1) shows that the 
maximum value of the fringe visibility approaches 0.31. The third and fourth rows in Fig-
ure 5 show the results for diagonally polarized light after filtering from the LED. Figure 
5(a3–d3) show the amplitudes and Figure 5(a4–d4) show the corresponding phases of 𝑊 (𝛼 𝝆, 𝛼𝝆), 𝑊 (𝛼 𝝆, 𝛼𝝆), 𝑊 (𝛼 𝝆, 𝛼𝝆), and 𝑊 (𝛼 𝝆, 𝛼𝝆), respectively. The ex-
istence of fringes in all CSD matrix elements is attributed to the polarization filtering of 
the source by a linear polarizer oriented at 45° from its fast axis after the source. The max-
imum value for fringe visibility is around 0.31 and the phase map shows variation in the 
range of −π to π. The fifth and sixth rows in Figure 5 show the experimental results for 
the LED source with a DWD. Figure 5(a5–d5) show the amplitudes and Figure 5(a6–d6) 
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show the corresponding phases of 𝑊 (𝛼 𝝆, 𝛼𝝆) , 𝑊 (𝛼 𝝆, 𝛼𝝆) , 𝑊 (𝛼 𝝆, 𝛼𝝆),  and 𝑊 (𝛼 𝝆, 𝛼𝝆), respectively. A periodic pattern is evident in the elements of the CSD ma-
trix, attributed to the properties of DWD. Figure 5(a5,d5) show the amplitudes of 𝑊 (𝛼 𝝆, 𝛼𝝆) and 𝑊 (𝛼 𝝆, 𝛼𝝆), respectively. Figure 5(a6,d6) show the corresponding 
phases of 𝑊 (𝛼 𝝆, 𝛼𝝆) and 𝑊 (𝛼 𝝆, 𝛼𝝆), respectively. Figure 5(b5,c5) show the am-
plitudes of 𝑊 (𝛼 𝝆, 𝛼𝝆) and 𝑊 (𝛼 𝝆, 𝛼𝝆), respectively. Similarly, the corresponding 
phases shown in Figure 5(b6,c6) for 𝑊 (𝛼 𝝆, 𝛼𝝆) and 𝑊 (𝛼 𝝆, 𝛼𝝆) show a regular 
periodic variation. Therefore, the influence of polarization appears in the elements of the 
CSD matrix. 

 
Figure 5. Elements of CSD matrix for three different cases: (a1–d2) unpolarized LED, (a3–d4) diag-
onally polarized polarizer, and (a5–d6) DWD. In different sets, the absolute values of the CSD matrix 
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elements i.e., fringe visibility values are represented using 𝑔 (𝝆 , 𝝆 ) , and the corresponding 
phases using 𝜙 (𝝆 , 𝝆 ). 

5. Conclusions 
In conclusion, we analyzed the coherence-polarization properties of different vector 

beams using experimental measurements of CSD matrix elements. We proposed employ-
ing a Sagnac shearing interferometer along with a four-step phase-shifting technique for 
measuring these CSD matrix elements. Three different sources were considered to high-
light the role of polarization tailoring in the two-point correlation elements of the vector 
light, and the results are presented. The results demonstrate the influence of polarization 
on the coherence properties of light, as indicated by the spatial distributions of the re-
trieved CSD matrix elements in all three cases. Additionally, the method can be used to 
synthesize beams with conventional and exotic correlation structures. 
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