
Citation: Gao, X.; Han, Y.; Wang, J.;

Xu, S. Evolution of Airy Beams in

Turbulence Plasma Sheath. Photonics

2024, 11, 102. https://doi.org/

10.3390/photonics11020102

Received: 25 December 2023

Revised: 15 January 2024

Accepted: 17 January 2024

Published: 23 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

photonics
hv

Article

Evolution of Airy Beams in Turbulence Plasma Sheath
Xuan Gao, Yiping Han *, Jiajie Wang and Shuping Xu

School of Physics, Xidian University, Xi’an 710071, China; 20051110203@stu.xidian.edu.cn (X.G.);
wangjiajie@xidian.edu.cn (J.W.); 21051212163@stu.xidian.edu.cn (S.X.)
* Correspondence: yphan@xidian.edu.cn

Abstract: In order to study the transmission characteristics of Airy beams in the plasma sheath,
the flow field around a hypersonic vehicle was numerically simulated and analyzed based on the
Navier–Stokes (N-S) equation and a turbulence model. Then, according to the characteristics of
the thickness of the plasma flow field around the supersonic vehicle at the centimeter level, the
double fast Fourier transform (D-FFT) algorithm and multi-random phase screens theory were used
to predict the propagation characteristics of the Airy beams in the turbulent plasma sheath. The
results show that the lower the height and the higher the speed, the smaller the thickness of the
plasma sheath shock layer. The refractive index variation in the sheath shock layer has a significant
influence on Airy beam transmission. At the same time, the transmission distance and the attenuation
factor of the Airy beams also change the transmission quality of the Airy beams. The larger the
attenuation factor, the smaller the drift, and the standard deviation decreases with an increase in the
refractive index. Airy beams have smaller drifts compared to Gaussian beams and have advantages
in suppressing turbulence.

Keywords: Airy beams; plasma sheath; turbulence; phase screen; D-FFT algorithm; refractive
index variance

1. Introduction

In recent years, Airy beams have attracted extensive attention for their unique proper-
ties, such as non-diffraction, lateral self-acceleration, and self-healing [1–5]. Its own genera-
tion method [6], trajectory control method [7], plasma channel [8], and other fields [9,10]
have been the focus of research. In view of the advantages of Airy beams, Tao et al. de-
rived the expression of Airy beam propagation in the atmosphere and discussed the effect
of atmospheric turbulence intensity on beam propagation [11]. Wen et al. deduced the
propagation coefficient of Airy beams in turbulent oceans based on diffraction theory [12].
However, in addition to turbulence in the atmosphere [13,14] and oceans [15], turbulence
also exists in the plasma sheath around supersonic flight targets [16,17].

When the aircraft is flying in the atmosphere at hypersonic speed, the surrounding air
is rapidly dissociated and ionized, forming a plasma-covered flow field [18–23]. The plasma
will attenuate the electromagnetic wave and even interrupt the signal [24,25]. Studies show
that the plasma sheath is unstable, so turbulence is also one of the key factors affecting the
“black barrier effect”. Some researchers have also used the strong penetration properties
of terahertz waves to weaken the “black barrier” problem of the plasma sheath [26,27].
Subsequently, a few scholars have studied the transmission characteristics of high-frequency
beams in the plasma sheath. For example, Zang et al. discussed the phase characteristics
of the plasma laser signal and the information transmission characteristics in the shock
tube [28], providing an important reference. In addition, only a few scholars have studied
the transmission characteristics of Gaussian beams in turbulent plasma sheaths, and it was
initially found that visible and near-infrared bands are more suitable [29,30]. However,
there have been no published reports on Airy beams in plasma turbulence.
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It is worth noting that a single fast Fourier transform (S-FFT) algorithm can be used
for the long-distance transmission of atmospheric [31,32] and ocean [33,34] turbulence,
while for short-distance transmission at the centimeter and millimeter levels inside the
plasma sheath, the S-FFT algorithm will reduce sampling problems and eventually lead to
signal distortion. Therefore, we compared three Fresnel diffraction integration algorithms
and chose to use the D-FFT algorithm of Fresnel diffraction integration to study the beam
transmission process between two phase screens.

The rest of this article is arranged as follows. Section 2 mainly describes the simula-
tion principle of the flow field in the plasma sheath, compares three Fresnel diffraction
integration algorithms, and also describes the theory of simulating beam propagation
using multi-random phase screens. The main results and a discussion of them are given in
Section 3. The results are helpful for understanding the internal characteristics of a plasma
sheath, improving communication quality and solving the black barrier effect.

2. Statistical Analysis of the Turbulent Flow Field around a Hypersonic Vehicle
2.1. Airy Beams

The expression of Airy beams in free space in a rectangular coordinate system is as
follows [35]:

E(x, y, z) = Ai(Tx) exp(Mx)Ai
(
Ty

)
exp

(
My

)
exp(ikz), (1)
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where a is the attenuation factor, which can constrain the energy of the Airy beams to
become a finite energy Airy beam. When the attenuation factor is 0, resulting in infinite
energy Airy beams. x0 and y0 are the axial scales.

2.2. Modeling of Plasma Sheath

The N-S equation with the appropriate closure models and k′ − ε turbulence model is
used. In the Cartesian coordinate system, the two-temperature thermomechanical model
proposed in 1989 and the seven-component air chemical reaction model are considered [36].
The turbulent flow field around a hypersonic aircraft is given as follows [37–39]:

∂Q
∂t

+
∂E
∂x

+
∂F
∂y

+
∂G
∂z

=
∂Ev

∂x
+

∂Fv

∂y
+

∂Gv

∂z
+ S, (4)
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[ .
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]T, (5)

E =
[

Eintu, ρiu, ρu2 + p, ρuv, puw, (Et + p)u
]T
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
T

, (7)

where Q and S are the conserved variable vector and the source term vector, respectively.
Taking x direction as an example, E and Ev are the inviscid flux vector and the viscous flux
vector, respectively. F,Fv, and G,Gv have the same form; κ and κt are thermal conductivity
and turbulent thermal conductivity, respectively. u, v, and w are the instantaneous velocity
components in three directions, respectively. k′ is the turbulent kinetic energy,

.
ωint is the
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vibration source term, and
.

ωi is the mass fraction of each component. τij(ij = x, y, z) is
the shear stress tensor component that can be closed by the turbulence model [40].ev,i,
hi, and ρi are the vibration energy, sensible enthalpy, and density of each component,
respectively, and the subscripts represent the species (i = 1, 2, 3, . . . , 7). ρ, p, and Ua are the
density, pressure, and average velocity of the mixture, respectively. Eint, Et, and Tint are the
internal energy, the turbulent internal energy, and the internal temperature of the mixture,
respectively. Based on the finite volume method, the advection upstream splitting method
can solve the N-S equation via the pressure-based weight function (AUSMPW+) [41]. The
implicit lower–upper symmetric Gauss–Seidel relaxation method (LU-SGS) is used for the
time-marching algorithm [42].

In our simulation process, in order to accurately solve the N-S equation, we selected
compressible flow and used a gas component model. A two-temperature thermodynamic
equilibrium model and the seven-component Gupta chemical reaction model were used.
For the boundary problem, the parameters of temperature and pressure were calculated
according to the flow velocity and height, the wall was the isothermal wall, and the exit
state was extrapolated. The result was observed according to the degree of convergence.

2.3. Statistical Analysis of Flow Field Data

The Gladstone–Dale law is used to obtain index-of-refraction variation, which is
proportional to the local density ρ [43–46]:

n(x, y, z) = 1 + G(λ)ρ(x, y, z), (8)

where λ is the wavelength, ρ is the local electron density, and G(λ) is the Gladstone–Dale
constant, which is defined as follows [29,43]:

G(λ) = 0.223 × 10−3
(

1 +
7.52 × 10−15

λ2

)
m2/kg. (9)

As shown in Figure 1, if Airy beams are propagated in a positive direction along
the X-axis, the head of the vehicle will change significantly due to the compression of
velocity. The wall is the reference point (that is, the origin of the rectangular coordinate
system). The value range of head region 1 is x = [−25 cm, −15 cm], y = [−83.82 cm,
−92.55 cm], and z = [16.60 cm, 26.00 cm]; the value range of head region 2 is x = [−15 cm,
0 cm], y = [−102.82 cm, −92.55 cm], and z = [36.00 cm, 26.00 cm]; and the value range
of head region 3 is x = [−15 cm, 0 cm], y = [−45.55 cm, −35.86 cm], and z = [50.60 cm,
60.00 cm] (shock layer on the left side of the wall). It is divided into 10 equal parts along
the x-direction, and a spherical model is established with the typical correlation length in
supersonic turbulence as the radius (which is the thickness of the plasma sheath). All the
data on the sphere are analyzed statistically, and the refractive index variance of each grid
point is calculated. In addition, the boundary values of the flow field are solved by using
an extrapolation method.

2.4. Simulation of Multiple Random Phase Screens in the Turbulent Plasma Sheath
2.4.1. The Fresnel Diffraction Integral and the S-FFT, T-FFT, and D-FFT Algorithms

The S-FFT, T-FFT, and D-FFT algorithms are all based on the Fresnel diffraction
formula, but the requirements for diffraction distance and sampling points differ. The three
algorithms are introduced and compared below [47]:

In the case of paraxial approximation, the Fresnel diffraction integral can be ex-
pressed as:

U−(x, y) =
exp(jkd)

jλd

+∞x

−∞

U0(x0, y0) exp
{

jk
2d

[
(x − x0)

2 + (y − y0)
2
]}

dx0dy0, (10)
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where U0(x0, y0) and U−(x, y) are the complex amplitudes of the light field at points on the
diffraction plane and the observation plane, λ is the wavelength, and d is the distance from
the observation plane to the diffraction screen. Therefore, the fast and accurate completion
of the integration of Equation (10) can solve the problem of giving the complex amplitude
of the light wave on the observation surface in the subsequent medium space from the
light wave complex amplitude distribution in the source plane. The S-FFT algorithm for
the Fresnel diffraction integral can also be simplified as:

U−(x, y) =
exp[jkd]

jdλ
exp

[
jk
2d

(
x2 + y2

)]
FFT

{
U0(x0, y0) exp

[
jk
2d

(
x2

0 + y2
0

)]}
. (11)

where “FFT {}” represents the completion of the fast Fourier transform. Because this
algorithm requires only a single Fourier transform, it is called the S-FFT algorithm.
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The T-FFT algorithm for the Fresnel diffraction integral can also be simplified as:

U−(u, v) = FFT{U0(x0, y0)} × FFT
{

exp
[

jk
2d

(
x2 + y2

)]}
, (12)

U−(x, y) =
exp(jkd)

jλd
× FFT−1{U−(u, v)

}
. (13)

where “FFT-1{}” represents the completion of the fast inverse Fourier transform.
The D-FFT algorithm for the Fresnel diffraction integral can also be simplified as:

U−(x, y) = FFT−1
{

FFT{U0(x0, y0)} exp
{

jkd
[

1 − λ2

2

(
u2 + v2

)]}}
. (14)

Assuming that the wavelength of the beam remains unchanged, the diffraction dis-
tance d and the sampling point N are changed, and the ability of the S-FFT algorithm, the
T-FFT algorithm, and the D-FFT algorithm to suppress the sampling point is compared. In
the simulation, the beam wavelength is 1064 nm, the simulated side length is 8 mm, the
central square light transmission hole is 4 mm, and the diffraction screen size is L0 = 7 mm.
The simulation results for different diffraction distances and sampling points are as follows:

In Figure 2, the (a) represents the S-FFT algorithm, the (b) represents the D-FFT
algorithm, and the (c) represents the T-FFT algorithm. The d represents the distance
between two adjacent phase screens, and N represents the sampling points on each phase
screen. As shown in Figure 2, the distance of the (a) is greater than that of the (b) and (c),
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and the sampling point of the (b) is smaller than that of the (c). It can be seen that the
S-FFT and the T-FFT algorithms have requirements for transmission distance and sampling
points, and it is also shown that the D-FFT algorithm has apparent advantages in dealing
with short-distance diffraction integration problems. Therefore, the D-FFT algorithm is
the most suitable for the short-distance transmission problem when a multi-random phase
screen is used.
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Figure 2. Comparison of three calculation points at different transmission distances and sampling
points. (1a–1c) d = 0.1 m, N = 512; (2a–2c) d = 0.02 m, N = 512; (3a–3c) d = 0.02 m, N = 1024.

2.4.2. Multi-Random Phase Screens Theory

The D-FFT algorithm based on the Fresnel diffraction integral is used to solve the
transmission of Airy beams between two adjacent screens. Then, multi-random phase
screens generated by the power spectrum inversion method are used to simulate the
influence of plasma sheath turbulence. A schematic diagram of the multi-random phase
screen is shown in Figure 3.
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Then, the turbulent random phase screen of the plasma sheath is generated by the
spectral inversion. Firstly, a complex random matrix H

(
kx, ky

)
of order N × N with mean

1 and variance 0 needs to be generated in the frequency domain, which is filtered by
the turbulence power spectrum of the plasma sheath, and then the random phase screen
Φ
(
kx, ky

)
of the plasma sheath turbulence can be obtained by the inverse Fourier transform.

The turbulent power spectrum of the plasma sheath is [44,48]:

Φ
(
kx, ky

)
= 0.078

〈
n2

〉
L−4/5

0

(
k2

x + k2
y

)−19/10
, (15)

where
〈
n2〉 is the refractive index variance, L0 is the turbulent outer scale, and kx and ky

are frequencies in different directions.
The phase spectrum can be obtained from the refractive index spectrum:

Φ
(
kx, ky

)
= 2πk2Φn

(
kx, ky

)
. (16)

The variance of the phase spectrum is:

σ2(kx, ky
)
= (2πd/N∆x)2Φ

(
kx, ky

)
, (17)

where d is the spacing of any two random phase screens, N is the number of samples, and
∆x is the grid spacing.

The random phase screen in the spatial space can be obtained using the Fourier transform:

Φ(x, y) = F
[
H
(
kx, ky

)
σ
(
kx, ky

)]
. (18)

Superimpose this perturbation on U−
1 (x, y) to obtain the expression at the transmis-

sion distance:
U+

1 (x, y) = U−
1 (x, y) exp(jΦ(x, y)). (19)

Finally, the same algorithm is used to calculate the distance after the second trans-
mission. Accordingly, the light intensity at the transmission distance can be obtained.
Therefore, the D-FFT algorithm based on the Fresnel diffraction integral is used to solve
the transmission of Airy beams between two adjacent screens. Then, multi-random phase
screens generated by the power spectrum inversion method are used to simulate the
influence of plasma sheath turbulence.

3. Transmission of Airy Beams in the Turbulent Plasma Sheath
3.1. Analysis of Time-Varying Parameters in the Turbulent Plasma Sheath Flow Field

In order to analyze the influence of different flight conditions on the parameters of
the flow field around the hypersonic ball model, the flow field parameters at different
flight Mach numbers and flight altitudes were numerically calculated. In the simulation
process, in order to accurately solve the N-S equation, we selected compressible flow. In
the selected gas model, the free-flowing air is assumed to consist of 79% N2 and 21% O2.
The two-temperature thermodynamic equilibrium model and the seven-component Gupta
chemical reaction model were used. The flow field parameter distribution under different
flight conditions was simulated, and the flight Mach numbers were Mach 18 and Mach 20,
and the flight altitudes were 45 km and 50 km. For the boundary problem, the parameters
of temperature and pressure were calculated according to the flow velocity and height; the
wall was an isothermal wall, and the exit state was extrapolated. The result was observed
according to the degree of convergence.

The effects of different flight conditions on the distribution of the flow field around a
hypersonic vehicle are analyzed below. In the flow field of the hypersonic ball model, the
parameters of the stagnation point region of the head are the most varied. The chemical
non-equilibrium phenomenon is the most obvious, and the core of the study is the plasma
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sheath. Therefore, the following calculation results only give and analyze the flow field
parameter distribution of the ball head.

Firstly, we compared the variation trends regarding temperature and pressure in the
plasma sheath at different heights and speeds. As shown in Figure 4a, the translational
temperature is significantly higher than the vibration temperature, and there is a significant
difference with the change in the environment in the plasma sheath. It can be seen from
Figure 4b that the height and speed affect the changes in pressure in the plasma sheath.
Both affect the content of gas components and the chemical reaction between the gas
components. The variation trend regarding the gas components in the flow field around
the ball head is shown in Figure 5.
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parameter distribution of the ball head. 

Firstly, we compared the variation trends regarding temperature and pressure in the 
plasma sheath at different heights and speeds. As shown in Figure 4a, the translational 
temperature is significantly higher than the vibration temperature, and there is a signifi-
cant difference with the change in the environment in the plasma sheath. It can be seen 
from Figure 4b that the height and speed affect the changes in pressure in the plasma 
sheath. Both affect the content of gas components and the chemical reaction between the 
gas components. The variation trend regarding the gas components in the flow field 
around the ball head is shown in Figure 5. 
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Figure 4. Temperature and pressure in the head region under different flight conditions. (a) Tem-
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Gupta chemical reaction model. (a) The variation trends of N2 and O2 in the head region; (b) The
variation trends of N, O and NO in the head region.

As shown in Figure 5, the content of nitrogen and oxygen in the head area changes
dramatically. Secondly, it was found that speed is more sensitive to the effect of content
than height. This is enough to show that the chemical reactions in the plasma sheath are
complex and changeable. At the same time, the content of gas components also varies
with the change in height and speed, which will also affect the beam’s transmission in the
plasma sheath.

Figure 6 shows frequency and collision frequency schematic diagrams at different
speeds and altitudes. As seen in Figure 6, the higher the speed, the lower the electron
density and collision frequency inside the plasma sheath. The higher the height, the higher
the electron density and collision frequency inside the plasma sheath. In other words, the
larger the speed and the smaller the height, the smaller the thickness of the plasma sheath
shock layer, and these differences will have a significant difference in the transmission of
the beam.
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(a) H = 45 Km, v = 18 Ma; (b) H = 45 Km, v = 20 Ma; (c) H = 50 Km, v = 20 Ma.

The flow field data are used when the flight altitude is 50 km, the flight speed is Mach
20, and the angle of attack is 0. The fluctuation range of the refractive index variance of
the flow field near the head region is shown in Figure 7a–c. When approaching the plane
wall, the refractive index changes greatly, because the turbulent state in the plasma sheath
is also affected by shock waves, high temperature, high pressure, and other factors. The
temperature, pressure, and fluctuations near the head are high. The changes on both sides
are weaker than those in zone of the aircraft head.
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Figure 7. The refractive index variance in the plasma sheath. (a–c) Head region; (d) All regional distribution.

In the outflow field of hypersonic vehicles, the parameters of the head stagnation area
change the most. The chemical non-equilibrium phenomenon is the most obvious, and the
core of the study is the plasma sheath. Therefore, the focus here is to analyze only the state
of the head region. The same method gives the range of variance values of the refractive
index fluctuations on both sides in Figure 7d. In the following section, the transmission
characteristics of the Airy beams in the plasma sheath are analyzed in detail.

3.2. Analysis of Factors Affecting the Transmission Quality of the Airy Beams in the Turbulent
Plasma Sheath

In this section, the propagation of the Airy beams in the turbulent plasma sheath
is discussed, and the propagation characteristics of the Airy beams in turbulence with
different fluctuation degrees are obtained. In our simulation, the transmission distance
was z = 0.2 m, the phase screen size was L = 0.1 m, the number of grids was 1024 × 1024,
and the phase screen spacing was ∆z = 0.02 m (10 phase screens). The wavelength is
λ = 1064 nm, and the Airy beams had an attenuation factor of 0.02 and an axial scale
of 0.001.

Figure 8 discusses the effect of the refractive index variance in the Airy beams. The
distribution of light intensity and phase under different refractive index variances was
analyzed when 20 cm Airy beams were transmitted. The refractive index variances were
10−10, 10−8, and 10−6, respectively. As can be seen from Figure 8, with an increase in
the refractive index variance, the dispersion degree of the light spot is enhanced, and the
phase fluctuation gradually increases. Figure 9 discusses the transmission characteristics
of Airy beams propagating over different distances. The selected distances were 5 cm,
10 cm, and 20 cm, respectively. In addition, 10 phase screens were used, so the distance
between two adjacent phase screens was very small. They were 0.005 m, 0.01 m, and 0.02 m,
respectively. As can be seen from Figure 9, the longer the propagation distance, the higher
the dispersion degree of the light spot, and the greater the phase fluctuation. Therefore, for
short-distance transmission in a plasma sheath communication system, the turbulent effect
cannot be ignored.
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Figure 9. Transmission characteristics of the Airy beams under different distances. (a) x = 5 cm;
(b) x = 10 cm; (c) x = 20 cm.

Figure 10 discusses the distribution of Airy beam intensity and phase for different
attenuation factors. As the attenuation factor increases, the light intensity gradually con-
verges to the center, and the disturbance shows signs of decreasing. The attenuation factor
has a lower disturbing effect on the Airy beam phase than on the Airy beam light intensity.
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Figure 10. Propagation characteristics of Airy beams with different attenuation factors. (a) a = 0.02;
(b) a = 0.1; (c) a = 0.3.

Figure 11 analyzes the drift characteristics of Airy beams. Figure 11a discusses the
drift characteristics of Airy beams under different attenuation factors. The values of the
attenuation factors are 0.02, 0.1, and 0.3, respectively, and the standard deviations of the
curves under the attenuation factors are 1.3653 × 10−4, 9.9814 × 10−5 and 5.62756 × 10−5,
respectively. In addition, comparing Gaussian beams with Airy beams, Figure 11b shows
that Airy beams have a better ability to suppress turbulence than Gaussian beams.
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4. Conclusions and Perspectives

In this study, the turbulent flow field in the plasma sheath was numerically simulated
based on the three-dimensional N-S equation and a turbulent two-equation model. The D-
FFT algorithm based on the Fresnel diffraction integral was used to study the transmission
characteristics of Airy beams in the plasma sheath. The results show that the lower the
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height and the higher the speed, the smaller the thickness of the plasma sheath shock layer,
which will also affect the distribution of the internal frequency and collision frequency
of the plasma sheath. The plasma sheath communication system has a critical value of
refractive index variance. Above the critical point, the refractive index has a significant
effect on the beam transmission quality. Refractive index variance, transmission distance,
and attenuation factor are all important factors affecting the transmission quality of Airy
beams. The larger the refractive index variance and transmission distance, the worse the
Airy beam transmission quality, and the worse the serious phase disturbance. The larger
the Airy beam attenuation factor, the smaller the beam drift, and the less the obvious
phase disturbance, indicating a stronger ability to suppress turbulence. Airy beams have
a smaller drift index than Gaussian beams. It can be seen that Airy beams have a better
anti-jamming ability than Gaussian beams when applied to atmospheric communication as
an information carrier.

The research in this paper will help us to understand the internal characteristics of
the plasma sheath and improve communication quality. At the same time, it provides a
theoretical basis for more complex models and beams and also provides a theoretical basis
for experiments.
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