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Abstract: This paper highlights the application of decomposition methods in Mueller polarimetry
for the discrimination of three groups of barley leaf samples from Hordeum vulgare: Chlorina mutant,
Chlorina etiolated mutant and Cesaer varieties in the visible wavelength at λ = 632.8 nm. To obtain the
anisotropic and depolarizing properties of the samples under study, the additive and multiplicative
decompositions of experimental Mueller matrices were used. We show how a rich set of anisotropy
and depolarization parameters obtained from decompositions can be used as effective observables
for the discrimination between different varieties of the same plant species.

Keywords: depolarization; Mueller matrix; additive and multiplicative decomposition of the
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1. Introduction

In this paper, we proceed with the analysis of the experimental Mueller matrices
for three groups of common barley leaf samples (Hordeum vulgare)—Chlorina mutant,
Chlorina etiolated mutant and Cesaer varieties—started in the papers [1,2]. The main goal
of this paper is the same as in our previous papers [1,2], i.e., whether these groups of
barley leaves can be discriminated based on the obtained polarimetric data in visible
wavelength (λ = 632.8 nm). However, based on the results presented in [1,2], the methods
of this paper are different. Indeed, in [2], based on the analysis of the output degree
of polarization DoP [3] and so-called single value depolarization metrics, which can be
obtained directly from the elements of the Mueller matrices, i.e., the average degree of
polarization AverageDoP [4], the depolarization index DI(M) [5], Q(M)-metric [6,7] and
R(M) [8], we show that all the samples under study are characterized by high and different
output depolarization. Furthermore, all groups of samples are characterized by anisotropic
depolarization, i.e., the output polarization degree depends significantly on the input
polarizations; see Table 1 in [2]. This result fully corresponds to the promise of modern
polarimetry [9–14], namely, the depolarization in remote sensing of biological media is an
important source for understanding the interaction of polarized light with botanical scenes
ranging from individual leaves to plants and canopy.

Note that the single-value depolarization metrics representing averaged information
on the depolarization properties of the studied samples describe the dependence of the
output depolarization on the observation angle. However, they do not allow one to
conclude whether the output depolarization depends on the input polarization. In [2], we
observed that the anisotropy of depolarization occurred by analyzing the output degree
of polarization DoP as a function of the ellipticity εinp and azimuth θinp of the input
polarizations. Another interesting result observed in [2] for all three groups of leaves
(see Tables 4 and 5 in [2]), in both forward and backward scattering, is dichroism when
there is a dependency of output intensity on the ellipticity εinp and azimuth θinp of the
input polarizations. Obviously, these effects require further detailed analysis, which can
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only be carried out using the matrix description of anisotropy and depolarization of the
studied samples.

Therefore, in this paper for analysis of the anisotropy and depolarizing properties of
the samples under study and thereby solving the main problem of this and the accompany-
ing paper [2], specifically, the discrimination of three groups of barley leaves under study,
we use the additive and multiplicative decompositions of experimental Mueller matrices
and some depolarization metrics that can be deduced from these decompositions.

In addition, the matrix decomposition methods that we use in this paper to analyze the
experimental Mueller matrices give us, as they say, a synergistic effect. Indeed, as one can
see the results presented in this paper are an important contribution to the analysis of the
inverse problem of polarimetry and highlight the ambiguity in solving the inverse problem
of polarimetry in two important aspects: (i) the existence of various decompositions of
arbitrary depolarizing Mueller matrices, including various decompositions of deterministic
Mueller matrices; and (ii) existence of different Mueller matrices of depolarizers.

All information about the method of the Mueller matrix measurement, which was
carried out in this experiment, the geometry of the experiments, the description of the
samples under study and the results of measuring the Muller matrix elements can be found
in [1,2]. This paper is organized as follows: in Section 2, we present a brief outline of the
depolarizing Mueller matrix additive and multiplicative decompositions and the matrix
description of depolarization; results and discussion of our experiments and calculations
are given in Section 3; and conclusions are presented in Section 4.

2. The Mueller Matrix Decompositions

The first single-value depolarization metric proposed in polarimetry, except for the
degree of polarization DoP [3], was deduced from the concept of the Cloude coherency
matrix [15,16]. The concept of coherency matrix is now widely used in various fields of
modern polarimetry [3,17]. It is particularly useful when one is interested in additive
(parallel) decompositions of the arbitrary depolarizing Mueller matrix, i.e., when a depo-
larizing Mueller matrix can be represented by a convex sum of non-depolarizing (pure)
Mueller matrices. In this decomposition, the non-depolarizing Mueller matrix contains one
pure component, whereas depolarizing Mueller matrices contain two or more (up to four)
pure components.

The Cloude coherency matrix J is derived from the corresponding Mueller matrix
elements mij as follows:

j11 = 1/4(m11 + m22 + m33 + m44), j22 = 1/4(m11 + m22 − m33 − m44),
j33 = 1/4(m11 − m22 + m33 − m44), j44 = 1/4(m11 − m22 − m33 + m44),

j14 = 1/4(m14 − i m23 + i m32 + m41), j23 = 1/4(i m14 + m23 + m32 − i m41),
j32 = 1/4(−i m14 + m23 + m32 + i m41), j41 = 1/4(m14 + i m23 − i m32 + m41),
j12 = 1/4(m12 + m21 − i m34 + i m43), j21 = 1/4(m12 + m21 + i m34 − i m43),

j34 = 1/4(i m12 − i m21 + m34 + m43), j43 = 1/4(−i m12 + i m21 + m34 + m43),
j13 = 1/4(m13 + m31 + i m24 − i m42), j31 = 1/4(m13 + m31 − i m24 + i m42),

j24 = 1/4(−i m13 + i m31 + m24 + m42), j42 = 1/4(i m13 − i m31 + m24 + m42).

(1)

It can be seen that coherency matrix J is positive semidefinite Hermitian and, hence,
has always four real eigenvalues. This defines a requirement for the Mueller matrix M to
be physically realizable, i.e., the coherency matrix J associated with M should have all four
non-negative eigenvalues [18].

For the average characterization of depolarization for a given Mueller matrix, the
following single value metric, called Cloude entropy, can be used:

H =
4

∑
i=1

−Pi log4 Pi, (2)
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where
Pi =

λi

∑
j

λj
, (3)

λi are the eigenvalues of coherency matrix J from Equation (1).
The entropy is bounded according to 0 ≤ H ≤ 1. For a sample without depolarization:

H = 0 and λ1 ̸= 0, λi ̸=1 = 0. For totally depolarizing samples: H = 1 and λ1 = λ2 = λ3 =
λ4. When H < 0.5 and H > 0.5 samples are weakly and strongly depolarizing, respectively.

Given eigenvalues λi of the coherency matrix J, the initial arbitrary depolarizing
Mueller matrix can be represented through additive Cloude decomposition as

M =
4

∑
k=1

λkMk, (4)

where Mk are the non-depolarizing (pure) Mueller matrices derivable from corresponding
Jones matrices Ti [3,19,20]. The Jones matrices Ti corresponding to pure Muller matrices
Mk in Equation (4) can in turn be derived as

t(k)11 = Ψ(k)
1 + Ψ(k)

2 , t(k)12 = Ψ(k)
3 − iΨ(k)

4

t(k)21 = Ψ(k)
3 + iΨ(k)

4 , t(k)22 = Ψ(k)
1 − Ψ(k)

2

(5)

where Ψ(k) =
(
Ψ1 Ψ2 Ψ3 Ψ4

)T
k is k-th eigenvector of the coherence matrix J.

We can gain a better understanding by rewriting Equation (4) in the following form [3]:

M = λ1M1 +
4

∑
k=2

λkMk = M0 + ∆M, (6)

which allows for a straightforward physical interpretation. Namely, the part M0 is the
pure estimation of M that generally contains seven independent parameters and ∆M is the
depolarizing Mueller matrix containing up to nine independent parameters [20] character-
izing depolarization. Thus, in the general case, we have 16 independent parameters that
completely characterize the anisotropic and depolarizing properties of the sample under
study. In this way, the Cloude additive decomposition determines both the anisotropy and
depolarization properties of an arbitrary depolarizing sample. The former is described
by the non-depolarizing Mueller matrix M0 in Equation (6) and the latter by depolarizing
Mueller matrix ∆M and/or by entropy H in Equation (2).

Apparently, the very first version of the multiplicative decomposition of the depolar-
izing Mueller matrices, called polar decomposition, was suggested in [21,22]. According
to [21,22] the polar decomposition of an arbitrary depolarizing Mueller matrix can be
represented as follows:

M = M∆MRMD, (7)

where MR and MD are the Mueller matrices of elliptical retarder and diattenuator (retarder
and diattenuator polar forms), respectively; M∆ is a depolarizer. The Mueller matrices of
elliptical diattenuator and retarder are pure and characterized by orthogonal eigenpolariza-
tions and generally by seven independent parameters: each of the matrices MR and MD
by three independent parameters and the total intensity. Depolarizer Mueller matrix M∆
contains up to nine independent parameters. Evidently, all four matrices Mi in Equation (4)
can be represented as a multiplicative decomposition MRMD.

The Mueller matrix of retarder polar form MR (using notation from Lu and Chip-
man [22]) is given by
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MR =

 1
→
0

T

→
0 mR

 ,

(mR)ij = δij cos R + aiaj(1 − cos R) +
3
∑

k=1
εijkak sin R,

(8)

where
→
0 is the 3 × 1 zero vector;

(
1 a1 a2 a3

)T
=

(
1

⌢
R

T)T
is the normalized Stokes

vector for the fast axis of MR; δij is the Kronecker delta; εijk is the Levi−Civita permutation
symbol; mR is the 3 × 3 submatrix of MR obtained by striking out the first row; and the
first column of MR and R is the birefringence given by

R = arccos
(

1
2 Tr MR − 1

)
,

ai =
1

2 sin R

3
∑

j,k=1
εijk(mR)jk.

(9)

The Mueller matrix of diattenuator polar form MD is as follows:

MD = Tu

 1
→
D

T

→
D mP

 ,

mD =
√

1 − D2 I +
(

1 −
√

1 − D2
) ⌢

D
⌢
D

T
,

(10)

where I is the 3 × 3 identity matrix;
⌢
D =

→
D/|

→
D | is the unit vector in the direction of the

diattenuation vector
→
D; Tu is the transmittance for input unpolarized light.

The value of diattenuation can be obtained as

D =
√

m2
12 + m2

13 + m2
14. (11)

In the general case, the explicit form of the retarder polar form is nothing more than the
first partial Jones equivalence theorem [23]. As for the diattenuator polar form, the matter is
more complicated. On the one hand, we have diattenuator polar forms proposed in [22,24].
However, in these variants of the diattenuator polar forms, there is no explicit information
about the value of the linear and circular amplitude anisotropy. In this sense, following
Shurcliff’s classification [25], both of these options are transcendent. A variant of the
diattenuator polar form in which information about the linear (magnitude and orientation)
and circular (magnitude) amplitude anisotropy is explicitly present was proposed in [26,27].

The Mueller matrix of depolarizer M∆ is as follows:

M∆ =

 1
→
0

T

→
P∆ m∆

, (12)

where
→
P∆ is the polarizance vector and m∆ is a 3 × 3 symmetric matrix;

→
0

T
is a 1 × 3 zero

vector; the superscript T stands for vector or matrix transposition.
The averaged depolarization capability of the depolarizer M∆ can be determined by

the metric

∆ = 1 − |tr(m∆)|
3

, 0 ≤ ∆ ≤ 1, (13)

which is called the depolarization power.
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Note, like the matrix ∆M found in Equation (6), the matrix M∆ Equation (12) generally

contains nine independent depolarization parameters. The polarizance vector
→
P∆ contains

three parameters and symmetric submatrix m∆ with six parameters.
Due to the non-commutativity of the matrices M∆, MR and MD, the decomposition

Equation (7) is not unique. An important discussion of the ambiguity of the polar decom-
position and, hence, the inverse problem of polarimetry due to the non-commutativity of
matrices M∆, MR and MD can be found in [3]. In this paper, we use the decomposition
form given by Equation (7).

Another multiplicative decomposition of the arbitrary depolarizing Muller matrix,
which can be used to characterize the anisotropy and depolarizing properties of the sample
described by the Mueller matrix M, was proposed in [28]:

M = MD2MR2MdepMT
R1MD1, (14)

where MD1, MD2 and MR1, MR2 are four non-depolarizing Mueller matrices, respectively, two
elliptical diattenuators and two retarders; Mdep is the Mueller matrix of diagonal depolarizer

Mdep =


mdep

11 0 0 0
0 mdep

22 0 0
0 0 mdep

33 0
0 0 0 mdep

44

. (15)

It can be seen that each of the matrices representing elliptical diattenuators MD1,
MD2 and retarders MR1, MR2 contain three parameters. Thus, the total number of “pure”
independent parameters in decomposition Equation (14) generally is 12. The matrix of the
depolarizer Equation (15) contains 4 parameters. If the diagonal elements of the matrix
Equation (15) are mdep

22 = mdep
33 = mdep

44 < mdep
11 , then this is the Mueller matrix of an isotropic

partial depolarizer containing one depolarization parameter. If the diagonal elements are
mdep

22 ̸= mdep
33 ̸= mdep

44 , then this is the Mueller matrix of the anisotropic depolarizer. Indeed,
in this case, the output polarization degree differs by different input polarizations. In
principle, under certain conditions, the depolarizer matrix Mdep in Equation (14) can be
non-diagonal. However, in our case, as discussed below, these conditions were not realized.
Additional discussion can be found in [3,28].

When analyzing the Mueller matrices of depolarizing samples, along with obtaining
an explicit form of the depolarizer Muller matrices appearing in the additive and multi-
plicative decompositions considered above, the analysis of the anisotropic properties of the
samples under study is of interest as well. This is due to the fact that the anisotropy pa-
rameters themselves represent additional effective observables for distinguishing between
samples. Furthermore, the presence of amplitude anisotropy can significantly affect the
depolarization of the input light by the sample.

In this paper, we analyze the anisotropic properties using the “pure” part:

M = MRMD, (16)

of the polar decomposition Equation (7), Equations (9) and (11) for (i) the Mueller ma-
trices M0 corresponding to the largest eigenvalue of the coherency matrix Equation (1)
in the Cloude additive decomposition Equation (6); (ii) the non-depolarizing part of the
polar decomposition Equation (7); and (iii) the non-depolarizing parts of the symmetric
decomposition Equation (14).

For completeness of the anisotropy analysis of the samples under study, we also use
the generalized equivalence theorem [29], which is a natural generalization of two partial
Jones equivalence theorems [22], and represents an arbitrary non-depolarizing Muller
matrix in the form

MCPMLP MCA MLA, (17)
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where MCP and MLP are the Mueller matrices for circular (characterized by the value φ)
and linear (characterized by the value δ and azimuth α) phase anisotropy, respectively;
MCA and MLA are the Mueller matrices of circular (characterized by the value R) and
linear (characterized by the value P and azimuth θ) amplitude anisotropy, respectively. The
anisotropy parameters φ, δ, α, R, P and θ for arbitrary pure Mueller matrix M from the
generalized equivalence theorem Equation (17) are as follows:

θ = 1/2 arctan
(

m13
m12

)
,

P = (m11−m12 cos(2θ)−m13 sin(2θ))2

m2
11−(m12 cos(2θ)−m13 sin(2θ))2 ,

R = m′
11±

√
(m′

11)
2−(m′

14)
2

m′
14

,

α = 1
2 arctg

(
m′′

42
−m′′

43

)
δ = arctg

(
m′′

42
m′′

44 sin(2α)

)
ϕ = arctg 1

2

(
m′′

34 m′′
42−m′′

24 m′′
43

m′′
34 m′′

43+m′′
24 m′′

42

)
(18)

where
M

′
= M

(
MLA)−1

M
′′
= M

′ (
MCA)−1

.
(19)

3. Results and Discussion

Before proceeding to the analysis of the results obtained for the convenience of reading
the paper, similar to what was carried out in [2], we note the following regarding the
presentation of the results below. All figures below depict the dependences of the matrix
elements, depolarization metrics and anisotropy parameters presented in Section 2 on the
observation angles. Therefore, the following unified legend is adopted throughout the text:
group (a), Chlorina mutant, which was grown under ordinary lighting conditions; group (b),
Chlorina mutant, whose plants were etiolated (left in the dark) during growth; and group (c),
Cesaer varieties. In addition, in order not to overwhelm the figures, we did not label the
abscissa axis every time, while the ordinate axes are properly indicated throughout the text.
All figures in the text below do not have error bars because the standard deviations in each
case were comparable to the plotted symbols and less than 2%.

3.1. Depolarizers in Different Decompositions

Figures 1–3 show matrix elements of the depolarizers ∆M, Equation (6), M∆, Equation (7)
and Mdep, Equation (14), for forward (i) and backward (ii) scattering versus observation
angle, respectively.

The largest number of non-zero matrix elements for forward scattering is observed for
the Cloude depolarizer ∆M Equation (6). This is the only depolarizer in which, for forward
scattering, in addition to diagonal elements mii, the elements m34 and m43 are non-zero.
Matrix elements m34 and m43 make it possible to distinguish between groups of samples (c)
and pair (a) and (b). However, these elements do not allow one to distinguish between
groups of samples (a) and (b).

Diagonal matrix elements mii of depolarizers M∆, Equation (7), and Mdep, Equation (14),
behave quite similarly. For observation angles less than 45 degrees, these elements make
it possible to distinguish all three groups of samples under study. However, the element
m22 that describes the depolarization for input vertical and horizontal linear polarizations
is the most effective observable for all three groups of samples for all forward scattering
observation angles.
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Figure 1. The matrix elements of the depolarizer ∆M, Equation (6), for forward (i) and backward
(ii) scattering versus observation angle.
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Figure 2. The matrix elements of the depolarizer ΔM , Equation (7), for forward (i) and backward 
(ii) scattering versus observation angle. 
Figure 2. The matrix elements of the depolarizer M∆, Equation (7), for forward (i) and backward
(ii) scattering versus observation angle.

The behavior of the diagonal matrix elements of the depolarizer ∆M differs noticeably
from that discussed above. In particular, the element m33 shows minimal separability of
the samples. This element allows one to distinguish only groups (a) and (c) for observation
angles less than 30 degrees. The element m22 allows distinguishing effectively between a
group of samples (c) and a pair of (a) and (b), which differ minimally. The element m44
shows stronger separation for all three groups of samples.
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(ii) scattering versus observation angle.

For backscattering, a completely different pattern is observed. Obviously, the most
informative is the Cloude depolarizer Equation (6). In addition to diagonal elements, the
matrix elements m12, m21, m34 and m43 are non-zero. Matrix elements m12 and m21 do not
allow for identification between the groups. The matrix elements m34 and m43 identify
groups of studied samples for observation angles 110–140 degrees.

In general, the dependence of the diagonal matrix elements of depolarizers M∆
Equation (7) and Mdep Equation (14) on observation angle is less than that for forward
scattering. All three diagonal elements of the depolarizers Equations (7) and (14) make it
possible to identify a group of samples (b) and pair (a) and (c) for all observation angles.
Samples from the pair (a) and (c) can be reliably identified based on the element m22,
m33 for observation angles 130–165 degrees and the element m44 for observation angles
150–165 degrees. For observation angles smaller than 150 degrees, element m44 does not
have the ability to distinguish between groups (a) and (c).

From Figure 1ii, the dependence of the diagonal elements of the Cloude depolarizer
∆M Equation (6) on the observation angle for backscattering is qualitatively different.
Indeed, for matrix elements m33 and m44, there is an intersection by observation angle for a
group of samples (b) and a pair of (a) and (c), which is uncharacteristic for both depolarizers
M∆ and Mdep and depolarization metrics given in Equations (2) and (13). Moreover, based
on these matrix elements, groups (a) and (c) for all backscatter observation angles are
indistinguishable. However, both on the basis of the elements m33 and m44 and the element
m22, a group of samples (b) is effectively identified. Obviously, the most informative among
the diagonal elements of the Cloude depolarizer ∆M for backscattering is the element m22
for observation angles higher than 130 degrees.

All of the above features of the depolarizer Mueller matrices ∆M, Equation (6), M∆,
Equation (7), and Mdep, Equation (14), necessitate a more detailed analysis which was
carried out in Section 3.3.
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Figures 4 and 5 show the Cloude entropy H Equation (2) and the depolarization power
∆ Equation (13) versus the observation angle for both experimental geometries. In these
figures, group (b), the etiolated mutant variety under restricted lighting, is clearly distin-
guishable from (a) and (c) in both scattering directions. The most likely cause for this is the
altered stacked thylakoid membrane structure in the etiolated mutant variety (Chlorina mu-
tants differ from wild barley variety due to anomalous thylakoid stacking). Electron transfer
during photosynthesis occurs over a chemical potential across thylakoid membranes.
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Figure 4. Dependences of Cloude entropy H  for forward (i) and backward (ii) scattering versus 
observation angle. 
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As noted in Section 2, the Cloude entropy H and the depolarization power ∆ represent
the averaged depolarization properties of the studied groups of samples and in this sense,
they are similar to the single value depolarization metrics considered in the accompanying
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paper [2], with the only difference being that to obtain them it is necessary to accomplish the
decompositions Equations (6) and (7) of the experimental Mueller matrices, respectively.

A comparison of the Cloude entropy H and the depolarization power ∆ with the
most effective observable Q(M)-metric among depolarization metrics [2] shows that their
behavior is largely similar. However, it should be noted that the depolarization power ∆
does not allow one to distinguish between groups of samples (a) and (c) over the entire
observation angle range of forward scattering. For backscatter, the range of observation
angles for which all three groups of samples can be effectively distinguished is limited to
130–160 degrees.

3.2. “Pure” Anisotropy in Different Decompositions

Of particular interest in solving the main problems of this paper is the analysis of
deterministic Mueller matrices obtained in the decompositions presented in Section 2. This
interest is based on the inequality of the diagonal elements and non-zero values of the
non-diagonal matrix elements m12, m21, m23, m32, m34 and m43 (see Figures A1 and A2
in [2]), and, as a consequence, the dependence of the output intensity on the input polar-
izations (see Tables 4 and 5 in [2]). To analyze the information contained in deterministic
Mueller matrices, we use “pure” decompositions Equations (16) and (17). As was shown in
Section 2, when using the decomposition Equation (16), phase and amplitude anisotropy is
characterized by the retardation Equation (9) and diattenuation Equation (11), respectively.
These parameters, as they are defined in Equations (9) and (11), are general identifiers
of amplitude and phase anisotropy. In this context, these parameters are presented be-
low. When using decomposition Equation (17), linear and circular phase and amplitude
anisotropy is characterized, respectively, by φ (the value of circular phase anisotropy), R
(the value of circular amplitude anisotropy), δ (the value of linear phase anisotropy), P (the
value of linear amplitude anisotropy) and azimuths α, θ of linear phase and amplitude
anisotropy Equation (18).

Figures 6–12 show the anisotropy parameters obtained by the analysis of determin-
istic Mueller matrices in decompositions Equations (6), (7) and (14) for forward (i) and
backward (ii) scattering versus observation angle obtained from “pure” decompositions
Equations (16) and (17).

For forward and backward scattering, as can be seen, both decompositions
Equations (16) and (17) give somewhat similar results. Except for forward scattering, the
orientations of retardance and linear phase (δ) anisotropy differ by approximately 90 de-
grees. The retardance azimuth for group (a) at observation angles less than 45 degrees is
uninformative due to the zero retardance. The highest values of retardance and linear phase
anisotropy are observed for group (c) but circular amplitude (R) and phase (φ) anisotropy
are absent. It is noteworthy that changes in the value of linear amplitude (P) anisotropy are
somewhat greater than changes in diattenuation (D), depending on the observation angle.
As for the orientation of diattenuation and linear anisotropy (θ), they differ, as in the case
of phase anisotropy by approximately 90 degrees. The latter makes it possible for forward
scattering to confidently identify groups of samples (b) and (c) based on linear amplitude
anisotropy.

Figures 6 and 7 show that the changes in diattenuation, retardance, linear ampli-
tude and phase anisotropy on observation angle for backward scattering are significantly
greater than those for forward scattering. Both retardation and linear phase anisotropy
make it possible to identify all three groups of studied samples for observation angles of
110–140 degrees and groups (a) and (c) in almost the entire range of observation angles
Retardance via decomposition Equation (16) shows nearly quarter wave (90 degrees) phase
shift as the limits of the backscattering angles are approached (Figure 6ii). While retardance
in the forward scattering direction is not as pronounced in the backscattering direction,
group (b) stands out with a preferential direction for the azimuth of retardance with respect
to the observation angle. Diattenuation, representing preferential absorption of polariza-
tion states, changes with backscatter observation angles while azimuth of diattenuation
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is discernable as the larger forward scattering angles are approached. Circular amplitude
anisotropy is absent, as it is in the case of forward scattering. Of interest is the non-zero
value of the circular phase anisotropy for groups (b) and (c), which is apparently due
to the non-zero values of the matrix elements m23 and m32, see Figure A2 in [2]. Linear
amplitude and circular phase anisotropy for backscattering allows distinguishing groups
of samples (b) and (c) for observation angles of 110–165 and 110–140 degrees, respectively.

Photonics 2024, 11, 76 12 of 30 
 

 

Figures 6–12 show the anisotropy parameters obtained by the analysis of determin-
istic Mueller matrices in decompositions Equations (6), (7) and (14) for forward (i) and 
backward (ii) scattering versus observation angle obtained from “pure” decompositions 
Equations (16) and (17).  

0 15 30 45 60 75
0.0

0.1

0.2

0.3

0.4

0.5

D
ia

tte
nu

at
io

n

observation angle, (deg)

 (a)
 (b)
 (c)

0 15 30 45 60 75
−20

0
20
40
60
80

100
120
140
160
180

A
zi

m
ut

h 
of

 D
ia

tte
nu

at
io

n

0 15 30 45 60 75
0

5

10

15

20

25

30

Re
ta

rd
an

ce

0 15 30 45 60 75
−20

0
20
40
60
80

100
120
140
160
180

A
zi

m
ut

h 
of

 R
et

ar
da

nc
e

 

90 105 120 135 150 165
0.0

0.2

0.4

0.6

0.8

1.0

D
ia

tte
nu

at
io

n
90 105 120 135 150 165

−20
0

20
40
60
80

100
120
140
160
180

A
zi

m
ut

h 
of

 D
ia

tte
nu

at
io

n
90 105 120 135 150 165

90
100
110
120
130
140
150
160
170
180

Re
ta

rd
an

ce

90 105 120 135 150 165
−20

0
20
40
60
80

100
120
140
160
180

A
zi

m
ut

h 
of

 R
et

ar
da

nc
e

(i) (ii) 

Figure 6. Anisotropy parameters as function of observation angles for the pure Mueller matrix Equa-
tion (6) obtained from decomposition Equation (16) for (i) forward and (ii) backward scattering.  
Figure 6. Anisotropy parameters as function of observation angles for the pure Mueller matrix
Equation (6) obtained from decomposition Equation (16) for (i) forward and (ii) backward scattering.

The next two Figures 8 and 9 present the results of the analysis, which are similar to
that presented above for pure Mueller matrices obtained in the decomposition Equation (6),
and for pure Mueller matrices obtained from the decomposition Equation (7).

It can be seen that in this case there are certain analogies with data presented in
Figures 6 and 7. However, significant differences are also observed. In particular, for
forward scattering the diattenuation is non-zero, although very insignificant. There is
no circular amplitude anisotropy (R). Linear amplitude anisotropy (P) has a larger range
of changes than diattenuation. Based on linear amplitude anisotropy, it is possible to
distinguish groups of samples (a) and (b) in the range of observation angles from 0 to
40 degrees.

Phase anisotropy behaves almost similarly for both decompositions Equations (6)
and (7), taking into account the change in orientation for group (a) and groups (b) and (c)
by 90 degrees. Thus, retardance and linear phase anisotropy (δ) are effective observers
allowing one to distinguish all three groups of samples over the entire range of observation
angles. It is noteworthy that the linear phase anisotropy (δ) for a group of samples (a) in
the range of 10–35 degrees is absent. In general, the dependence of linear phase anisotropy
on the observation angle for all three groups of samples is insignificant, increasing for
large observation angles. Circular phase anisotropy is absent over the entire range of
forward scattering.
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Figure 7. Anisotropy parameters as function of observation angles for the pure Mueller matrix Equa-
tion (6) obtained from decomposition Equation (17) for (i) forward and (ii) backward scattering. 
Figure 7. Anisotropy parameters as function of observation angles for the pure Mueller matrix
Equation (6) obtained from decomposition Equation (17) for (i) forward and (ii) backward scattering.
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Figure 8. Anisotropy parameters as function of observation angles for the pure Mueller matrix Equa-
tion (7) obtained from decomposition Equation (16) for (i) forward and (ii) backward scattering. 
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Figure 8. Anisotropy parameters as function of observation angles for the pure Mueller matrix
Equation (7) obtained from decomposition Equation (16) for (i) forward and (ii) backward scattering.

As was the case for Figures 6 and 7, backscattering is characterized by observable de-
pendence of the amplitude and phase anisotropy on the observation angle. It is interesting
that the “rate” of change in the amplitude and phase anisotropy has an inverse character:
the groups of samples (c) and (b) are characterized by the highest and lowest rates of change
in amplitude anisotropy. At the same time, for phase anisotropy the opposite pattern is
observed, i.e., the groups of samples (b) and (c) are characterized by the highest and low-
est rates, respectively. Both amplitude and phase anisotropy for backscatter are effective
identifiers for all three groups of samples in the observation angles of 110–150 degrees.

Circular amplitude anisotropy (R) is absent over the entire range of observation angles.
As in Figures 6 and 7, circular phase anisotropy (φ) is of particular interest. For group (a), it
is on average close to zero, while for groups (b) and (c) at backscattering angles of 110–140
degrees, right (φ1) and left circular phase (φ2) anisotropy of approximately 5 degrees is
observed, respectively.

Figure 10 shows the results of the analysis for pure left and right Mueller matrices
obtained in the symmetry decomposition Equation (14) on the basis of pure decomposition
Equation (16). Figures 11 and 12 show the same for pure decomposition Equation (17).

For forward scattering, the right deterministic part of the symmetric decomposition
shows minor non-zero diattenuation and retardation (approximately 3 degrees) for all three
groups of samples for the entire range of observation angles, while the “pure” decomposi-
tion Equation (17) shows a larger change in linear amplitude anisotropy and significant
dependence of linear phase (δ) anisotropy by observation angle. In this case, a circular
phase (φ) anisotropy is observed near 90 degrees, which depends little on the observation
angle. Amplitude anisotropy for both “pure” decompositions does not allow one to dis-
tinguish between groups of samples under study. Linear phase anisotropy distinguishes
groups (b) and (c) for almost all observation angles. Groups of samples (a) and (c) can be
distinguished for observation angles greater than 30 degrees. Circular phase anisotropy
makes it possible to confidently distinguish groups of samples (b) and pairs (a) and (c) for
observation angles from 0 to 40 degrees.
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Figure 8. Anisotropy parameters as function of observation angles for the pure Mueller matrix Equa-
tion (7) obtained from decomposition Equation (16) for (i) forward and (ii) backward scattering. 
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Figure 9. Anisotropy parameters as function of observation angles for the pure Mueller matrix Equa-
tion (7) obtained from decomposition Equation (17) for (i) forward and (ii) backward scattering. 

It can be seen that in this case there are certain analogies with data presented in Fig-
ures 6 and 7. However, significant differences are also observed. In particular, for forward 
scattering the diattenuation is non-zero, although very insignificant. There is no circular 
amplitude anisotropy (R). Linear amplitude anisotropy (P) has a larger range of changes 
than diattenuation. Based on linear amplitude anisotropy, it is possible to distinguish 
groups of samples (a) and (b) in the range of observation angles from 0 to 40 degrees. 

Phase anisotropy behaves almost similarly for both decompositions Equations (6) 
and (7), taking into account the change in orientation for group (a) and groups (b) and (c) 
by 90 degrees. Thus, retardance and linear phase anisotropy (δ) are effective observers 
allowing one to distinguish all three groups of samples over the entire range of observa-
tion angles. It is noteworthy that the linear phase anisotropy (δ) for a group of samples (a) 
in the range of 10–35 degrees is absent. In general, the dependence of linear phase anisot-
ropy on the observation angle for all three groups of samples is insignificant, increasing 
for large observation angles. Circular phase anisotropy is absent over the entire range of 
forward scattering. 

As was the case for Figures 6 and 7, backscattering is characterized by observable 
dependence of the amplitude and phase anisotropy on the observation angle. It is inter-
esting that the “rate” of change in the amplitude and phase anisotropy has an inverse 
character: the groups of samples (c) and (b) are characterized by the highest and lowest 
rates of change in amplitude anisotropy. At the same time, for phase anisotropy the oppo-
site pattern is observed, i.e., the groups of samples (b) and (c) are characterized by the 
highest and lowest rates, respectively. Both amplitude and phase anisotropy for backscat-
ter are effective identifiers for all three groups of samples in the observation angles of 110–
150 degrees. 

Figure 9. Anisotropy parameters as function of observation angles for the pure Mueller matrix
Equation (7) obtained from decomposition Equation (17) for (i) forward and (ii) backward scattering.
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Figure 10. Anisotropy parameters as function of observation angles for the pure Mueller matrices 
Equation (14) obtained from decomposition Equation (16) for (i) forward and (ii) backward scatter-
ing. 

Figure 10. Anisotropy parameters as function of observation angles for the pure Mueller matrices
Equation (14) obtained from decomposition Equation (16) for (i) forward and (ii) backward scattering.

For the left deterministic part of decomposition Equation (14), we have in the
scope of decomposition Equation (16) a complete absence of diattenuation and the
same value of retardation as for the right part. That is, decomposition Equation (16)
for forward scatter has no deterministic observables that can discriminate groups of
leaf samples.

For backscattering, there is again no dependence of retardation and a more noticeable
dependence of diattenuation for all three groups of samples by observation angle for the
right and left parts of the decomposition. Diattenuation and linear amplitude anisotropy of
the right side makes it possible to distinguish groups of samples (b) and pair of (a) and (c)
in almost the entire range of observation angles, while for the left side of decomposition, it
was the groups of samples (a) and (c) and the group of samples (b). It is interesting that
the linear phase anisotropy of the right part allows one to distinguish between group (b)
and the pair (a) and (c), while the left part in the observation angles of 100–135 degrees can
distinguish all three groups of the studied samples.
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Figure 11. Anisotropy parameters as function of observation angles for the right pure deterministic 
side of symmetric decomposition Equation (16) for (i) forward and (ii) backward scattering. 
Figure 11. Anisotropy parameters as function of observation angles for the right pure deterministic
side of symmetric decomposition Equation (16) for (i) forward and (ii) backward scattering.
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Figure 12. Anisotropy parameters as function of observation angles for the left pure deterministic 
side of symmetric decomposition Equation (16) for (i) forward and (ii) backward scattering. 
Figure 12. Anisotropy parameters as function of observation angles for the left pure deterministic
side of symmetric decomposition Equation (16) for (i) forward and (ii) backward scattering.
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3.3. Anisotropy of Depolarization

In Section 3.1, we obtained explicit forms for the Mueller matrices of depolarizers ∆M,
M∆ and Mdep for three decompositions Equations (6), (7) and (14). In addition, in Section 3.1,
we noted that depolarizer Mueller matrices, describing the dependence of depolarization
on the input polarizations (anisotropy of depolarization), also impact the dependence of the
output polarizations on the input polarizations, i.e., the depolarizer Mueller matrices could
contain information about the “deterministic” anisotropy of the corresponding depolarizers.
Next, we address the “deterministic” anisotropy of depolarizers in more detail.

The additive decomposition Equation (6) for the Mueller matrices of the depolarizer
M∆, Equations (7) and (12) can be written as:

M∆ = M∆
0 + ∆M∆, (20)

for all three groups of samples for forward and backward scattering.
Figures 13 and 14 represent the anisotropic parameters of pure Mueller matrices M∆

0 of de-
polarizer M∆, Equation (20), obtained from two “pure” decompositions Equations (16) and (17)
as a function of observation angle.
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Figure 13. The diattenuation and retardance as functions of observation angle for deterministic 
Mueller matrices 0

ΔM  Equation (20) obtained from “pure” decompositions Equation (16) for (i) 
forward and (ii) backward scattering. 

Figure 13. The diattenuation and retardance as functions of observation angle for deterministic
Mueller matrices M∆

0 Equation (20) obtained from “pure” decompositions Equation (16) for (i) forward
and (ii) backward scattering.

Next, the multiplicative decomposition Equation (7) for the Mueller matrices of the
depolarizer ∆M, Equation (6) can be written as:

∆M = M∆
∆M∆

RM∆
D, (21)

for all three groups of samples in forward and backward scattering directions.
Figures 15 and 16 show anisotropic parameters for the pure part M∆

RM∆
D of the depo-

larizer ∆M in the decomposition Equation (21), which were obtained on the basis of two
pure decompositions from Equations (16) and (17).
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Figure 14. Anisotropy parameters as function of observation angle for the deterministic Mueller 
matrices 0

ΔM  Equation (20) obtained from “pure” decompositions Equation (17) for (i) forward 
and (ii) backward scattering. 

Figure 14. Anisotropy parameters as function of observation angle for the deterministic Mueller
matrices M∆

0 Equation (20) obtained from “pure” decompositions Equation (17) for (i) forward and
(ii) backward scattering.
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Figure 15. Diattenuation and retardance as function of observation angle for the deterministic 
Mueller matrices R D

Δ ΔM M  Equation (21) obtained from “pure” decompositions Equation (16) for 
(i) forward and (ii) backward scattering. 

Figure 15. Diattenuation and retardance as function of observation angle for the deterministic Mueller
matrices M∆

RM∆
D Equation (21) obtained from “pure” decompositions Equation (16) for (i) forward

and (ii) backward scattering.

Another interesting point about the depolarizer ∆M is its further analysis in the context
of additive decomposition from Equation (6). Obviously, in this case, we have an additive
decomposition with three non-zero eigenvalues of the coherence matrix Equation (1):

∆M = λ2M2 +
4

∑
k=3

λkMk = ∆M0 + ∆∆M. (22)

The Mueller matrix ∆M0, corresponding to the largest of the remaining three eigen-
values of the coherence matrix Equation (1), can obviously be considered as pure esti-
mation of ∆M. Figures 17 and 18 show the anisotropic parameters of the pure Mueller
matrix ∆M0, which were again obtained on the basis of two pure decompositions from
Equations (16) and (17).

For forward scattering, the retardance, linear (δ) and circular phase (φ) anisotropy are
absent. Only a very small amplitude anisotropy is observed with some increase for obser-
vation angles greater than 45 degrees. For retardance, linear and circular phase anisotropy,
a similar situation is also observed for backward scattering. There is a significant difference
in amplitude anisotropy. The minimum values of amplitude anisotropy are observed for
observation angles close to the exact backscattering direction. As the observation angle
decreases, the amplitude anisotropy increases significantly. Moreover, for all observation
angles, the group of samples (b) is characterized by the maximum, and the group of sam-
ples (a) by the minimum values of amplitude anisotropy. It is noteworthy that the range of
changes in linear amplitude anisotropy is greater than that of diattenuation.
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Figure 16. Anisotropy parameters as function of observation angle for the deterministic Mueller 
matrices R D

Δ ΔM M  Equation (21) obtained from “pure” decomposition Equation (17) for (i) for-
ward and (ii) backward scattering. 

Figure 16. Anisotropy parameters as function of observation angle for the deterministic Mueller
matrices M∆

RM∆
D Equation (21) obtained from “pure” decomposition Equation (17) for (i) forward

and (ii) backward scattering.
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Figure 17. Diattenuation and retardance as function of observation angle for the deterministic 
Mueller matrices 0ΔM  Equation (22) obtained from “pure” decomposition Equation (16) for (i) 
forward and (ii) backward scattering.  

Figure 17. Diattenuation and retardance as function of observation angle for the deterministic Mueller
matrices ∆M0 Equation (22) obtained from “pure” decomposition Equation (16) for (i) forward and
(ii) backward scattering.

Unlike the previous case, for forward scattering, both amplitude and phase anisotropy
are observed for all three groups of samples. For group (c), diattenuation and linear
amplitude anisotropy are very small. The minimum and maximum values of retardance
and linear phase anisotropy are experienced by groups (a) and (c). For groups (a) and (b),
circular amplitude anisotropy is observed; for group (c), it is absent. For groups (a) and (b),
there is no circular phase anisotropy. For group (c), it is approximately 10 degrees and does
not depend on the observation angle.

For backscattering, both amplitude and phase anisotropy are also observed. The
minimum values of amplitude and phase anisotropy are observed at exact backscatter for
all groups of samples, which increase noticeably with decreasing observation angle. The
minimum and maximum values of amplitude anisotropy for all observation angles are char-
acteristic of groups (b) and (c), respectively, and vice versa for phase anisotropy. Groups (a)
and (b) are characterized by a small circular amplitude anisotropy for observation angles
greater than 140 degrees. For group (c), as in the case of forward scattering, there is no
circular amplitude anisotropy. As for circular phase anisotropy, for groups (a), it was as in
the case of forward scattering, and for (c), it is absent. For group (c), it is approximately
5–7 degrees with a tendency to slightly increase with increasing observation angle.

There are no diattenuation (D), linear (P) and circular (R) amplitude anisotropy for all
three groups for forward scattering. This resembles the case of the matrix M∆

0 Equation (20),
Figures 13i and 14i. For groups (a) and (b), there is also no retardance, linear and circular
phase anisotropy. For group (c), the value and orientation of retardance are approximately
160–165 and 90 degrees, respectively, and the value, the orientation of the linear and value
of the circular phase anisotropy are 160–165, 175–180 and 175–180 degrees, respectively.
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In this case, to interpret the observed value of circular phase anisotropy, we note that
from Figure 18i, the values of retardance and linear phase anisotropy are very close to half-
wave. As known, the Mueller matrix for the half-wave linear phase plate MLP(1800, α1

)
and the Muller matrix of the first partial Jones theorem [23] for the half-wave linear and
circular anisotropy, i.e., MLP(1800, α2

)
MCP(φ), are structurally similar

1 0 0 0
0 cos(4α1) sin(4α1) 0
0 sin(4α1) − cos(4α1) 0
0 0 0 −1

 and


1 0 0 0
0 cos(4α2 − 2ϕ) sin(4α2 − 2ϕ) 0
0 sin(4α2 − 2ϕ) − cos(4α2 − 2ϕ) 0
0 0 0 −1

, (23)

and, hence, cannot clearly be distinguished without involving additional information about
the sample under study.

For backscattering, non-zero diattenuation and linear amplitude anisotropy are ob-
served. The dependence of these quantities on the observation angle is very similar, i.e.,
a monotonic increase with deviation from the exact backscatter. Note that the range of
changes in diattenuation and linear amplitude anisotropy for all three groups of samples is
different. There is no circular amplitude anisotropy.

The character and ranges of the dependence of retardance and linear phase anisotropy
on observation angles are approximately the same. Noteworthy is the inverse dependence
of these values on the observation angle for groups (a) and (c) and group (b). For group (b),
at angles close to the exact backscatter 150–170 degrees, circular phase anisotropy of
approximately 5 to 10 degrees is also observed.

4. Conclusions

The objective of this paper was to determine whether three different groups of barley
leaf samples (Hordeum vulgare), Chlorina mutant, Chlorina etiolated mutant and Cesaer
varieties, can be discriminated in the visible wavelength (λ = 632.8 nm) using Mueller
matrix polarimetry. Barley leaves with different internal structures from mutation or by
illumination during the growth are an interesting testbed for Mueller polarimetry on biological
scenes. We used the additive Cloude decomposition Equation (6), the multiplicative Lu-
Chipman decomposition Equation (7) and Ossikovski symmetric decomposition Equation (14)
to derive depolarization and anisotropy parameters from the measured Mueller matrices.
The main result of this paper is proof that the Mueller matrix polarimetry provides a wide
range of effective observables for detailed discrimination of the studied groups of samples
at one wavelength. In Sections 3.1 and 3.2, we presented the detailed results for the relevant
anisotropic and depolarization observables.

It was seen that the depolarizer Mueller matrices ∆M, M∆, Mdep for forward and back-
ward scattering obtained in the decompositions Equations (6), (7) and (14) have a priori
different structures and, therefore, generally contain a different number of parameters char-
acterizing depolarization, i.e., generally contain different information about depolarization.

The groups of studied botanic samples, the internal structure of the samples and
the conditions for their growth characterized by the higher and lower depolarization
are determined. The matrix elements of depolarizers and observation angles, which
are the most effective observables for the studied groups of samples, are determined as
well. We have demonstrated that the dependence of depolarization on the observation
angle for backward scattering is much stronger than for forward scattering. For both
forward and backward scattering, the group of samples (b) is characterized by the greatest
depolarization, and group (c) by the smallest. This reflects the internal features (thylakoid
stacking) within group (b).

To characterize the depolarizing properties of the studied samples on the basis of the
single value depolarization metrics, the results presented in Section 3.1 demonstrate that
the Cloude entropy Equation (2) and depolarization power Equation (13) do not provide
any additional information in comparison with metrics obtained directly from the initial
experimental Mueller matrices [2]. When these metrics are compared to discriminate
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between groups of samples under study, Cloude entropy demonstrated a higher level of
discrimination, especially for backscatter.

Section 3.2 shows that different decompositions generally yield different pure Mueller
matrices, i.e., there is an ambiguity of the inverse problem due to the matrix non-commutativity.
However, discussion of this issue is beyond the scope of this paper. In this paper, we limit
ourselves to studying and comparing the anisotropy of samples based on two multiplicative
decompositions Equations (16) and (17). It was seen that the structure of these decomposi-
tions, in consideration of the multiplication order of the Mueller matrices describing the
amplitude and phase anisotropy, is the same. This is of additional interest to the results
presented in Section 3.2.

In Section 3.3, we were interested not so much in the possibility of discrimination
(although the latter, apparently, is being fully implemented), but in the analysis of the
information contained in the depolarizer Mueller matrices and demonstrated on the barley
leaves. The results presented in Section 3.3 are a further development of the concept of the
reduced Mueller matrix [30].

The effectiveness of anisotropic and depolarization observables demonstrated in this
paper to characterize the groups of barley leaves with different internal structures achieved
either due to mutation or by illumination during the growth are important to clarify the
features of the polarized light passage through the surface and thickness of a leaf.

The results obtained in this paper clearly confirm and further develop the previous
conclusion (see, for example [31–34]) that the decomposition used cannot be chosen a
priori unambiguously. The optimal choice of decomposition in each case is determined
by the properties of the sample under study. In this case, additive Cloude decomposition
is preferable.

Importantly, the analysis of the anisotropic and depolarization properties of barley
leaves in forward and backward scattering contributes to understanding the ambiguity
problem of the Mueller matrix inverse problem [3]. In this case, we are dealing with the
ambiguity that has received the least attention in the polarimetric bibliography to date,
namely, the one associated with different decompositions.
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