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Abstract: This paper presents a phase retrieval algorithm that incorporates sparsity priors into
total variation and framelet regularization. The proposed algorithm exploits the sparsity priors in
both the gradient domain and the spatial distribution domain to impose desirable characteristics
on the reconstructed image. We utilize structured illuminated patterns in holography, consisting of
three light fields. The theoretical and numerical analyses demonstrate that when the illumination
pattern parameters are non-integers, the three diffracted data sets are sufficient for image restoration.
The proposed model is solved using the alternating direction multiplier method. The numerical ex-
periments confirm the theoretical findings of the lighting mode settings, and the algorithm effectively
recovers the object from Gaussian and salt–pepper noise.

Keywords: phase retrieval; incomplete magnitudes; wavelet decomposition; alternative directional
multiplier method

1. Introduction

Because of the loss of phase information, reconstruct the underlying image from
Fourier transform magnitudes is defined as a phase retrieval (PR) problem. Phase retrieval
problems are ill-posed, because different images can have the same Fourier transform
results, so the solution is not unique. It is necessary to know the image’s prior information,
such as domain, nonnegative, sparse representation [1,2], etc., to constrain the numerical
process to obtain the global saddle-point solution. Readers can consult [1–3] for applications
in regularizing seismic image beyond aliasing via gradient and spectral techniques and
additional information.

Gerchberg and Saxton [4] proposed an error reduction method (ER) based on projec-
tion; later, in 1982, this method was improved by Fienup’s hybrid inputs–outputs (HIO)
in [1]. Derived iterative projection algorithms include hybrid projective–reflection [3,5], the
iterative difference map (DF) [6] and the relaxed averaged alternation reflection (RAAR) al-
gorithms [7]. In addition, Marchesini adopted the saddle-point optimization method [8] to
solve the PR problem. The alternate projection method lacks convergent guarantee because
of its alternating projection process that does not have nonconvex constraint sets. Thus,
the solution converges to a local stationary point rather than the global optimal solution.
Moreover, gradient-type methods have become popular; one example is the Wirtinger
Flow (WF) method [9] proposed by Candès, Li and Soltanolkotabi who put forward a
gradient scheme with novel update rules that are carefully initialized by the means of a
spectral method. Gradient-based approaches usually have first-order convergence. Farrell
solved the phase retrieval (PR) problem with a network where every agent only contains a
subset of the measurements [10]. A convex method is characterized by the use of convex
relationships of the quadratic equations or semidefinite programming. Candès, Strohmer
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and Voroninski proposed Phaselift in [11], which uses SDP lifting techniques to formu-
lates convex trace (nuclear) norm minimization. Moretta study the impact of constraints
in Phaselift in [12]. PhaseCut [13], proposed by Waldspurger, is a convex method that
separates phase information and magnitudes. Yin and Xin proposed PhaseLiftOff [14],
a nonconvex variant of Phaselift which cut out the Frobenius norm from the trace norm
to retrieve phase information with fewer measurements. Xia studied the sparse phase
retrieval method to recover a k-sparse signal in [15]. Gao studied the adaptive sparse signal
reconstruction algorithm in [16].

In recent years, total variation (TV) regularization has been successfully used to solve
image blind deblurring optimization problems with certain specific blurring kernels. In
addition, framelet-based regularization has been adopted to solve deblurring problem with
motion blur kernels. However, there is huge potential area for them to be used in phase
retrieval problems from Fourier transform magnitudes. In this paper, we propose a phase
retrieval algorithm based on TV regularization and the analysis-based sparsity framelet
transform method to recover the image through an analysis matrix. We explicitly focus on
the sparsity of image representation in phase retrieval problems from Fourier transform
magnitudes. Total variation regularization can effectively guarantee a sparsity prior for
the gradient domain of ground truth images with a small TV semi-norm and framelet
transform can enforce a sparsity prior of target images under the redundant tight frame.

In the field of image deblurring and phase recovery, a single Gaussian noise is usually
used to test the robustness of phase recovery algorithms against noise. In the field of image
denoising, the robustness of the algorithm to salt-and-pepper noise is studied. Gaussian
noise and salt-and-pepper noise are typical types of noise, which exist simultaneously in
actual measurements. In order to simulate realistic measurement conditions, the reconstruc-
tion ability against two kinds of noise is studied for the first time. In order to simulate more
realistic measurement conditions, this paper innovatively proposes to study the robustness
of the algorithm with complex noise when two kinds of noise exist simultaneously. This is
a very challenging problem.

Phase retrieval problems from Fourier transform magnitudes are an ill-posed problem,
and these problems are more difficult than phase retrieval problems derived from motion
blur. Readers can consult the work [17,18] of E. J. Candes, who studies the relationship
between the number of measurements and the possibility of reconstructing an image. For
research on further applications for reconstructing images from partial measurements,
please see the work of Chang Huibin [19]. On that basis, our research shows that when the
illumination source meets a certain parameter setting, three sets of measured values can
reconstruct an image.

2. Foundations of Phase Retrieval
2.1. Phase Retrieval Model

Phase retrieval is a branch of deconvolution problems and can be expressed as follows:

b = |Fu|+ η (1)

F : Realn1×n2 → Complexn1×n2 is the two-dimensional discrete Fourier transform. b is
the measurement magnitude with noise η. For the convenience of calculation and imple-
mentation, we use vectors to represent two-dimensional discrete images in lexicograph-
ical order (connected by columns). To more easily present the modules, the symbols
do not change. u is defined on a discrete lattice Ω = {0, 1, . . . , n1 × n2 − 1} → Rn1×n2 of
size n1 × n2, which denotes that image u is connected by columns. The corresponding
discrete Fourier transform is expressed as follows:

Fu(ω1 + ω2n2) =
1√

n1n2
∑

0≤t1≤nk−1
∑

≤t2≤nk−1
u(t1 + n1t2)·

exp(−i2π(ω1t1
n1

+ ω2t2
n2

)

0 ≤ ω1 ≤ nk − 1, 0 ≤ ω2 ≤ nk − 1

(2)
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2.2. Total Variation

The total variation (TV) model of image processing based on partial differential
equation (PDE) variation method is known as the classic Rudin Osher Fatemi (ROF) model
in [20]. It is one of the most common models used for image restoration, and generally
consists of a fidelity term, regularization penalty items and regularization parameters. In
recent years, the TV model is widely used in image denoising and other fields; readers can
consult [21–23] for detail. Total variation regularization can effectively guarantee a sparsity
prior for the gradient domain of the underlying images which have a small norm.

In the following equations, u denotes the image for phase retrieval which is represented
as discrete 2-dimensionl matrices with a size of m × n. The total variation in the discrete
domain calculates the gradient of u, which is denoted by a gradient operator ∇u:

∇up,q =
(
∇1up,q,∇2up,q

)
= (dx

(
up,q

)
, dy

(
up,q

)
)

∇1up,q =

{
up,q − up,q+1 i f q < n
0 i f q = n

∇2up,q =

{
up,q − up+1,q i f p < m
0 i f p = m

(3)

where up,q is an element of u, ∇1up,q is the gradient of the horizontal direction and ∇2up,q is
the gradient of the vertical direction.

The total variation (TV) regularization term of u is indicated as follows:

TV(u) = ∑
p≤m,q≤n

∣∣∇up,q
∣∣ (4)

For the restoration model with additive noise pollution data, it can be indicated
as follows:

u = arg min
u

L(u) ≤ ε

L(u) = λ
2 ∥|Fu| − b∥2

Ω + TV(u)
(5)

where λ > 0 is the parameter of the total variation regular term. The total variation
regularization penalty term is the semi-norm of the image gradient. One type of TV variant,
namely the isotropic TV, is defined by

TV(u)1 =
√
(dx(u))2 + (dy(u))2

=
m−1
∑

p=1

n−1
∑

q=1

√(
up,q − up,q+1

)2
+
(
up,q − up+1,q

)2

+
m−1
∑

p=1

∣∣up,n − up+1,n
∣∣+ n−1

∑
q=1

∣∣um,n − uq+1
∣∣

(6)

Another type is anisotropic TV, which is defined by

TV(u)2 = dx(u) + dy(u)

=
m−1
∑

p=1

n−1
∑

q=1

{∣∣up,q − up,q+1
∣∣+ ∣∣up,q − up+1,q

∣∣}
+

n−1
∑

q=1

∣∣um,q − uq+1
∣∣+ m−1

∑
p=1

∣∣up,n − up+1,n
∣∣ (7)

2.3. Wavelet

Images have sparse representation or approximation in redundant transformation,
such as tight frame transform [24,25]. Wavelet [26] is one type of tight frame. A large
number of studies have shown that sparsity prior and low rank prior regularization enable
the corresponding algorithm to produce a high-quality solution [27,28].
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2.3.1. Tight Framework

A tight frame in a Hilbert space is introduced as follows, and the interested readers
can consult [27] for more in-depth study. Let ∥ · ∥ denote the norm of a variable in a Hilbert
space H. The sequence {ϕn}n∈L ⊂ H constructs a tight frame in H, when

f = ∑
ϕn∈

⟨ f , ϕn⟩ϕn , ∀ f ∈ H

∥ f ∥2
2 = ∑

n∈L
|⟨ f , ϕn⟩|2, ∀ f ∈ H

(8)

where ⟨ f , ϕn⟩ indicates an inner product and ∥ · ∥ indicates the norm of H.
For the bounded sequence {ϕn}n∈L ⊂ H, let W denote the analysis operator and

let W∗ denote its adjoining operator; they are defined by

W : f ∈ H → {⟨ f , ϕn⟩} ∈ l2(N),
W∗ : {an} ∈ l2(N) → ∑

n∈L
anϕn ∈ H (9)

The sequence {ϕn}n∈L ⊂ H constructs a tight frame when W∗W = I; therein,
I : H → H is the identity operator.

In the following equations, u denotes the image for phase retrieval.

g = Wu (10)

u =W∗(Wu) = W∗g (11)

where g indicates the tight framelet transform coefficients.
The phase retrieval deconvolution optimization model based on synthetic sparsity

representation is
W : u ∈ H → {⟨u, ϕn⟩} ∈ l2(N),
W∗ : {an} ∈ l2(N) → ∑

n∈L
anϕn ∈ H (12)

The deconvolution optimization model based on analytical sparsity representation is

g =arg min
u∈Rm×n

Φ(k ⊗ u − f ) + λ∥g∥1 (13)

The deconvolution optimization model based on synthesis sparsity representation is

g = Ru
u =arg min

u∈Rm×n
Φ(k ⊗ u − f ) + λ∥Wu∥1

(14)

The tight frame is one type of orthonormal basis generalization; redundant frame
has been found to be useful in image and signal processing [25,29,30]. Analysis operator
W is redundant when its column dimension is smaller than the row dimension and the
two methods generate different results. The synthesis-based method aims to obtain the
most spars result among all possible transform coefficient vectors, while the analysis-based
method seeks the most spar solutions among all possible canonical framelet coefficient
vectors. Thus, the analysis-based method is a strict subset of synthesized-based methods.
The solutions of analysis-based methods are close to the underlying image have increased
smoothness. This has been proven empirically in many experiments. Since a solution with
a certain smoothness will have a better visual quality, the analysis-based approach was
chosen for this study. The two approaches are equivalent only if W∗W = WW∗ = I. Then,
the tight frame becomes a canonical orthogonal transformation.
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2.3.2. Wavelet Tight Framework

A one-dimensional wavelet frame is constructed by a finite set of generators with
shifts and dilations, Ψ =

{
ψ1, . . . ψr} ⊂ L2, where ψ is called the father wavelet and ψj,k is

called the wavelet. A refinable function is usually used to construct a tight wavelet frame,
φ(t) ∈ L2(R), which is also known as the scale function or mother wavelet. This satisfies the
two-scale equation ψ̂i(2ω) = hiϕ̂(ω), where hi are 2π periodic trigonometric polynomials,
which satisfies h0(0) = 1.

The unitary extension principle (UEP) [31] declares that X(Ψ) forms a tight
frame when

h0(ω)h0(ω + γπ) +
r

∑
i=1

hi(ω)hi(ω + γπ) = δγ,0 , γ = 0, 1 (15)

Image processing uses two-dimensional information, so the two-dimensional wavelet
frames are needed. Indeed, a two-dimensional wavelet is a tensor product of a one-
dimensional wavelet. S. Malat and Meyer proposed MRA theory [31–33], which studies
the multi-resolution analysis properties of wavelets from the perspective of a function
space, and provides a unified theory for constructing a wavelet framework and a fast
algorithm for orthogonal wavelet transform. In this study, a two-level piecewise linear
B-spline tight frame system with tensor product filters was adopted. The piecewise linear
B-spline tight frame is the simplest system in this family, which employs piecewise linear
B-spline functions as φ. The corresponding tensor product filter is:

a0,0 = 1
16

 1 2 1
2 4 2
1 2 1

 a0,1 =
√

2
16

 1 0 −1
2 0 −2
1 0 −1


a0,2 = 1

16

 −1 2 −1
−2 4 −2
−1 2 −1

 a1,0 =
√

2
16

 1 2 1
0 0 0
−1 −2 −1


a1,1 = 1

8

 1 0 −1
0 0 0
−1 0 1

 a1,2 =
√

2
16

 −1 2 −1
0 0 0
1 −2 1


a2,0 = 1

16

 −1 −2 −1
2 4 2
−1 −2 −1

 a2,1 =
√

2
16

 −1 0 1
2 0 −2
−1 0 1


a2,2 = 1

16

 1 −2 1
−2 4 −2
1 −2 1



(16)

MATLAB software R2016b was used for the calculations. We used the wavelet frame
decomposition algorithm [25], whose construction varies with boundary setting conditions.
In this research, Neumann (symmetric) boundary conditions were adopted. Interested
readers can refer to [27,31,34] for the principles of generating such matrices.

3. Proposed Model and Numerical Algorithm
3.1. Formulation of Minimization Model

Our work is closely related to article [17]. where E. J. Candes discussed the possibility
of reconstructing the target from incomplete sampling, and 7n1n2 measurements (the size
of ground truth image is n1 × n2) were suggested in order to uniquely recover real-valued
images. Chang Huibin proposed a TV regularization [19] model which can recover images
from noisy measurements. In this research, a TV and wavelet-based co-exist regularization
model is proposed to recover underlying images from 3n1n2 measurements with noise.
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The measurements were obtained by structured light illumination and image value with
box constraint uobject ∈ [0, 1]. The model is introduced as follows:

f ind u
s.t. b0:=

∣∣∣F(uobject

)∣∣∣, b1:=
∣∣∣F(uobject + Dsuobject

)∣∣∣, b2:=
∣∣∣F(u − iDsuobject

)∣∣∣ (17)

where F denotes the Fourier transform. Let

R
(

uobject

)
:= {R0, R1, R2} (18)

The data R(uobject) are obtained using three-light-field illumination

∣∣∣R(uobject)
∣∣∣ = {1,

∣∣∣∣1 + exp(i2π(
s1t1

n1
+

s2t2

n2
))

∣∣∣∣, ∣∣∣∣1+ exp(i2π(
s1t1

n1
+

s2t2

n2
)− π

2
)

∣∣∣∣} (19)

where
Dsuobject(t1 + nt2) = exp( 2πs1+t1

n1
+ 2πs2+t2

n2
)uobject(t1 + t2n1),

0 ≤ t1 ≤ nk − 1, 0 ≤ t2 ≤ nk − 1
(20)

The research in [19,35] showed that the least square method produces a unique result
for the PR problem with these three sets of data. The model is referred to as the least-square
minimization problem with a box-constrained (LSB) model [35].

min
0≤u≤1

∥|R0| − b0∥2
Ω0

+ ∥|R|1 − b1∥2
Ω1

+∥|R2| − b2∥2
Ω2

(21)

This study focused on the sparse prior of objects; we incorporated TV and wavelet
transform regularization into (17) to guarantee an exact solution. The analysis-based
sparsity approach under wavelet tight frame decomposition was selected for this study.
The proposed TV and framelet-based minimization problem of the least-square type with a
box constraint (TFLSB) model is presented as follows:

min
0≤u≤1

εTFLSB = λ
2

(
∥|R0| − b1∥2

Ω0
+ ∥|R1| − b2∥2

Ω1
+ ∥|R2| − b3∥2

Ω2

)
+TV(u) + ∥Wu∥1

(22)

where we adopt anisotropic TV regularization to be the term of TV(u), Wu is the wavelet
decomposition of u, and ∥ · ∥1 denotes the L-1 norm.

3.2. Uniqueness Analysis

Hayes [36] and Sanz [37] proved that using double the number of measurements
can uniquely determine the solution of PR when the underling signal is nonnegative and
finitely supported. The results are further extended with random oversampling [38–40],
where random illumination guarantees the absolute uniqueness and resolves all types of
problems. We found that when s1 = s2 = N + 0.5 (where N is a positive integer), 3n1n2
measurements and additional constraints such as the underlying object u is real and has a
non-negative value, the algorithm can produce a unique solution.

Theorem 1. Assume that um,n ∈ [0, 1] and the DFT of u and Ds u are nonvanishing, when s1 and
s2 are prime with m and n, and s1 = s2 = N + 0.5 (N is a positive integer). Then, u can be recovered
with 3 mn measurements in (15).

Proof. This theorem applies to one-dimensional and two-dimensional cases. The complete
proof is shown in Appendix A. □
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3.3. Solution Existence Analysis

Theorem 2. Let Ω denote a bounded set in Lipschitz regular domain and comprehensive data
b = (b0, b1, b2) is non-negative; then, the TFLSB model (19) has at least one minimum solution u *
∈ BV (Ω).

Proof. It should be noted that εTFLSB (u) ≥ 0. A minimizing sequence {uk}0 ≤ k ≤ ∞ satisfies
(s.t.) εTFLSB (u0) ≥ εTFLSB (u1) ≥ . . .. It is known that value(uk) ∈ [0, 1]. The set Ω is
bounded in a Lipschitz regular domain, C is a positive constant and exists as the upper limit,
and s.t. TV(uk) + Wuk + ∥uk∥1 ++∥Wuk∥1 ≤ C. As Rellich’s compactness theorem state
that there is u∗ ∈ BV(Ω) and a subsequence {unk}k≥1, which meet unk → u∗ in the norm
of L1(Ω) when k → ∞ . Using the continuity of the fidelity term of εTFLSB and lower semi-
continuity of TV and wavelet regularization, one obtains limsup

unk→u∗
εTFLSB(uk) ≥TFLSB (u∗).

Then, u* is the one solution of εTFLSB. □

3.4. Numerical Model

There are several numerical methods that are used for the constrained optimization
problem. At present, the Projected Gradient Descent (PGD) and Alternating Direction
Method of Multipliers (ADMM) are widely used. The Alternating Direction Method of
Multipliers (ADMM) was first proposed by Glowinski and Gabay, and further improved
by Boyd in 2011, who demonstrated that ADMM is applicable in large-scale distributed
optimization problems [41]. ADMM is a computational method for optimization problems,
and is effective in solving distributed convex optimization problems, especially statistical
learning problems [42,43]. Through the process of decomposition–coordination, ADMM
disassembles the large complicated global problem into several smaller solvable local sub-
problems, which can be computed more easily and could converge to the global optimal
solution through the coordination of the sub-problems. The disadvantages of the Projected
Gradient Descent method are as follows: (1) it may converge to the local optimal solution;
(2) the differential at saddle point is 0, but it is not the optimal solution; (3) because of
its computational complexity, it is a time-consuming method, especially when the data is
large-scale. Thus, ADMM was selected to solve the constrained optimization problem in
this paper.

The above minimum problem model can be described by the formula:

min ∥p1∥1 + ∥p2∥1 +
λ
2 ∥|z0| − b0∥2

Ω0
+ λ

2 ∥|z1| − b1∥2
Ω1

+ λ
2 ∥|z2| − b2∥2

Ω2
+ χ(v)

s.t. v = u p1 = ∇u p2 = wu z0 = R0 z1 = R1 z2 = R2

(23)

where

χ(µ) =

{
0, 0 ≤ v ≤ 1
∞, otherwise

(24)
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The augmented Lagrangian equation of LTFLSB reads

L(u, z0, z1, z2, p, v) = ∥p1∥1 + ∥p2∥1 +
λ
2 ∥|z0| − b0∥2

Ω0

+ λ
2 ∥|z1| − b1∥2

Ω1 +
λ
2 ∥|z2| − b2∥2

Ω2
+ χ(v)

+R⟨d0, z0 − R0⟩+ ρ1
2 ∥z0 − R0∥2

Ω0

+R⟨d1, z1 − R1⟩+ ρ1
2 ∥z1 − R1∥2

Ω1
+R⟨d2, z2 − R2⟩+ ρ1

2 ∥z2 − R2∥2
Ω2

+⟨q1, p1 −∇u ⟩+ ρ3
2 ∥p1 −∇u∥2

2
+⟨q2, p2 − Wu ⟩+ ρ4

2 ∥p2 − Wu∥2
2

+⟨w, u − v⟩+ ρ2
2 ∥u − v∥2

2 + t∥Hv∥2

= ∥p1∥1 + ∥p2∥1 +
λ
2 ∥|z0| − b0∥2

Ω0

+ λ
2 ∥|z1| − b1∥2

Ω1 +
λ
2 ∥|z2| − b2∥2

Ω2
+ χ(v)

+ ρ1
2 ∥z0 − R0 +

d1
ρ1
∥

2

Ω0
+ ρ1

2 ∥z1 − R1 +
d2
ρ1
∥

2

Ω1

+ ρ1
2 ∥z2 − R2 +

d3
ρ1
∥

2

Ω2
+ ρ2

2 ∥u − v + w
ρ2
∥2

2

+ ρ3
2 ∥p1 −∇u + q1

ρ3
∥2

2
+ ρ4

2 ∥p2 − Wu + q2
ρ4
∥2

2
+t∥Hv∥2

(25)

where q1, q1 : Ω → R2 , Hv is the position penalty term of the image, and λ, ρ1, ρ2, ρ3, ρ4 are
weight parameters and are positive. The ADMM solution framework for the above saddle-
point solution, minimizes LTFLSB with regardto u, z, p, v alternately and then update the
dual variables d0, d1, d2, d3 and q1, q2. The algorithm is summarized in the Algorithm 1.

According to the ADMM algorithm, the solution is decomposed into the
following steps.

Algorithm 1 ADMM method for solving the TFLSB model (22)

Initialization:
k = 0, z0

i = bi(ω) exp(−2πiθi),
p0 = 0, v0 = 0, d0

i = 0, q1
0 = 0, q2

0 = 0
While the loop stop conditions are not satisfied, do

uk+1 = argmin
u

LTFLSB

(
u, zi

k, p1
k, p2

k, vk, di
k, wk, q1

k, q2
k
)

zi
k+1 = argmin

zi

LTFLSB

(
uk, zi, p1

k, p2
k, vk, di

k, wk, q1
k, q2

k
)

p1
k+1 = argmin

p1

LTFLSB

(
uk, zi

k, p1, p2
k, vk, di

k, wk, q1
k, q2

k
)

p2
k+1 = argmin

p2

LTFLSB

(
uk, zi

k, p1
k, p2, vk, di

k, wk, q1
k, q2

k
)

vk+1 = argmin
v

LTFLSB

(
uk, zi

k, p1
k, p2

k, v, di
k, wk, q1

k, q2
k
)

Update dual variables

d1
k+1 = d1

k + ρ1

(
z0

k+1 − R0
k+1
)

d2
k+1 = d2

k + ρ1

(
z1

k+1 − R1
k+1
)

d3
k+1 = d3

k + ρ1

(
z2

k+1 − R2
k+1
)

wk+1 = wk + ρ2

(
uk+1 − vk+1

)
q1

k+1 = q1
k + ρ3

(
pk+1 −∇uk+1

)
q2

k+1 = q2
k + ρ4

(
p2

k+1 − wuk+1
)

k = k + 1
end while
output the solution u∗ = uk+1
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The subproblem to solve the saddle point of u is

min
u

ρ3
2 ∥p −∇u + q1

ρ3
∥2

+ ρ4
2 ∥p2 − Wu + q2

ρ4
∥2

2
+ ρ2

2 ∥u − v + q2
ρ2
∥2

+ ρ1
2 ∥z0 −Fu + d1

ρ1
∥

2

Ω0
+ ρ1

2 ∥z1 −F (u+Dsu) + d2
ρ1
∥

2

Ω1

+ ρ1
2 ∥z2 −F (u − iDsu) + d3

ρ1
∥

2

Ω2

(26)

By calculating the derivative, the solution is

−∆u + ρ2
ρ3

u + ρ4
ρ3

u + ρ1
ρ3
(5I + 2R(Ds) + 2E(Ds))u

= ρ1
ρ3


R
(
F ∗
(

z0 +
d1
ρ1

))
+R
(
F ∗
(

z1 +
d2
ρ1

)
+ DsF ∗

(
z1 +

d2
ρ1

))
+R
(
F ∗
(

z2 +
d3
ρ1

)
− iDsF ∗

(
z2 +

d3
ρ1

))


+ ρ2
ρ3

(
v − q2

ρ2

)
− div

(
p1 +

q1
ρ3

)
+ ρ4

ρ3
WT
(

p2 +
q2
ρ4

)
(27)

4. Numerical Experiments

The initialization method for the proposed Algorithm 1 is as follows.
The measurements bi containing noise are used directly for the calculations without

any processing. The initial phase is given randomly without any specific request.
The initialization for variables v0 and z0

i was chosen to be

z0
i (ω) =

{
bi(ω) exp(−2πiθ0) ifω ∈ Ω
0 otherwise

(28)

and v0 = Fz0
0 = F (b0(ω) exp(−2πiθ0) ), where initial phase θ0 is derived from the

standard uniform distribution in the open interval (0, 1).
The quality of the reconstructed image includes two aspects: one is the visual effect and

the other is the evaluation index to analyze the difference between the reconstructed image
and original image. The evaluation of visual effects varies with different people’s visual
conditions. Objective evaluation indicators are very important. The affluent evaluation
index of the reconstruction image evaluation used in the field of image reconstruction was
adopted in this study to compare the proposed algorithm with other algorithms.

The peak signal-to-noise ratio (PSNR), structural similarity (SSIM) and signal-to-noise
ratio (SNR) were used to measure the quality of the reconstruction, and the relative error
(relative-error) was used to measure the convergence speed. PSNR is a comprehensive
evaluation index of reconstruct image quality. MSE is the mean square error of the current
calculated image compared to the ground truth image. H and V represent the number of
the row and column, respectively, and n is the number of bits of storage per pixel.

MSE = 1
H∗v

H
∑

p=1

v
∑

q=1

(
u(p, q)− ug(p, q)

)2

PSNR = 10 log10

(
(2H×V−1)

2

MSE

) (29)
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SSIM (structural similarity) is a comprehensive evaluation of the image restoration
quality in terms of brightness, contrast and image structure.

µu = 1
H∗V

H
∑

i=1

V
∑

j=1
u(p, q)

σu = 1
H∗V−1

(
H
∑

i=1

V
∑

j=1
(u(p, q)− µu)

2
) 1

2

σug = 1
H∗W−1

H
∑

i=1

W
∑

j=1
(u(p, q)− µu)

(
ug(p, q)− µu

)
l
(
u, ug

)
=

2µuµug+C1

µu2µug
2+C1

c
(
u, ug

)
=

2σuσug+C2

σu2σug
2+C2

s
(
u, ug

)
=

σu,ug+C3
σuσug+C3

SSIM = l
(
u, ug

)
∗ c
(
u, ug

)
∗ s
(
u, ug

)

(30)

In general, let C1 = 6.5 C2 = 58.5 C3 = 29.
Signal-to-noise ratio (SNR) is calculated as

RMSE
(
u, ug

)
=

∑
j∈Ω

|u(p,q)−ug(p,q)|2

∑
j∈Ω

|u(p,q)|2

SNR
(
u, ug

)
= −10 log10 RMSE

(
u, ug

) (31)

Relative-error is defined as follows:

relative − error =
∥u(p, q)− ug(p, q)∥

ug(p, q)
(32)

In all the above formulas, u represents the current reconstructed image and ug repre-
sents the ground truth image.

4.1. Numerical Results

We also compared the PR results for the performance of the proposed TFLSB model
with three other related phase retrieval algorithms: the error reduction algorithm (ER) [3],
TVB method [18] and Wirtinger flow (WTF) method [9]. The data were contaminated by the
Gaussian noise bi = b0 + σni, where b0 is magnitudes of the original image, σ represents
the noisy weight, ni represents the white Gaussian noise, and bi is the measurement of the
real object’s Fourier transform magnitude.

The test simulation images are available on the Internet (no copyright restrictions).
Our research focused on the phase retrieval problem from Fourier transform magnitudes.
Its application field covers remote target imaging. Therefore, the selected images have
obvious geometric features and simple textures, with a size of 256 × 256.

In order to study the algorithm’s robustness to noise, 60 dB Gaussian noise was added
to the measured value to verify the robustness of the algorithms. The noise level was set
according to the SNR formula and rand function.

SNR = −10 log10

∑
j∈Ω

|u(i,j)−ug(i,j)|2

∑
j∈Ω

|u(i,j)|2

= −10 log10

∑
j∈Ω

||noise(i,j)||2

∑
j∈Ω

|u(i,j)|2

(33)

The TVB method and the TFLSB algorithm use the same structured illumination
pattern in this study; the relevant parameters were set as follows: the iteration numbers



Photonics 2024, 11, 71 11 of 20

were 1000, λ = 100, ρ1 = 0.07, ρ2 = 0.02 and ρ3 = 0.08. As s1 = s2 = N + 0.5 (N is a
positive integer) proves that the underlying image has an optimal solution, then s1 and s2
can be set to 0.5, 1.5 and 2.5. Here, in this experiment, we set s1 = s2 = 0.5. Other value
settings, such as 1.5, 2.5 and 3.5, could also obtain visually good reconstructed images and
can be modified according to different graphics. The results are shown in the following
figures, Figures 1–6.
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Figure 1. The phase retrieval (PR) results and comparisons. (a) Original image of pine-tree (b) Fourier
transform magnitudes of the image; (c) PR by ER; (d) PR by WF; (e) PR by TVB; (f) PR by TFLSB.
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Figure 3. The phase retrieval (PR) results and comparisons. (a) Original image of six-claw satellite;
(b) Fourier transform magnitudes of the image; (c) PR by ER; (d) PR by WF; (e) PR by TVB; (f) PR
by TFLSB.
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The numerical evaluation index performance of the phase retrieval method reflects
the approximate degree of the distribution characteristics of the calculated image and the
real object. Image vision includes sharpness, smoothness and similarity. The comparison
results of the reconstructed image quality from the three images in Figures 1, 3 and 5 were
as follows. Firstly, the ER and TVB algorithms introduced obvious defects in the originally
smooth background area. Secondly, the reconstructed image of the ER algorithm was
fuzzy overall, while the reconstructed image of WF was sharper. This is because these
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algorithms do not have a good balance between image smoothness and boundary sharpness.
Although the constrained performance of the TVB algorithm was better, its staircase effect
can produce obvious defects which could not be omitted. Overall, compared with the other
algorithms, the proposed TFLSB model using the ADMM algorithm performed better, and
the reconstructed images were more visually pleasant with few noticeable image artifacts.

The comparison results in Figures 2, 4 and 6 show that the proposed algorithm
was more stable, converged to the optimal value and always had the lowest relative
error value when dealing with images with different complexities. Tables 1–3 show the
image restoration quality with the numerical evaluation indicators, PSNR, SSIM, SNR
and processing time. When the iteration number was 1000, our algorithm required more
time due to the algorithm’s computing complexity. However, according to the speed
of iterative convergence, the solving time could be shortened by reducing the iteration
number. The PSNR, SSIM and SNR indexes directly reflect the pixel correspondence
between the reconstructed image and the original image. According to the results of the
three reconstructed images, for the TFLSB model proposed in this paper, compared with ER,
WF and TVB algorithm, the PSNR index was improved by 111.59%, 108.87% and 57.14%,
respectively. The SSIM index improved by 174.49%, 194,74% and 84.37%, and the SNR
index improved by 674.89%, 517.72% and 241.47%, respectively. The comparison results in
Tables 1–3 directly show that our proposed FLSB model is more robust to noise and more
efficient in reconstructing images compared to the other methods.

Table 1. Phase retrieval image quality evaluation parameters for different reconstruction algorithms
for pine-tree image. The best data are shown in bold.

Method Time (s) PSNR SSIM SNR (dB)

ER 15.4121 13.8215 0.062745 3.31793
WF 23.8868 17.5721 0.1232 9.45358
TVB 18.1098 23.3189 0.121072 15.7823

TFLSB 36.5556 44.8056 0.166499 47.5823

Table 2. Phase retrieval image quality evaluation parameters for different reconstruction algorithms
for six-claw image. The best data are shown in bold.

Method Time (s) PSNR SSIM SNR (dB)

ER 15.783 19.3888 0.120204 9.33326
WF 35.14 16.2947 0.154068 6.28477
TVB 25.1905 23.4579 0.184836 14.2892

TFLSB 46.7172 36.6348 0.535543 45.7626

Table 3. Phase retrieval image quality evaluation parameters for different reconstruction algorithm
for satellite image. The best data are shown in bold.

Method Time (s) PSNR SSIM SNR (dB)

ER 12.0018 23.0435 0.271731 10.5373

WF 24.9471 19.0969 0.301472 6.78469

TVB 18.7448 22.7706 0.243096 10.4753

TFLSB 39.7584 28.264 0.305235 32.5247

4.2. Sensitivity with Complex Noise

Image acquisition not only contains Gaussian noise, but also electromagnetic interfer-
ence in the environment, and sensor internal errors, which will introduce salt–pepper noise.
Salt–pepper noise, also known as pulse noise, is represented in the image as discrete distri-
butions of pure white or black pixels. The image reconstruction ability of the TFLSB model
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was studied in images where Gaussian noise and salt–pepper noise coexist. Due to the
excellent performance of the proposed algorithm in the previous task, in this experiment,
we challenged the proposed algorithm to deal images with more complex textures to study
its robustness in the presence of complex noise. The images are public images released by
the Kodak Company. For the sake of consistency in this paper, the images used below are
part of the original Kodak images, with a size of 256 × 256. Images were named—“Bird”,
“Hat”, “Tower”.

The data were contaminated with Gaussian noise and salt–pepper noise, i.e.,
bi = b0 + σni + p, where b0 is the magnitudes of the spatial spectrum of the original
image, σ represents the noisy weight, ni represents the white Gaussian noise, p denotes
the salt–pepper noise, and bi is the measurement of the Fourier transform magnitude of
the real object. The salt–pepper noise was generated by a random function and threshold
setting. First, a random matrix was generated, whose values were derived from the stan-
dard uniform distribution in the open interval (0, 1). Then, using the threshold setting, the
elements of a random matrix were converted to integers 0 or 1.

Thus, the complex noise is described using the following formula:

ncomplex = σni + p (34)

In this experiment, σ = 1 and the threshold setting of salt–pepper noise is 0.9. When
the value generated by the random function is greater than 0.9, white noise is obtained.
The salt–pepper noise setting means that 10% of the measurements were corrupted, which
is more serious than a real experiment. The results are shown in the following Figure 7.
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Figure 7. The phase retrieval (PR) results with complex noise. The images in the first column are
original images: (a) “Bird”; (d) “Hat”; (g) “Tower”. The content in middle column, (b,e,h) are
corresponding magnitudes of the image with Gaussian and salt–pepper noise; (c,f,i) the PR results
obtained viaTFLSB.

By comparing the reconstructed images with the original images, we can observe
that the reconstructed images with complex noise have significant clarity regarding visual
quality. The numerical values in Table 4 show that the PSNR values of the restored images
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varied from 23.606 to 29.4759, the SSIM values varied from 0.355219 to 0.443401, and the
SNR values varied from 24.715 dB to 27,188 dB. These data suggest that the proposed sparse
prior regularization model TFLSB is robust even with complex noise, and it is also effective
in processing images with complex textures. In the future, its application range could be
determined by studying the relationship between noise standards, parameter settings and
image complexity.

Table 4. Parameters of reconstruction result with complex noise.

Name Time (s) PSNR SSIM SNR (dB)

Bird 35.632 23.605 0.420935 24.7175
Hat 36.2162 26.3138 0.355219 25.1869

Tower 38.1924 29.4759 0.443401 27.188

5. Experimental Results

Experimental equipment was set up to simulate reconstruction of the underlying
image using Fourier transform magnitudes. The process consisted of two parts. The
first part was data collection, during which the spatial spectrum modulus of the target
underwent correlation computing. The second is to use the phase recovery algorithm to
calculate the reconstructed image.

The schematic diagram of the experiment is shown in Figure 8. The working wave-
length selected for the laser for the purpose of the experiment was 532 nm. The laser turned
into a pseudothermal light source after passing through the rotating glass. In order to
reduce the extra stray light caused by reflection, this experiment adopted a transmission
target, which was made by hollowing out a target pattern on a metal plate, with an image
size of 3 × 3 mm. The structure is shown in Figure 9.
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The pixel size of the CCD camera was 6.5 µm, and the number of detection units is
2048 × 2048. In the experiment, the CCD detection frequency was 20 Hz, and the exposure
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time was 30 ms. The glass rotation speed was 0.3◦/s. A SIM structured light modulator was
set up using the internal DMD array to realize the control of the structured light. The light
field distribution of structured light mode 1 is exp(i2π( s1t1

n1
+ s2t2

n2
). When s1 = s2 = 0.5, it

is a two-dimensional sinusoidal distribution of phases in box constrained interval (0-Π).
The light field distribution of structured light mode 1 is exp(i2π( s1t1

n1
+ s2t2

n2
) − π

2 ), and
compared to pattern 1, it has a phase shift.

In order to reduce the influence of the environment on the phase retrieval experiment,
data acquisition was divided into two steps. First, when the measurement was not illu-
minated by a light source, the measurement values Idark of the experimental environment
used for imaging and the inherent defects of the measurement system recorded with the
detector, representing the background noise. Then, when the light source illuminates the
target, the measurement values I1, I2, I3 were recorded. The difference between these two
points can offset the impact of some of the noise.

The TFLSB algorithm in this paper is used for phase retrieval, and the results are
shown in Figure 10.
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Figure 10. The phase retrieval (PR) results. (a) “Target 1”; (b) “Target 2”. In the second row,
(c,d) are the real spatial spectrum mode value distribution of the target. In the third row, (e,f) are the
measured spatial spectrum mode value distribution of the target with noise. In the last row (g,h) are
the images recovered by TFLSB algorithm.

Due to the limited experimental conditions, the acquisition frequency of the CCD
camera was limited, as was the target spatial spectrum information that could be obtained
by the pseudothermal light source, making the obtained target information very scarce
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and increasing the difficulty of phase recovery. When structured light lit an area, the
two optical paths should be at the same frequency and there should be no phase delay, but
in practical applications, it is difficult to ensure that the optical path difference between
the two optical paths is 0. This error reduces reconstructed image quality. From the visual
evaluation, the resolution of the reconstruction image is not good enough when compared
the previous numerical simulation. The evaluation indexes PSNR, SSIM and SNR used
for image restoration are not ideal, and additional research on phase retrieval should be
carried out in the future. The numerical results in Table 5 directly show that our proposed
FLSB model could efficiently reconstruct images in practice.

Table 5. Parameters of reconstruction result.

Name PSNR SSIM SNR (dB)

Object1 8.71775 0.00939781 12.2024
Object2 7.2705 0.00304378 11.3587

6. Conclusions

In this paper, we introduced an innovative TV and framelet-based regularization
minimization phase retrieval model with a box constraint (TFLSB) for image recovery from
magnitudes degraded by Gaussian and salt–pepper noise. Our proposed model incorpo-
rates isotropic TV and analysis-based wavelet regularization, enabling the enforcement of
sparse priors in both the gradient domain and spatial structure domain simultaneously.
Through heuristic analysis, we identified the key parameters s1 = s2 = N + 0.5 (N being a
positive integer) that contribute to stable phase recovery with 3n1n2 measurements. This
structural light can be easily obtained by using a structured light modulator. The TFLSB
model effectively reconstructs high-quality latent images from corrupted measurement
data obtained with a structured lighting model. Comparative evaluations against the ER,
WF, and TVB algorithms demonstrate that the degraded images reconstructed by the TFLSB
model exhibit superior image quality, with clearer edges and fewer artifacts. The evaluation
indices PSNR, SSIM and SNR further confirm the significant enhancement in image quality
achieved by the numerical theory and TFLSB model. Additionally, our study investigated
the robustness of the TFLSB model against Gaussian and salt–pepper noise, revealing its
resilience against complex noise. This provides a certain direction for the implementation
of phase retrieval from Fourier transform magnitudes in practice.

Furthermore, in practice, the proposed method is able to reconstruct the underlying
image from Fourier transform magnitudes, helping us to solve the phase retrieval problem
in environments. Under the existing experimental conditions, the reconstructed images
solved using the TFLSB algorithm are not clear enough, but there is an optimal solution,
that can verify the stability and feasibility of the proposed algorithm.

It is important to note that phase retrieval remains a challenging deconvolution prob-
lem, and there are several open questions that require further exploration. The proposed
algorithm was the most time consuming compared to the other algorithms, which is not
conducive to real-time imaging applications. One potential improvement is the use of a
more powerful industrial computer to reduce the computation time. Future work will
focus on developing faster algorithms with a second-order convergence rate to reduce pro-
cessing time. Additionally, we aim to incorporate more priors to enhance the quality of the
reconstructed solutions for a broader range of image categories. While the proposed phase
retrieval model is currently applicable to oversampling scenarios (structured illuminated
patterns), our future research will explore additional patterns to enable the exact recovery
of latent images in various settings.
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Appendix A. Proof of Theorem 1

Proof. Case 1 is for a one-dimensional signal, i.e., u = (u0, u1, . . . un−1) ∈ Rn, and
ui ∈ [0, 1], 0 ≤ i ≤ n−1. The measurements are represented by R(u) := {|R0|, |R1|, |R2|},
F denotes a discrete Fourier transformation, and Dsu = exp

{
i 2πk

n (N + 0.5)
}

u = exp( iπk
n )u,

0 ≤ k ≤ n − 1.
Define U =(U0, U1, . . . Un−1) := Fu; U =

(
U0, U1, . . . Un−1, Un−1 . . . U2, U1

)
can ob-

tained, where U1 identifies the complex conjugate operator of U.
Define v = (v0, v1, . . . vn−1) := Dsu and V =(V0, V1, . . . Vn−1) := Fv; then,

V =
(
V0, V1, . . . Vn−1, Vn−1 . . . V2, V1

)
can obtained.

Then, two triples, M(u) := {|U|, |U +V|, |U − iV|} and M(u) :=
{∣∣U∣∣, ∣∣U +V

∣∣, ∣∣U − iV
∣∣},

can be obtained.
If U0 and V0 are real-valued and non-negative, the set U0 and V0 could be solved with

the triple set {|U0|, |U0 + V0|, |U0 − iV0|}:
Solve U1 with the triple

{∣∣U1
∣∣, ∣∣U1 + V0

∣∣, ∣∣U1 − iV0
∣∣} if U1 ̸= 0.

Since V1 = V0,
Solve V2 with the triple

{∣∣U1
∣∣, ∣∣U1 + V2

∣∣, ∣∣U1 − iV2
∣∣} if V2 ̸= 0.

When U =(U0, U1, . . . Un−1) has been solved, through the inverse Fourier transform
of U, the exact minimum solution u = F ∗U. □

Case 2 is for two dimension images, u, v ∈ Rn1×n2 ; here, matrix forms are used to
represent the images.

Similar to the 1D case, the solution process is as follows:

Ui0,j0 → Vi0,j0 → Vi1,j1 → Ui1,j1 → Ui2,j2 →

when
Ui,j = Umod(n1−i,n1)mod(n2−j,n2)
Vi,j = Vmod(n1+1−i,n1)mod(n2+1−j,n2)

where
i2k+2 = mod(n1 − i2k+1, n1) j2k+2 = mod(n2 − j2k+1, n2)
i2k+1 = mod(n1 + 1 − i2k, n1) j2k+1 = mod(n2 + 1 − j2k, n2)
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