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Abstract: We investigate the propagation properties of circular Airy beams (CABs) with propagational
fractional-order optical vortices (OVs). The superposition of the phase singularity and polarization
singularity from a vortex vector beam (VVB) plays a significant role in creating a propagational
fractional vortex beam. Propagational fractional vortex beams can be considered as a superposition of
left and right circularly polarized vortex beams with different integer topological charges (TCs). We
study the propagation characteristics of two kinds of propagational fractional vortex CABs, and the
results show that both of the two kinds of beams can stably propagate in free space, and they exhibit an
“abruptly auto-focusing” property and “self-healing” property during the propagation. The intensity
distribution of the first kind of propagational fractional vortex CAB has an odd number of petals
(2m + 1), while the second kind of beam has a crescent-shaped intensity distribution. The influence
of turbulence on the beam propagation through atmosphere under different turbulence strengths
is also numerically studied in this paper. A fractional vortex CAB with an initial radius r0 = 10 mm
can retain its shape after propagating 20 m when the atmospheric refractive-index structure constant
C2

N = 0.2 × 10−12m−2/3. Our results are expected to broaden the application of CABs.

Keywords: fractional-order optical vortex; circular Airy beam; propagation characteristics; vector beam

1. Introduction

In 1989, Coullet et al. found vortex solutions for the Maxwell–Bloch equations and pre-
sented the concept of optical vortices (OVs) [1]. Vortex beams are of interest because of their
helical phase wavefronts characterized by the factor exp(imφ), where m and φ represent
the topological charge (TC) and azimuthal angle, respectively. In 1992, Allen et al. pointed
out that a vortex beam can induce orbital angular momentum (OAM) equivalent to mh̄ (h̄
is the reduced Planck constant) per photon [2]. Following Allen et al.’s study in 1992 [2],
vortex beams have greatly contributed to fundamental and applied research in optics,
including spin angular momentum (SAM) and OAM conversion [3,4], rotational Doppler
shift [5–7], optical manipulation [8–10], optical imaging [11,12], and optical communica-
tion [13–16]. Most of the studies on vortex beams were carried out in a framework where
the TC is an integer. In fact, the TC can also be a non-integer, i.e., fractional, and a vortex
beam with a fractional TC is called a fractional vortex beam [17]. Unlike the integer-order
vortex beam, the fractional vortex beam has discontinuous phase along the phase step and
notched intensity distribution [17]. Because of their unique physical properties, fractional
vortex beams have important applications in complex micro-particle manipulation [18],
expanding communication capacity [19], anisotropic edge enhancement of image [20], and
quantum entanglement [21]. However, most studies have shown that fractional vortex
beams cannot propagate stably in free space [22–24]. Only recently, Weng et al. demon-
strated that propagational fractional vortex beams can be generated by superimposing
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the phase and polarization singularities of vortex vector beams (VVBs) induced by vortex
phase and vortex polarization [25,26].

On the other hand, the circular Airy beam (CAB), a circularly symmetric beam with
an Airy profile, is also of interest because of its “abruptly autofocusing” property [27–32].
A CAB can maintain a low and constant intensity profile directly before the target, while
at the target, the intensity suddenly increases by several orders of magnitude. Taking
advantage of this “abruptly autofocusing” property, CABs can deliver high-energy pulses
in transparent samples without causing damage [33], which is attractive in biomedical
therapeutics [34], transparent material processing, and nonlinear optical processes [33]. The
behavior of a CAB with OVs is very different from that of a CAB without OVs, since during
propagation, the OVs can translate, rotate, or be annihilated in the background beam due
to the intensity gradient and phase gradient [30,32,35–37]. Lu X. H. et al. found that OVs
can greatly enhance the “abruptly autofocusing” property of a CAB, and an on-axis OV
can give a CAB a hollow intensity distribution [30]. Deng D. M. et al. found that the focal
length and the intensity of the optical focus can be modified by appropriately selecting
the distribution factor, the TC, and the size of the incident beams [36]. In 2022, we found
that a left circularly polarized CAB imposed with an on-axis OV will give rise to both
left and right circularly polarized components with OV in the crystal [38]. What is the
influence of fractional-order OV on a CAB, and does the CAB retain its “non-diffracting”,
“self-healing”, and “abruptly autofocusing” properties? To the best of our knowledge, none
of these issues have been reported. In this paper, the propagation characteristics of two
kinds of propagational fractional vortex CABs, in free space and turbulent atmosphere,
are numerically studied and discussed. Our study results are expected to broaden the
application of CABs.

2. Theory and Model

According to Weng’s results [25], there are two kinds of fractional vortex beams that
can stably maintain their amplitudes and vortex phases in free space. They can be expressed
as follows [25]:

Emf1 = exp(±i0.5φ)

[
cos[(m + 0.5) φ + β]
sin[(m + 0.5) φ + β]

]
, (1)

Emf2 = exp[i(l + 0.5)φ]

[
cos(± 0.5φ + β)
sin(± 0.5φ + β)

]
, (2)

where φ is the azimuthal angle, β is the polarization direction of the vector beam, and m
and l are integers. The first fractional vortex beam, described in Equation (1), possesses
an OV with a TC of ±0.5 and a polarization state of the (m + 0.5)-order vector beam. The
second kind of fractional vortex beam, described in Equation (2), has an OV with a variable
TC of l + 0.5 but a constant polarization state, namely, of the 0.5-order vector beam. In
principle, a fractional-order polarization vortex cannot induce OAM. Therefore, the vortex
beams described in Equations (1) and (2) naturally carry fractional OAM arising from the
OVs, with TCs of 0.5 and l + 0.5, respectively. Without loss of generality, we let β be equal
to 0 and “±” be “+”. It should be noted that the two kinds of beams depicted by Equations
(1) and (2) possess a homogeneous amplitude distribution.

Using Euler’s formula, we can easily rewrite Equations (1) and (2) into the following form:

Emf1 =

√
2

2
exp[i(m + 1)φ] |R⟩+

√
2

2
exp(−imφ) |L⟩, (3)

Emf2 =

√
2

2
exp[i(l + 1)φ] |R⟩+

√
2

2
exp(ilφ) |L⟩. (4)

where |R⟩ =
√

2
2
(
ex − iey

)
and |L⟩

√
2

2
(
ex + iey

)
denote the left and right circularly polarized

modes; ex and ey, respectively, are the unit vectors in the cartesian coordinate system.
Equations (3) and (4) clearly show that the two kinds of beams can be generated by
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superposition of left and right circularly polarized vortex beams with different integer
TCs. From Equation (3), we can see that the first kind of beam can be regarded as a
superposition of an (m + 1)-order right circularly polarized vortex beam and a (−m)-order
left circularly polarized vortex beam. Notice that the TCs of the left circularly polarized and
right circularly polarized components have opposite signs but similar values, and it can be
expected that the first kind of beam has similar characteristics to an m-order vector beam.
The second kind of beam consists of an (l + 1)-order right circularly polarized vortex beam
and an l-order left circularly polarized vortex beam (see Equation (4)). Unlike the first kind
of beam, the TCs of the left circularly polarized and right circularly polarized components
have the same signs and similar values. In particular, when l = m = 0, the two kinds of
beams are exactly the same beam.

The amplitude distribution of a CAB in the input plane (z = 0) can be expressed
as [27]:

l0(r, z = 0) = C·Ai
(

r0 − r
w

)
exp

(
a

r0 − r
w

)
, (5)

where C is a constant, Ai represents the Airy function, r0 is the initial radius of the CAB, w
is the radial scale coefficient, and a is the decay parameter. Correspondingly, the two kinds
of propagational fractional vortex CABs in the input plane can be written as

E1,2(r, z = 0) = l0(r, z = 0)Emf1,mf2. (6)

Since both kinds of propagational fractional vortex CABs are essentially vector beams,
they can be generated in the laboratory by two orthogonal left and right circularly polar-
ized vortices [39]. We can adopt the method of generating a vector beam proposed by
Zhao et al. to obtain fractional order vortex CABs [39]. Zhao et al. propose an efficient and
robust method to generate tunable vector beams by employing a phase-only spatial light
modulator (SLM) [39]. Note that since we are generating CABs with OVs, the phase to
generate the CABs needs to be loaded into the SLM at the same time as the vortex phase.

Assuming that the beam propagates in the positive direction along the z-axis, the
electric field of beam at any plane can be calculated using the angular spectrum formulas as

E(r, z) = IFFT
{

FFT[E(r, z = 0)]exp
(

i
√

k2
0 − k2

x − k2
yz
)}

, (7)

where FFT is the Fourier transform (FT) and IFFT is the inverse FT, r is the transverse
coordinate, k0 = 2π

λ is the wave number, and kx and ky are transverse wave numbers.
From Equation (7), we can see that the electric field of the beam at any plane can be
obtained as long as the Fourier spectrum of the E(r, z = 0) is known. While the closed-form
approximation of the Fourier spectrum of a CAB is given by the appropriate plane-wave
angular spectral representation of the beam [31], there is no analytic expression for the FT
of a CAB with OVs. Therefore, we use the discrete Fourier transform (DFT) to obtain the
Fourier spectrum of the initial beam by means of the fast Fourier transform (FFT) algorithm.

3. Results and Discussion

In our numerical study, the beam parameters are given as follows: r0 = 1 mm,
w = 50 µm, a = 0.05, and the wavelength λ = 632.8 nm.

In order to highlight the characteristics of propagational fractional vortex CABs, we
first study the propagation characteristics of an m-order vector CAB with an OV having a
TC of 0.5. The electric field of the beam in the input plane can be expressed as follows:

E(r, φ, z = 0) = l0(r, z = 0)·exp(i0.5φ)

[
cos(mφ)
sin(mφ)

]
. (8)

Substituting Equation (8) into Equation (7), we can obtain the evolution of an m-order
vector CAB with an OV having a TC of 0.5. The intensity distributions of the x-polarization
component at different propagation distances are shown in Figure 1. As can be seen from
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Figure 1, the beam has a pattern of 2m petals on the input plane, but it becomes notched
and cannot propagate stably. These results are consistent with the conclusions of previous
studies on ordinary fractional vortex beams [17]. It should be pointed out that the beam
has a homogeneous polarization distribution when m = 0, and Equation (8) depicts a scalar
CAB with an OV having a TC of 0.5.
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Figure 1. The intensity distribution of the x-polarization component of an m-order vector CAB with
an OV having a TC of 0.5 at different distances. The first line (a1–e1), the second line (a2–e2), and the
last line (a3–e3) show the cases where m is 0, 1, and 2, respectively.

3.1. The First Kind of Propagational Fractional Vortex CAB

According to Equations (1) and (5), the electric field of the first kind of propagational
fractional vortex CAB in the input plane can be expressed as

E1(r, φ, z = 0) = l0(r, z = 0) · exp(i0.5φ)

[
cos[(m + 0.5) φ]
sin[(m + 0.5) φ]

]
. (9)

Substituting Equation (9) into Equation (7), we can obtain the evolution of the first
kind of propagational fractional vortex CAB in free space. Since the polarization of the
vector beam is inhomogeneous, we plot the intensity and phase distributions of the x-
polarization component at different propagation distances for m = 0, 1, and 2, as shown
in Figure 2, Figure 3, and Figure 4, respectively. From Figures 2–4, it can be seen that the
beam exhibits a 2m + 1 petal-like pattern, and the beam is able to propagate stably, which
is quite different from the case shown in Figure 1. As mentioned above, the first kind of
propagational fraction vortex CAB is in fact an (m + 0.5)-order vector beam with an OV
having a TC of 0.5. Unlike m-order vector beams, which can be physically interpreted as
combinations of left and right circularly polarized beams with a TC of ±m [25,39,40], the
phase distribution of the first kind of propagational fractional vortex CABs is not binary.
For comparison purposes, we also give the propagation characteristics of a 2-order vector
CAB, as shown in Figure 5. It clearly shows that a 2-order vector beam has a 4-petal
pattern, and it has a binary (white and black) phase distribution initially. The first kind
of propagational fractional vortex CABs maintain their shape during the propagation,
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meaning that the fractional-order OV does not influence their “non-diffraction” property.
Due to the “abruptly autofocusing” property, the size of the beam becomes increasingly
smaller, while the intensity becomes increasingly stronger, before the focus (z = 224 mm). It
can also be seen from Figures 2(d1), 3(d1), and 4(d1) that the distance from the maximum
intensity to the center of the beam at the focal plane increases as the value of m increases.
Comparing the pattern before and after the focus point, we can see that the spot pattern
is rotated. To observe the steady propagation of the first kind of propagational fractional
vortex CAB, we give an animation of the evolution of the beam for m = 2, as detailed in the
Supplementary Materials.
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Figure 2. The intensity and phase distributions of the x-polarization component of the first kind of
propagational fractional vortex CAB with m = 0 at different distances. (a1–e1) show the intensity
distribution for z = 0 mm, 150 mm, 214 mm, 224 mm, and 250 mm, respectively; (a2–e2) show the
corresponding phase distribution.
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Figure 3. The intensity and phase distributions of the x-polarization component of the first kind of
propagational fractional vortex CAB with m = 1 at different distances. (a1–e1) show the intensity
distribution for z = 0 mm, 150 mm, 214 mm, 224 mm, and 250 mm, respectively; (a2–e2) show the
corresponding phase distribution.
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eral tens of times at the focal point. From Figure 6b, it can be seen that the size of the strongest spot 
decreases with increasing propagation distance and reaches a minimum at the focal plane. Inter-
estingly, the position of the focal plane does not change with the value of m, but the maximum 
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Figure 4. The intensity and phase distributions of the x-polarization component of the first kind of
propagational fractional vortex CAB with m = 2 at different distances. (a1–e1) show the intensity
distribution for z = 0 mm, 150 mm, 214 mm, 224 mm, and 250 mm, respectively; (a2–e2) show the
corresponding phase distribution.
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Figure 5. The intensity and phase distributions of the x-polarization component of a 2-order vector
CAB at different distances. (a1–e1) show the intensity distribution for z = 0 mm, 150 mm, 214 mm,
224 mm, and 250 mm, respectively; (a2–e2) show the corresponding phase distribution.

In order to better characterize the “abruptly autofocusing” property of the beam, we
assume that I0 and Im are the maximum intensity in the initial plane and in any plane along
the propagation, respectively, and that rm is the distance between the maximum intensity
and the center of the beam. The “abruptly autofocusing” property can be investigated in
terms of Im/I0 and rm versus the propagation distance, z. The relationships of Im/I0 and
rm with z are shown in Figure 6. As can be seen from Figure 6a, the beam maintains a
low and almost constant intensity before the focal plane (z = 224 mm), and its intensity
suddenly increases by several tens of times at the focal point. From Figure 6b, it can be
seen that the size of the strongest spot decreases with increasing propagation distance and
reaches a minimum at the focal plane. Interestingly, the position of the focal plane does not
change with the value of m, but the maximum intensity decreases with increasing value of
m. The larger the value of m is, the smaller the maximum of Im/I0 is, which is due to the
fact that beams with a larger m have more bright spots. rm versus z in Figure 6b shows that
the larger the value of m is, the larger rm is. This result is consistent with a normal-vortex
CAB [30,36].
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Another important property of the CAB is “self-healing”, and we further investigate
whether the fractional vortex CAB also possesses this property. As an example, we study
the “self-healing” property of the first kind of propagational fractional vortex CAB with
m = 2. We block one of the main petals in the initial plane and propagate the resulting
beam in free space. The evolution of the beam is shown in Figure 7. As a comparison,
the corresponding unblocked beam propagation is also shown in Figure 7. As can be
seen in Figure 7, the disappearing main petal regrows during propagation, after which
the intensity pattern of the beam is almost identical to that of the unblocked beam. The
result clearly shows that the first kind of propagational fractional vortex CAB possesses the
“self-healing” property.
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3.2. The Second Kind of Propagational Fractional Vortex CAB

The electric field of the second kind of propagational fractional vortex CAB can be
represented as follows:

E2(r, φ, z = 0) = l0(r, z = 0) · exp[i(l + 0.5)φ]

[
cos(0.5φ)
sin(0.5φ)

]
. (10)
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Substituting Equation (10) into Equation (7), we can obtain the evolution of this kind
of beam. We obtain the intensity distribution and phase distribution of the x-polarization
component at different propagation distances for l = 1 and l = 2, respectively, as shown in
Figures 8 and 9. Also, we give an animation of the evolution of the beam for l = 2, as detailed
in the Supplementary Materials. In the same way as the first kind of beam, the second kind
of propagational fractional vortex CABs can maintain their shapes and propagate stably
in free space. As can be seen in Figures 8 and 9, all these beams have a crescent-shaped
intensity distribution (having only 1 petal), which is due to the fact that these beams are
0.5-order vector beams with an OV having a TC of (2l + 1). The “abruptly autofocusing”
property of the beam is as shown in Figure 10. Comparison of Figures 6 and 10 reveals that
the “abruptly autofocusing” properties of the two kinds of propagational vortex CABs are
similar. The “abruptly autofocusing” effect takes place at z = 0.224 m and is independent of
the TC value of l + 0.5. Figure 10 shows that the beam with the smaller TC value of l + 0.5
has a stronger “abruptly autofocusing” effect and a smaller size of focus spot.
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Figure 8. The intensity and phase distributions of the x-polarization component of the second kind
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distribution for z = 0 mm, 150 mm, 214 mm, 224 mm, and 250 mm, respectively; (a2–e2) show the
corresponding phase distribution.
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Figure 9. The intensity and phase distributions of the x-polarization component of the second kind
of propagational fractional vortex CAB with l = 2 at different distances. (a1–e1) show the intensity
distribution for z = 0 mm, 150 mm, 214 mm, 224 mm, and 250 mm, respectively; (a2–e2) show the
corresponding phase distribution.
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4. Fractional Vortex CAB Propagation in Turbulent Atmospheres

The simulation of atmospherically distorted wavefronts is of importance in the context
of studies of beam propagation through turbulent atmospheres. In the above study, the
effect of turbulence on the beam is very weak due to the short propagation distance. In
order to study the propagation characteristics of the beam in turbulent media, we enlarge
the size of the beam by a factor of 10, i.e., r0 = 10 mm, w = 500 µm.

We use multiple phase-screens and the Fourier-transform algorithm to study the beam
propagation in turbulent atmospheres [41,42]. In the multiple phase-screen model, the
propagation distance L is split into N sub-distances ∆zi = zi − zi−1 (i = 1. . .N), and the
electric field at zi can be obtained as [42]

E(r, zi) = IFFT{FFT[E(r, zi−1)exp(iφ(x, y))]exp
(

i
√

k2
0 − k2

x − k2
y∆zi

)
}. (11)

φ(x, y) is the additional phase induced by turbulence (phase screen), which is given by [41]

φ(x, y) = IFFT
[

h
(

fx, fy
)√

Φφ

(
fx, fy

)]
, (12)

where h
(

fx, fy
)

is a complex random matrix, and fx and fx are spatial frequencies. Φϕ

(
fx, fy

)
is the power spectrum of the phase fluctuations. The Wiener power spectrum of the phase
fluctuations in the Kolmogoroff atmosphere is given by [43]

Φφ

(
fx, fy

)
=

0.023

R5/3
o f 1/3

, (13)

where f is the spatial frequency. R0 is an important parameter reflecting the intensity of
atmospheric turbulence, which is determined by

R0 ≈ 0.185

(
λ

C2
N

) 3
5

, (14)

where C2
N is the atmospheric refractive-index structure constant.
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Employing Equations (11)–(14), we can obtain the propagation characteristics of the
beam in a turbulent atmosphere. Figures 11 and 12 give the propagations of the two kinds
of beams for different values of C2

N . As can be seen in Figures 10 and 11, the beam is
able to maintain its shape unaffected under weak turbulence (C2

N = 0.02 × 10−12 m−2/3).
Figures 11 and 12 also show that the beam retains its shape after propagating 20 m
when C2

N = 0.2 × 10−12 mm−2/3
, whereas the beam has already been deformed when

C2
N = 2 × 10−12 m−2/3.
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Figure 11. The intensity distribution of the x-polarization component of the first kind of propagational
fractional vortex CAB with m = 2 at different distances. The first line (a1–e1), the second line (a2–e2),
and the last line (a3–e3) show the cases when C2

N is 0.02 × 10−12 m−2/3, 0.2 × 10−12 m−2/3, and
2 × 10−12 m−2/3, respectively.
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Figure 12. The intensity distribution of the x-polarization component of the second kind of fractional
vortex CAB with l = 2 at different distances. The first line (a1–e1), the second line (a2–e2), and the last
line (a3–e3) show the cases where C2

N is 0.02 × 10−12 m−2/3, 0.2 × 10−12 m−2/3, and 2 × 10−12 m−2/3,
respectively.



Photonics 2024, 11, 64 11 of 13

5. Conclusions

In conclusion, we have demonstrated the propagation properties of the two kinds of
propagational fractional vortex CABs. The intensity distributions and phase distributions
of the two kinds of beams at different propagation distances have been illustrated and
analyzed. The two kinds of propagational fractional vortex CABs exhibit the “abruptly
auto-focusing” property and “self-healing” property during the propagation, and they can
stably propagate in free space. The two kinds of beams have similar “abruptly autofocusing”
properties, where the focus length is independent of the value of the TC. In addition, the
fractional-order OV does not influence the “non-diffraction” property of the CABs. Since
these two beams belong to different orders of vector beams, the first kind of beam has
an intensity distribution with an odd number of petals, while the second beam has a
crescent-shaped intensity distribution. These findings are expected to support applications
in optical micromanipulation. Due to the “self-healing” property, the blocked main petal
grows back during propagation, and thereafter the pattern of the beam is almost identical to
that of the unblocked beam. The influence of turbulence on the beam propagation through
atmosphere under different turbulence strengths was also numerically studied. A fractional
vortex CAB with an initial radius r0 = 10 mm can maintain its shape unaffected under weak
turbulence (C2

N = 0.02 × 10−12 m−2/3). When the atmospheric refractive-index structure
constant C2

N = 0.2 × 10−12 m−2/3, the beam can still retain its shape after propagating
20 m.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/photonics11010064/s1, Video S1: evolution of first fractional-
order CAB.avi; Video S2: evolution of second fractional-order CAB.avi.
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