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Abstract: In this work, we consider the possibility of enhancing terahertz bolometric detection
efficiency using resonant structures in the case of an inclined incidence of radiation. The structures
are made of a sequence of doped and undoped semiconductors, including epsilon-near-zero areas.
Undoped regions act as electromagnetic resonators, thus ensuring resonant signal penetration through
the opaque (doped) regions of the structure. A set of epsilon-near-zero areas can ensure substantial
enhancements to the electric field in the material. In the doped regions, absorption occurs. The
structure described above can provide efficient resonant energy absorption for a wide range of angles
of incidence. The numerical calculations based on the solution of the Helmholtz equation have shown
that the studied resonant structures ensure the absorption of up to 50% of the incident radiation
energy for a 60-degree incidence.

Keywords: THz radiation; resonance; epsilon-near-zero materials; inclined incidence

1. Introduction

THz radiation shows great potential in communication [1,2], non-destructive testing [3,4],
biology [5,6], security [7,8], imaging [9,10], etc., which results in a growing interest in
efficient detectors working in this spectral range. Thermal power detectors (bolometers)
are one of the most commonly used ones [11–15]. As a general principle, bolometers are
thermal sensors that absorb electromagnetic radiation in an active area, resulting in an
increase in their temperature. Then, the thermometer converts the resulting temperature
variation into parameters that are measured electrically by the read-out circuit [16]. The
advantages of such detectors are their simplicity in design and the fact that there is no
need for cryogenic cooling, which in turn significantly reduces energy consumption during
operation and the cost of devices. The disadvantage of the THz-range bolometric detectors
is their low sensitivity. A simple general approach for enhancing THz bolometric detection
efficiency was proposed in our previous studies [17–20]. The approach itself is based
on the peculiarities of electromagnetic wave propagation through “dielectric-conductor”
resonant structures.

Talking about “perfect absorbers”, “epsilon near-zero” (ENZ) materials should be
mentioned [21–23]. To be clear, ENZ materials exhibit a vanishing real part of their per-
mittivity at a spectral point known as the zero permittivity wavelength. By far, there
is no precise definition of the width of the ENZ region, but we will define the spectral
area where −1 < Re[ε] < 1 to be the ENZ region as it was made in [23]. The latest
studies on the “epsilon-near-zero” materials revealed an interesting optical phenomenon,
namely, substantial enhancement of the electric field in the material [24]. The effect is
connected with plasma resonance phenomenon which is implemented for TM waves. This
feature allows ENZ to efficiently absorb the energy of electromagnetic waves propagating
through it.
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In this work, we generalize the results obtained earlier [17–20] to the case of an inclined
incidence of radiation. In general, we study TE and TM wave propagation through the
resonant structures that are made of the sequence of doped and undoped semiconductors
(“dielectric-conductor” resonant structures). We also show that some improvements to
the angular distribution of the absorption can be achieved by introducing ENZ areas. In
our method, specific electron densities (doping levels) allow an ENZ regime in the THz
range, so the final studied resonant structure is “dielectric-ENZ-conductor-ENZ”. Our aim
is to show that the proposed method for bolometric detection enables efficient THz signal
detection even at large angles of incidence.

2. Modeling

First of all, we have to mention that in our calculations, we assume the beam cross
section to be large compared to the radiation wavelength. In such a case, the effects associ-
ated with diffraction divergence and the 3D geometry of the bolometer are insignificant
(see the scheme of the studied structure in Figure 1a). In this paper, we use the Helmholtz
equation to study the electromagnetic wave inclined propagation through an inhomoge-
neous medium where permittivity ε varies only in one direction in space. We take this
direction as the z-axis (ε = ε(z)) and consider a wave whose direction of propagation lies
in the xz-plane (you can see the scheme in Figure 1b). In this case, all quantities do not

depend on y. Due to homogeneity of the medium along the x-axis, one can consider
→
E and

→
H dependencies on x and z as

→
E ,

→
H ∼ eiκx·eikz, κ = const. In the case of inclined incidence

(κ ̸= 0), two independent cases of polarization must be distinguished, namely TE and TM
modes [25].
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radiation incidence.

For TE-waves, there is no electric field in the direction of propagation (
→
E =

{
0, Ey, 0

}
).

So, the Helmholtz equation for the electric field strength of the monochromatic wave with
frequency ω can be written as

∂2E
∂z2 +

(
ε(z)

ω2

c2 − κ2
)

E = 0. (1)
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For the TM case, there is no magnetic field component in the direction of propagation

(
→
H =

{
0, Hy, 0

}
), so it is more convenient to solve the Helmholtz equation for

→
H component

of the electromagnetic wave

∂

∂z

(
1

ε(z)
∂H
∂z

)
+

(
ω2

c2 − κ2

ε(z)

)
H = 0, (2)

(for an inhomogeneous medium) Equations (1) and (2) are non-identical, so we are expecting
different propagation results for TE and TM waves), and then specify the electric field via
the Maxwell equation for our geometry: Ex = − ic

ωε

(
∂H
∂z

)
Ez =

ic
ωε

(
∂H
∂x

)
= − c

ωε κH
. (3)

Here, Ex is an x-axis projection and Ez is an z-axis projection of the vector
→
E . We also

note that in our calculations, radiation is coming from the air, so in (1), (2), and (3) we
consider wave number κ = ω

c
√

εairsin θ, where θ is angle of incidence (see Figure 1) and
εair = 1.

The Helmholtz equations were solved in the numeric computing environment of
MATLAB by the explicit Runge–Kutta method.

Now we have to mention that we use the Drude model to describe the frequency-
dependent complex permittivity.

εω = εd −
ω2

p

ω2 + ν2 + i
ω2

p

ω2 + ν2
ν

ω
, (4)

where εd is a lattice permittivity, ν is effective (transport) collision frequency,
ω2

p = 4πe2ne/m∗ is plasma frequency squared. Here ne is concentration of n-type car-
riers, m∗ is the effective mass of n-type carriers. In our calculations, we assume εd = 10.9
(undoped GaAs), ν = 3.09·1012 s−1, m∗ = 0.067me, where me is the mass of a free electron
and ωp varies from 0 (for undoped GaAs) to 7.5·1013 s−1 (maximum plasma frequency
in the doped GaAs) which corresponds to ne variation from nmin

e = 0 to the maximum
doping level nmax

e = 1.2·1017 cm−3. We suppose that the doping level in undoped GaAs is
negligible in terms of contribution to absorption since the intrinsic carrier concentration
is 2.1·106 cm−3 [26], which is much smaller than that in the doped GaAs. In addition,
as we noted in our previous work [19], the latest experimental data [27] for gallium ar-
senide in the frequency range of ∼ 1012 Hz give a value of the loss tangent of ∼ 3·10–4. In
this situation, the losses will have no impact on detection. We also note that ENZ areas
are not a new material but transition areas in doped GaAs with specific doping levels
(nENZ

e ≈ 6.6·1016 cm−3 in order to satisfy εω ≈ 0 in our calculations), which are present
in our structure due to the presence of doping level gradient. So, it is this doping level
gradient that determines the thickness of ENZ layers. Permittivity of the free space is
εair = 1. The scheme of our structure is shown in Figure 2. It is worth noting here that
the choice of semiconductor material is primarily determined by the collision transport
frequency. Previous analysis has shown that for efficient detection in the terahertz range, it
is possible to use such semiconductors as Ge and GaAs.

We note that by varying the doping levels and, as a consequence, the width of the
conducting and ENZ layers, one can control the fraction of the absorbed power of the
incident radiation.

For both TE and TM cases, we then calculate the fraction of the absorbed energy of
radiation incident on the surface of the structure [18]:
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Figure 2. The scheme of the studied resonant structure consists of (a) one dielectric layer and
(b) three dielectric layers. The black curve is the real part of dielectric permittivity, Re[ε]. THz
radiation is coming from the left. Areas with Re[ε] = 10.9 represent undoped GaAs layers. Areas
with Re[ε] < 10.9 represent doped GaAs layers. To be more specific, we consider areas with Re[ε] ≥ 1
as dielectric, with −1 < Re[ε] < 1 as ENZ, and areas with Re[ε] ≤ −1 as conductor. Parameters of
the structure: thickness of undoped GaAs a ≈ 8.2 mkm, thickness of doped GaAs b ≈ 7.3 mkm,
ν = 3.09·1012 s−1, ωp varies from 0 (for undoped GaAs) to 7.5·1013 s−1 (maximum plasma frequency
in the doped GaAs).

ηTE =
ω

c

∫ E2(z)
E2

0
·Im[ε(z)]dz , (5)

ηTM =
ω

c

∫ E2
i (z)
E2

0
·Im[ε(z)]dz , (6)

where E0 is the electric field strength of the incident radiation flux, E(z) in (5) is defined
from the numerical solution of the Helmholtz Equation (1) for the TE case. For the TM case,
i = x, z (6), and the corresponding electric field strengths are defined from Equations (2)
and (3). So, we calculate absorption for x- and z-components separately.

3. Results and Discussion
3.1. Absorption Results for the Case with One Dielectric Layer

Let us begin the discussion with the normal incidence of radiation on the structure
consisting of one dielectric layer under the absorbing layer. For the normal incidence, both
TE and TM cases are indistinguishable. As it was shown in our previous works [17], such a
structure acts as an electromagnetic resonator for incident radiation. As a result, there is a
significant increase in signal absorption for resonant frequency, which can be defined as the
integer number of half-wavelengths that fit within the size of the dielectric resonator [17]:

ωn ≈ πc
a
√

εd
n, (7)

where a is the thickness of the dielectric layer, εd is the permittivity of the dielectric, and
n = 1, 2, 3, . . . is the number of the resonance. Thus, by varying the thickness of the
dielectric layer, one can control the resonance frequency at which resonant absorption
occurs. Here it should be noted that the value of resonant frequency is determined for
the case of ideally conductive walls, which is not our present situation. As a consequence,
the resonances will be significantly shifted. Nevertheless, expression (7) allows us to
determine the structure parameters with sufficient accuracy to ensure resonance in the
required frequency range. For our calculations, we choose a ≈ 10 mkm (here we suppose
that the area with εω > 1 acts as a resonator) and εd = 10.9 (undoped GaAs) to ensure the
resonance in the THz range. The parameters of the conductive layer (absorber)—thickness
of doped and undoped regions; doping levels—are chosen (see Figure 2a) to obtain high
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absorption in the given frequency range for the case of normal incidence. Out of resonance,
absorption remains insignificant.

In our study, we propose a method for enhancing the efficiency of uncooled bolometric
detectors, whose sensitivity is much smaller than that of cooled ones (where it is possible
to detect single photons) and can be different for different types of sensing elements. If
we are talking about the normal incidence of radiation (for which TE and TM cases are
indistinguishable), the presence of a dielectric layer with specific parameters allows one
to detect radiation more efficiently. To prove that statement, we provide the numerical
calculation of signal absorption in the structure with a single conducting layer but no
dielectric layer (see dashed line in Figure 3a). One can see that in this case, the level of
signal absorption is much lower in a given frequency band. Thus, one can conclude that the
proposed method can improve detection efficiency by an order of magnitude for resonant
frequencies. In other words, minimum detectable energy can be reduced by order.
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Figure 3. TE case. Fraction of the absorbed power versus (a) frequency of the incident radiation for
3 different angles of incidence: 0, π/6, π/3, normal incidence with no resonator; (b) angle of incidence,
calculations are made for resonant frequency ω = 17.5·1012 s−1.

Further, we have to mention that the discussed problem is multiparametric, so we are
starting the discussion with the numerical calculations of the absorption versus frequency of the
incident radiation for three different angles of incidence: θ = 0, 30◦, and 60◦ for the TE wave

(see Figure 3a). In (1), one can consider the quantity
(

ε ω2

c2 − κ2
)
= ω2

c2

(
ε − sin2 θ

)
=

(
2π
λθ

)2

where λθ represents a wavelength in the z-direction [25]. So, the increasing incidence angle
results in an increase of λθ , and as a consequence, resonant frequencies will be shifted to
higher values. Thus, the effect of resonance shifting in the TE wave leads to an inevitable
decrease in signal absorption at a given frequency for inclined incidence. Similar results
are also shown in [28].

The results obtained in Figure 3a enable us to demonstrate the dependence of the
absorbed energy fraction on the angle of incidence of THz radiation. One can see that the
absorption is kept at ~80% level for angles of incidence from 0 to 30 degrees (see Figure 3b).
Also, the absorption for the angle of 60 degrees turned out to be equal to 50%, which is a
more pronounced effect than that of the regular cos2 θ angular dependence.

Now we are focusing on the TM case, where ENZ materials can play a significant
role. TM-waves are known to have an effective coupling of the z-component of electric
field strength with the plasma wave when εd ≈ ω2

p/ω2 and the transport frequency is
comparatively low. This is the case when ENZ layers appear. Plasma resonance results in a
significant enhancement of the electric field strength within the ENZ region, which in turn
leads to efficient absorption of the energy of electromagnetic waves. In our scheme, ENZ

areas exist for a wide range of frequencies (0 < ω <

√
ω2

p
εd−1 ≈ 24·1012 s−1), but for rather

low frequencies, the thickness of ENZ areas is too small (since the thickness of ENZ areas
is determined by the steepness of the derivative dε(z)

dz ∼ − 4πe2

ω2
dne
dz , where dne

dz = const, the
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decrease of ω leads to increase of the derivative dε(z)
dz thus narrowing ENZ area) that we are

expecting insignificant contribution to the total absorption of TM wave due to the plasma
resonance effect. And this is the case for calculations with parameters discussed above (see
Figure 4a, in which ENZ areas are marked).
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Figure 4. TM case. (a) Spatial distribution of the electric field strength at the resonant frequency;
marked areas indicate ENZ areas. This is the case of the normal incidence (θ = 0). (b) Fraction of the
absorbed power versus frequency of the incident radiation for three different angles of incidence: 0,
π/6, π/3 from top to bottom. (c) Fraction of the absorbed energy versus angle of incidence. Calcula-
tions are made for resonant frequency ω = 17.5·1012 s−1. The regular cos2 θ angular dependence is
also shown in the figure. For (b,c), the legend indicates which component of electric field absorption
was calculated.

In Figure 4b, you can see the absorption of the x- and z-components of the electric field
strength and the total absorption for the TM case depending on the radiation frequency for
three different angles of incidence: 0, 30, and 60 deg from top to bottom. Ex field component
absorption in the TM wave is similar to the TE-wave, so one can see the same effect of
shifting resonances to higher values. The absorption curve of the Ez field component has
a relatively complex form, depending on the type of complex permittivity function. The
increase in absorption at higher frequencies can be understood from the analysis in (4).
Let us fix the doping level at its maximum value (correspondingly, ωp = 7.5·1013 s−1)
and analyze the real part of permittivity. Resonance induced by the “dielectric-conductor”
resonant structure occurs at ω ≈ 17·1012 s−1. For this frequency, the real part of permittivity
Re[ε] ≈ −9 and the corresponding ENZ areas (see Figure 4a) are so narrow that they have
no influence on the total absorption. If we move to higher frequencies, Re[ε] becomes less
negative at first and the corresponding ENZ areas become wider, thus increasing the total
absorption. When Re[ε] reaches −1 for the fixed ωp = 7.5·1013 two ENZ areas merge into
one wide ENZ area for which plasma resonance is more pronounced. Then, the absorption
reaches its peak for frequency, which can be defined as from Re[ε] = 0. This is the case for
ω ≈ 22·1012 s−1 for which you can see the maximum absorption for Ez component (see
Figure 4b). As was established in Introduction, we define the ENZ region as −1 < Re[ε] < 1.
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Thus, in order to determine the spectral area where maximum of absorption occurs. One

has to solve the double inequality:−1 < Re[ε] < 1 or −1 < εd −
ω2

p
ω2+ν2 < 1. The solution

is 21.5·1012 < ω < 23.5·1012 s−1. We mark this spectral region in the Figure 4b. We have
to mention that the increase in absorption for Ez component has nothing to do with the
resonant frequencies. We can state that for the chosen parameters, the resonance caused by
the “dielectric-conductor” resonant structure and the enhancement of absorption due to
the presence of ENZ areas turn out to be in different spectral ranges. For the three-periodic
structure, we managed to provide the situation when significant enhancement due to the
presence of ENZ areas occurs near the resonant frequency, so in Section 3.2, we will discuss
this case.

In Figure 4c, we can see the dependence of the fraction of the absorbed power on
the angle of incidence for the TM case. As was expected, the role of the Ez component is
insignificant in this case.

3.2. Absorption Results for the Case with Three Dielectric Layers

When we consider the structure consisting of three dielectric layers, some kind
of spectral zone instead of a single resonant frequency is created. It was discussed in
our previous studies [18–20]. Shortly, if we have three bonded resonators, three ab-
sorption peaks will be formed (see Figures 5a and 6b). Because of the complex type
of structure, these peaks have different heights, so let us consider the middle one for the
following calculations.
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Figure 5. TE case. Fraction of the absorbed power versus (a) frequency of the incident radiation for
three different angles of incidence: 0, π/6, π/3; (b) angle of incidence, calculations are made for
resonant frequency ω = 19.8·1012 s−1.

As before, we start the discussion of the calculation results for the structure with three
dielectric layers in the TE case. Figure 5a shows the dependence of absorption on the
frequency of incident radiation for three different angles: 0, 30, and 60 deg. One can see the
shifting of resonances to higher frequencies for larger angles of incidence, as was the case
for the single-resonator structure (Figure 3a). Let us fix the frequency ω = 19.8·1012 s−1

corresponding to the middle absorption peak and plot the dependence of absorption versus
the angle of incidence. As you can see in Figure 5b, we managed to fix the absorption at
80% for incident angles from 0 to 40 deg.

Further, we consider the TM case. As it was mentioned above, the z-component of the
electric field is known to have an effective coupling with plasma waves in ENZ materials.
In the previous section, we stated that for the structure consisting of one dielectric layer
under the absorbing layers for chosen parameters, ENZ areas are too narrow to have a
visible effect on the total absorption. In the case of three dielectric layers, ENZ areas are
narrow as well, but now we have six ENZ areas (see Figure 6a for which ENZ areas are
marked) instead of two as in Section 3.1. Considering the Ez component in Figure 6b,
one can see the increase in absorption near the resonant frequency. The mechanism of
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this phenomenon is the same as it was for the case with one resonator. More specifically,
as was discussed above, the maximum absorption for the, Ez component occurs when
Re[ε] = 0 for the maximum value of the doping level (correspondingly, ωp = 7.5·1013 s−1).
Similar to that mentioned in Section 3.1, the spectral range for which the ENZ effect is most
significant can be defined as 21.5·1012 < ω < 23.5·1012 s−1. We mark this spectral range
in Figure 6b. For the Ex component in Figure 6b, the absorption peaks are also shifted to
higher frequencies for larger angles of incidence, like they were for the TE case.
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Figure 6. TM case. (a) Spatial distribution of the electric field strength at the resonant frequency;
purple areas indicate ENZ areas. This is the case of the normal incidence (θ = 0). (b) Fraction of
the absorbed power versus frequency of the incident radiation for 3 different angles of incidence: 0,
π/6, π/3 from top to bottom. (c) Fraction of the absorbed energy versus angle of incidence. Calcula-
tions are made for resonant frequency ω = 19.8·1012 s−1. The regular cos2 θ angular dependence is
also shown in the figures. For (b,c), the legend indicates which component of electric field absorption
was calculated.

Now we are ready to discuss Figure 6c, which shows the fraction of the absorbed
power versus angle of incidence for the TM case. We show that it is possible to fix the
absorption at a level as high as 80% of the incident radiation flux for the range of incident
angles from 0 to 40 degrees. You can also see that in the case of 3 resonators (or 6 ENZ
areas) Ez component makes a more significant contribution to the total absorption as we
now have more ENZ areas where radiation can be efficiently absorbed. Also, the effect of
the presence of ENZ areas is more pronounced than that in the case of a single dielectric
layer since, for the studied configuration, we managed to provide a situation in which the
resonance caused by the “dielectric-conductor” resonant structure and the enhancement
of absorption due to the presence of ENZ areas turn out to be in the same spectral range.
Thus, the results show that effective absorption over a wide range of incidence angles is
possible if both resonance effects occur in close frequency regions, thus complementing
each other. Since the spectral region of resonance absorption expands as the number of
layers in the heterostructure increases, the authors believe that in this case it will be easier
to provide a combination of the two effects.
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4. Conclusions

To sum up, our study demonstrates the possibility of developing a THz bolometric de-
tection method that ensures high energy absorption for a wide range of angles of incidence.
Embedding the dielectric layer (one or a sequence) behind the absorbing layer provides
resonant enhancement of wave field amplitude inside the structure if the frequency of
incident radiation coincides with one of the resonator’s eigenmodes. Under the inclined
wave incidence, this effect takes place for TE waves and, Ex component of the TM wave
in our geometry. These waves’ propagation is similar to each other since, in both cases,
the electric field strength vector is perpendicular to the plane of incidence (parallel to the
structure surface). Specifics of the TM wave are the presence of a, Ez component normal
to the surface, which can induce an effective coupling with Langmuir oscillations when
εd ≈ ω2

p/ω2. In this case, ENZ regions play a crucial role. For Ez field component, plasma
resonance when the dielectric permittivity passes through the point εω ≈ 0 results in
a significant enhancement of the electric field strength, which in turn leads to efficient
absorption of the, Ez component, thereby increasing the total absorption in the case of the
TM wave. For the TE wave, there is no z-component that can interact effectively with the
plasma wave.

According to our simulation results, we managed to provide a structure based on
a doped and undoped GaAs lattice that ensures stable absorption at the level of 80% of
incident radiation flux for the range of incident angles from 0 to 40 degrees for both TE
and TM waves. Also, the studied structure allows one to absorb 50% of the signal energy
at 60 degrees of incidence for TE and TM waves. For normal incidence, such a structure
provides absorption of up to 100% of the energy of the incident radiation.

We should also stress that regular bolometers are broadband detectors with no fre-
quency selectivity. Since the proposed method allows one to increase absorption signifi-
cantly for the range of resonant frequencies and practically has no impact on non-resonant
frequency detection, the bolometer becomes frequency selective, which can be useful for a
number of applications.
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