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Abstract: Fiber optic parametric and phase sensitive amplifiers (PSA) are interesting for modern day
communication technologies due to their low noise and high gain amplification properties with a
potential for all optical signal processing and wide band operation. PSAs are typically employed
in either a single pump or dual pump configuration. In this article we explore the utilities of both
configurations, however considering a fiber with a longitudinally varying dispersion profile. For the
single pump case, PSA operation at large pump-signal detunings, that arise due to the longitudinal
dispersion variation, were studied numerically, and recipes of using the system as a wide band
wavelength selective filter were laid out. For the dual-pump case, emphasis was laid on achieving a
larger signal gain, by reducing stimulated Brillouin scattering (SBS) that prevents large pump power
transport through the nonlinear fiber. First, the effects of dispersion variation on the gain of a dual
pump PSA were studied analytically and numerically in order to optimize the dispersion variation
profile, neglecting SBS processes. Then we independently studied the SBS dynamics of the system
numerically. A sinusoidally dispersion oscillating fiber (DOF) was found to be an optimal candidate
with respect to its PSA and SBS performances. To establish this claim, we also experimentally
compared the performance of an available DOF over a standard highly nonlinear fiber (HNLF) that
has a constant dispersion profile and established its utility for designing a high gain PSA system,
thanks to the SBS mitigation due to the longitudinal dispersion variation of the fiber.

Keywords: four wave mixing; dispersion oscillating fiber; phase sensitive amplification; parametric
amplifier; stimulated Brillouin scattering

1. Introduction

Fiber-optic parametric amplifiers (FOPA) in a phase sensitive amplification (PSA)
configuration are capable of providing noiseless (ideally 0 dB noise figure) optical am-
plification, while other phase insensitive amplifiers like Erbium Doped Fiber Amplifiers
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(EDFA) are always limited by a noise figure of at least 3 dB [1–4]. This attribute of noiseless
amplification of PSAs have attracted recent attention in terms of their potential applications
in a variety of domains such as microwave photonics, all optical signal processing, long-
haul optical communication, free-space satellite communication, quantum technologies,
etc. to name a few [5–10]. Recent progresses in the field have led to exploration of uncon-
ventional fiber designs in terms of the longitudinal variation of the fiber dispersion along
the fiber length for system performance enhancements in diverse fiber-optic application
platforms [11–14]. In this article, we aim to provide a comprehensive investigation of the
utility of employing a nonlinear fiber with longitudinally varying dispersion, aimed at
developing a high-performance PSA system with different pump configurations.

PSAs demand the use of a highly nonlinear medium. In Table 1 we provide a short
list of different commonly used nonlinear media employed in various applications. When
compared to other nonlinear media, DOFs, that are fibers with an oscillating longitu-
dinal dispersion profile, are potential candidates for accessing a larger nonlinearity in
the system [15]. This is possible because of large pump powers could be launched into
DOFs owing to a potentially lower stimulated Brillouin scattering (SBS) compared to a
conventional HNLF, as we will discuss later in detail.

Table 1. Table for comparison of advantages and disadvantages of different nonlinear media.

Nonlinear Medium Advantage Disadvantage

Highly nonlinear fiber
(HNLF)

High gain and low noise
figure; Typical nonlinear
coefficient is high,
∼10 (W km)−1

High power required to
invoke nonlinearities, low
stimulated Brillouin scattering
(SBS) threshold

Periodically poled Lithium
Niobate (PPLN) Moderate gain and compact High power required to

invoke nonlinearities

Semiconductor optical
amplifier (SOA) Compact High noise figure

Dispersion oscillating fiber
(DOF)

High SBS threshold, low noise
figure, moderate (potentially
large) gain

High power required to
invoke nonlinearities since
experimental nonlinear
coefficient in this work is
3.5 (W km)−1. However this
value can be increased by
using a preform of a HNLF

Typically PSAs are operated in a single or dual pump configuration. While single
pump configurations are often preferred for low distortion signal amplification [16], or
in general, in scenarios where the signal gain is not a key performance metric, a dual
pump configuration is preferred in applications requiring a large PSA signal gain, ideally
with polarisation insensitive operation. Single pump optical parametric amplification with
fibers having a longitudinally oscillating dispersion profile, or in other words dispersion
oscillating fibers (DOF) were initially investigated in the context of dispersion management
in long-haul optical communication links [17]. These investigations, that predicted the
presence of high-order modulation instability sidebands in a DOF gain spectrum made it
an interesting candidate for other applications such as frequency conversion [13] and wide
band optical parametric amplification [18]. However, the use of DOFs as a single pump
PSA is still an open area of research to the best of our knowledge. Furthermore, with the
continual development of newer all optical signal processing capabilities of PSA based
systems [19–22], albeit using multiple pumps, we plan to investigate a single pump DOF
based PSA system, where the dispersion variation provides us with an extra degree of
freedom for tailoring the system functionalities. To this aim we investigate analytically and
numerically the physics of the signal amplification in a DOF acting as a single pump PSA
and unravel the relationship between the dispersion profile with various system parameters
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and investigate its potential for developing wavelength selective wide band tunable filters
for optical signal processing applications.

Contrary to the single pump configuration, the dual pump configuration enjoys the
advantage of not requiring a copier stage for achieving PSA functionality when operated
in a degenerate signal-idler mode [5,23]. Recently, the case of a dual-pump PSA with a
dispersion oscillating fiber was investigated analytically in [24]. However, the question of
whether a sinusoidal dispersion profile is the optimal profile for attaining a large PSA gain is
still an open one. Therefore, in this article we also address the question, what is the optimal
non-constant dispersion profile for achieving a large PSA gain for practical applications?

Although FOPA-based dual pump PSAs provide an exquisite combination of low
noise and high gain modality, achieving a high gain in practice is often challenging due
to energy loss from stimulated Brillouin scattering (SBS) within the fiber. SBS prevents
transmission of high power, highly coherent pump waves through long lengths of nonlinear
fiber due to the coherent build up of Stokes wave in the counter-propagating direction.
In order to get around the power scaling inhibition posed by SBS within a nonlinear
fiber, several approaches had been adopted, such as applying a distributed strain [25,26],
applying a temperature gradient along the fiber length [27,28], broadening the pump
linewidth through phase modulation [29–33], etc. to name a few. Introduction of air gaps
and tapers were also attempted for SBS mitigation with scanty success nonetheless [34].
While application of temperature and strain gradients are prone to fluctuations and are
cumbersome in terms of commercial deployments, phase modulation techniques pose a
different challenge in PSA systems. In a PSA, the signal gain is sensitive to the relative phase
difference between the two pumps and the degenerate signal (considering a dual-pump
configuration) [35]. Therefore, phase modulation of the pumps induce different phases for
the different modulation tones and hence degrades the PSA gain extinction ratio of the
system [36]. For a dual pump configuration, synchronous phase modulation of the pumps
can avoid such effects [37], however such active processes come with additional complexity
and often is detrimental for the noise performance of the system. Another remedy towards
the SBS problem runs in the lines of varying the properties of the fiber along the fiber
length, dispersion being one of them [15,24,38]. Dispersion variation along the fiber length
can be achieved by varying the radius of the fiber preform along the length while pulling
it from a drawing tower. Here we consider a W-type refractive index of the preform as
shown in Figure 1 as is standard for commercial highly nonlinear fibers (HNLF). Since the
waveguide dispersion is a function of the core radius, the variation of the dispersion along
the fiber length can potentially inhibit the build-up of the different acoustic modes that
interact with the optical pump modes that generate the SBS process. Therefore another
dimension of our investigation focuses on analyzing the SBS dynamics in a DOF using a
steady-state numerical approach. We further investigate multiple longitudinally varying
radius profiles and propose optimal designs for SBS mitigation, that in turn complements
our goal of designing a high-gain dual pump PSA system. Furthermore, the SBS advantage
of a DOF over a conventional highly nonlinear fiber (HNLF) was experimentally confirmed
with an available DOF. We also numerically and experimentally compared the four wave
mixing (FWM) conversion efficiency (CE), which is a key quantifier for any PSA system, of
the available DOF and HNLF.

This paper is organized as follows. In Section 2, we focus on the numerical calculation
of the dispersion properties of the fiber. Sections 3 and 4 deal with investigating the
PSA performance of dispersion tailored fibers, in single and dual pump configurations
respectively. In Section 5 we numerically investigate the SBS threshold of DOFs and identify
optimized profiles for further elevating the SBS threshold. Then in Section 6 we provide
experimental results on SBS mitigation in a DOF and quantify the conversion efficiency (CE)
of a DOF as a parametric amplifier. Henceforth in Section 7 we discuss the implications of
the obtained numerical and experimental results. Finally in Section 8 we summarize the
findings and conclude the key takeaways of this paper.



Photonics 2024, 11, 3 4 of 28

a b

y

RI (a.u.)

W-type profile

z

Cladding

Core

Trench

Dispersion Oscillating Fiber (DOF)

Transverse refractive index profile

ω
signal

pumppump

ω

signal idler

pump

Single pump configuration

Dual pump configuration

or

Figure 1. An illustration of the sinusoidal longitudinal variation of the core, trench and cladding
radius of a W-type fiber. Input configurations of a dual-pump and single pump PSA are shown in
left insets. A qualitative refractive index (RI) profile in arbitrary units along the transverse direction
(y-direction) is shown in solid red line in th right inset. a and b are the core and trench diameters
respectively (not to scale).

2. Fiber Parameters

Modification in the SBS and PSA properties are proposed in this paper by changing the
material and geometric properties of the optical fiber along the radius and length. Hence,
before proceeding further with the investigation on SBS and PSA, first we need to calculate
the dispersion and nonlinear characteristics of the fiber, with respect to its material and
geometric properties, which are described in this section.

2.1. Dispersion Parameters

The total dispersion, i.e., chromatic dispersion in any waveguide arises from the com-
bined effect of material dispersion and waveguide dispersion. Material dispersion is a
result of the dependence of refractive index on the wavelength of light in that particular
material. On the other hand, waveguide dispersion arise from the spectral dependence of
the propagation constants of the modes supported by the waveguide. Since the modal prop-
erties depend on the geometry of the waveguide, the total dispersion of the propagating
modes heavily depend on the fiber geometry in the case of optical fibers.

In this work, we consider a W-type fiber design, that consists of a narrow core of larger
refractive index (RI) at the center, followed by an annular trench of low RI and another
annular cladding of intermediate RI at the periphery (see Figure 1). The refractive index RI
profile of the W-type fiber is defined as a function of the radial distance r (transversal to the
fiber) as:

RI(r) =


N1 0 ≤ r < a

2
N2

a
2 ≤ r < b

2
N3 r ≥ b

2

(1)

For our geometry, N1 > N3 > N2. We consider a weakly guiding case, i.e., N1 − N2 and
N2 − N3 are small. The mode field ψ(r, ϕ), where ϕ is the azimuthal angle in the cylindrical
coordinate system is governed by [23]:

∂2ψ

∂r2 +
1
r

∂ψ

∂r
+

1
r2

∂2ψ

∂ϕ2 + (k2
0ν2 − β2)ψ = 0, (2)

where k0 is the free space wave number and ν is the refractive index of silica. We rewrite
Equation (2) as an eigenvalue equation as:

[∇2
t + k2

0ν2]ψ = β2ψ, (3)

where ∇t is the transverse Laplacian operator. Then using a mode solver, we found
the eigenvalues, i.e., β for different core radii, wavelength and W-ratio. The numerical
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calculations for evaluation of β were validated with the data provided in Ref. [39]. Also,
within a core radius of 2.3 µm, a single mode operation was ensured.

In order to find the dispersion coefficients, the propagation constant β(ω), is found
as a function of frequency, ω and is expanded around a central angular frequency ω0 in a
Taylor series. As is standard in PSA calculations, truncating the series up to fourth order
terms gives us:

β(ω) ≈ β0 + β1(ω − ω0) + β2
(ω − ω0)

2

2
+ β3

(ω − ω0)
3

6
+ β4

(ω − ω0)
4

24
, (4)

where βm =
(

dm β
dωm

)
ω=ω0

with m = 1, 2, 3, 4. Throughout our discussion, we will adhere to

a maximum value of m = 4, except for the analytical modeling, where m is often truncated
to 2. In Figure 2, we plot β2 (a), β3 (b) and β4 (c) as a function of the core radius and the
W-ratio.
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Figure 2. False color plots of (a) β2, (b) β3 and (c) β4 as a function of the core radius and W-ratio = b/a
calculated from the mode solver.

For a DOF, the longitudinal variation of the m-th order dispersion βm is defined as:

βm(z) = βm + β̃m sin
(

2πz
zmod

+ φmod

)
, (5)

where βm is the average m-th order dispersion, β̃m is the strength of dispersion modulation,
zmod and φmod are the wavelength and phase of the modulation respectively. z is the light
propagation direction.

2.2. Nonlinear Coefficient

The nonlinear coefficient of a fiber typically depends on the doping concentrations
of the core and the cladding. In a DOF, due to the variation of the core radius along the
fiber length, the effective mode area changes. This in principle should also change the
nonlinear coefficient γ. In fact, the mode area can be computed from the mode solver
straight forwardly. From the standard literature, we know however, that the variation of γ
in a DOF with β̃2 of the order of a few tens of ps2/km is small and can be neglected [14].
The nominal value of nonlinear parameter for this is typically of the order of 5 (W km)−1.

3. PSA in a DOF

PSA implementations commonly involve two configurations: 1. single pump configu-
ration where a non degenerate signal and idler along with a strong pump are launched at
the fiber input (see Figure 3), and 2. dual pump configuration, where the signal (or idler) at
the input is degenerate and two non degenerate pumps are launched along with it.
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�
Figure 3. An illustration of the signal, pump and idler for a single pump PSA configuration. Ωps is
the pump-signal angular frequency separation. 0, 1 and −1 refer to the indices of the waves. (not
to scale).

To study the field propagation in the DOF we use local mode approach [40]. The
local mode approach requires slow variation of the fiber core. In a single-mode fiber the
criterion for slow variation is zb ≪ zmod, where zb = 2π(β − k0N3)

−1 is the beat length
between the fundamental and cladding mode. Calculation of the beat length gives the
value, which does not exceed 10−3 m. In our study, the modulation period zmod is tens of
meters. So the slow variation criterion zb ≪ zmod is satisfied. We consider the propagation
of three stationary copolarized waves with slowly varying complex amplitudes A0, A−1
and A1, which represent the electric fields at the frequencies ω0, ω−1 = ω0 − Ωps and
ω1 = ω0 + Ωps, where Ωps is the pump-signal angular frequency separation. The total
transverse electric field propagating along the single-mode DOF may be written as [35,40]

E(x, y, z, t) =
1
2

f (x, y)
(ncε0 Aeff)1/2

[
A0(z) exp

(
i
∫ z

0
β(ω0, z′)dz − iω0t

)
+A−1(z) exp

(
i
∫ z

0
β(ω−1, z′)dz − iω−1t

)
(6)

+A1(z) exp
(

i
∫ z

0
β(ω1, z′)dz − iω1t

)
+ c.c.

]
,

where f (x, y) is the common transverse modal profile which is assumed to be identical for
all three waves along the fiber, n is the effective index of optical mode, c is the speed of light
in vacuum, ε0 is the vacuum permittivity, Aeff is the effective mode area averaged over the
fiber length. As discussed in Section 2.2, we neglect the variation of the transverse mode
profile along the fiber length. Due to the denominator (ncε0 Aeff)

1/2 in (6) the values of
|A0|2 and |A±1|2 are in terms of Watts. Starting from wave equation (see Chapter 2 in [35]),
it is straightforward to derive three coupled ordinary differential equations for A0, A−1
and A1 [35,41]

dA0

dz
= iγ(|A0|2 + 2|A−1|2 + 2|A1|2)A0 + 2iγA∗

0 A−1 A1eiξ(z) − α

2
A0, (7)

dA±1

dz
= iγ(2|A0|2 + 2|A∓1|2 + |A±1|2)A±1 + iγA2

0 A∗
∓1e−iξ(z) − α

2
A±1, (8)

where α is the attenuation coefficient. The linear phase mismatch is

ξ(z) =
∫ z

0
β(ω−1, z′) + β(ω1, z′)− 2β(ω0, z′)dz′ (9)

3.1. Analytical Model of the PSA: Single Pump Configuration

In this section we focus on a single pump configuration. Single pump configurations
are often simpler in terms of theoretical treatment since they do not contain high-order
pumps that are generated through cascaded four-wave mixing between the pumps in a
dual pump configuration [42,43].
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Considering the Taylor series expansion of β(ω) till the 2p-order, the linear phase
mismatch (9) is given by:

ξ(z) =
p

∑
k=1

2Ω2k
ps

(2k)!

∫ z

0
β2k(z′)dz′, (10)

where β2k(z) are even coefficients of the Taylor series expansion of β(ω). Integrating
Equation (5), we get

ξ(z) =
p

∑
k=1

2Ω2k
ps

(2k)!

{
β2kz − β̃2k

zmod
2π

[
cos
(

2πz
zmod

+ φmod

)
− cos(φmod)

]}
. (11)

In Equations (7) and (8) the amplitudes A−1, A1, and A0 correspond to idler, sig-
nal and pump waves. We can analyze Equations (7) and (8) by assuming that the pump
power P0 = |A0|2 is much larger than the power of signal and idler. In a lossless assumption
(α = 0), the amplitude of the pump can be written as A0(z) = a0 exp(iγP0z). We then insert
this into Equation (8), and substitute A±1(z) = a±1(z) exp[iγP0z− iz ∑

p
k=1 β2kΩ2k

ps((2k)!)−1]
to obtain coupled equations:

da1

dz
= ia1

(
γP0 +

p

∑
k=1

β2kΩ2k
ps

(2k)!

)
+ iγa2

0a∗−1R(z) (12)

da∗−1
dz

= −ia∗−1

(
γP0 +

p

∑
k=1

β2kΩ2k
ps

(2k)!

)
− iγa∗2

0 a1R∗(z), (13)

where

R(z) = exp

(
i
zmod
2π

p

∑
k=1

2β̃2kΩ2k
ps

(2k)!

[
cos
(

2πz
zmod

+ φmod

)
− cos(φmod)

])
. (14)

We expand the function R(z) as a Fourier series with fundamental period zmod

R(z) =
∞

∑
q=−∞

cq exp
(

iq
2π

zmod
z
)

, (15)

cq = Jq

(
zmod
2π

p

∑
k=1

2β̃2kΩ2k
ps

(2k)!

)
exp

(
−i

zmod
2π

p

∑
k=1

2β̃2kΩ2k
ps

(2k)!
cos(φmod) + iq

(
φmod +

π

2

))
, (16)

where Jq are Bessel functions of the first kind.
We introduce b±1(z) = a±1(z) exp(−iqπz/zmod). Then equating the coefficients of

exp(−iqπz/zmod) gives

db1

dz
= iκb1 + iχb∗−1, (17)

db∗−1
dz

= −iχ∗b1 − iκb∗−1, (18)

where χ = γcqP0 exp(i2θ), θ = arg(a0) is the initial phase angle of the pump wave, and

κ = γP0 +
p

∑
k=1

β2kΩ2k
ps

(2k)!
− q

π

zmod
. (19)
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The solution of Equations (17) and (18) can be written as

b1(z) = µb1(0) + νb∗−1(0), (20)

b∗−1(z) = ν∗b1(0) + µ∗b∗−1(0), (21)

where µ(z) = cosh(gz) + iκg−1 sinh(gz), and ν(z) = iχg−1 sinh(gz). Here the parametric
gain coefficient

g = (|χ|2 − κ2)1/2 = [(γP0|cq|)2 − κ2]1/2. (22)

For the fundamental band (q = 0), expression for the gain coefficients (22) represents
conventional parametric gain in optical fibers [5,35,44].

In assumption that the idler and signal input powers are equal (|b1(0)|2 = |b−1(0)|2),
the total gain for q-th component of the signal wave can be calculated as follows

Gq(z) =
|b−1(z)|2
|b−1(0)|2

= |µ|2 + |ν|2 + 2|µ||ν| cos
(
Φq
)
, (23)

where Φq = arg(b1(0)b−1(0)µν∗) = φ1 + φ−1 + φµ − φν. Here φ±1 = arg(b±1(0)) = arg(A±1(0))
are initial phase angles for the signal and idler waves, φµ = arctan(g−1κ tanh(gz)) is the phase
angle of the complex function µ(z), and φν = arg(ν) is the phase angle of the complex function
ν(z). Expression for Φq can be rewritten in the following form

Φq = φµ +
zm

2π

p

∑
k=1

2β̃2kΩ2k
ps

(2k)!
cos(φmod)−

π

2
(q + 1) + (φ1 + φ−1 − 2θ − qφmod). (24)

Equations (23) and (24) represent nonlinear interference of the signal and idler. The
interference is phase-sensitive, and the signal and idler can interfere constructively and
destructively. The total gain of the signal wave (23) has maximum for Φq = 0 (parametric
amplification) and minimum for Φq = π (parametric attenuation). By having signal, idler,
and pump waves present at the fiber input and adjusting the relative phase between them,
we are able to adjust signal amplification. A remarkable feature of the PSA in the DOF is
the dependence of the relative phase Φq on the modulation phase of the fiber dispersion
φmod. This feature will be discussed in the Section 3.2.

Let us consider the total gain the signal wave when the initial idler is zero, b1(0) = 0.
From (20) we can find that the idler wave is proportional to the conjugated signal, namely
φ1 = −φ−1 + φν. The gain of the signal wave Gq = |µ|2 does not depend on the phases
φ1, φ−1, θ, and φmod. In other words, in presence only two input waves we have phase-
insensitive amplification.

The highest gain occurs for phase-matching condition κ = 0, see Equation (22). The
frequency detuning Ωq corresponding to the largest gain coefficient can be found from a
polynomial expression:

q
π

zmod
− γP0 =

p

∑
k=1

β2kΩ2k
q

(2k)!
(25)

An approximative transformation of Equation (25) may be done from the frequency domain
to the more generally used wavelength domain [44]. Derivatives β2k are calculated for the
frequency of the pump wave ω0 = 2πcλ−1

p , where λ−1
p is the pump wavelength. We can

calculate dispersion coefficients β
zero

2k+1 = d2k+1β/dω2k+1 at the frequency ωzero = 2πcλ−1
zero

corresponding to the zero-dispersion wavelength λzero. In assumption, that the dispersion
coefficients increase linearly with the frequency, i.e., β2k = β

zero
2k+1(ω0 − ωzero), Equation (25)

becomes

q
π

zmod
− γP0 = −2πc

λp − λzero

λpλzero

p

∑
k=1

β
zero

2k+1
(2k)!

[2πc(λp − λs)]2k

(λpλs)2k , (26)

where λs = 2πc/ω−1 is the wavelength of the signal wave. The parametric gain coefficient
g depends on the pump power P0 and average dispersion coefficients.
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The analytical treatment of expressions (25) and (26) in the presence of high-order
dispersion terms is quite complicated. However, we can find that phase-matching can
be achieved both in regime of anomalous average dispersion (λp > λzero) and in regime
of normal average dispersion (λp < λzero). The sign of the right side of Equation (26)
depends on the impact of the high-order dispersion terms. The left side of Equation (26)
can be positive or negative, as the integer q can take on both positive and negative values.
As a result, the phase-matching (26) can be satisfied with the appropriate sign of q. To
demonstrate the formation of the gain sidebands in regime of the normal and anomalous
average dispersion we calculate the gain of the signal wave GS (Figure 4) as

GS =
|A−1(L)|2
|A−1(0)|2

, (27)

where L = 1.4 km is the fiber length, A−1(L) is calculated numerically from
Equations (7) and (8). We use the Taylor expansion of β(ω) up to the fourth order. The
modulation period is zm = 40 m, and the effective nonlinearity is γ = 9.44 (W km)−1.
The attenuation coefficient is assumed α = 0.092 km−1, which corresponds to 0.4 dB/km.
Figure 4a shows the parametric gain in the regime of the anomalous average dispersion. To
provide consistency between the analytical results and numerical simulations, q must be
assigned negative values. For the description of the gain in the normal average dispersion
(Figure 4b) we have to use in the analytical model the positive integer q. The analytical
three-wave model agrees well with the numerical solution of the full system given by
Equations (7) and (8). The model accurately describes the line shapes of the gain. Figure 4c
shows the gain in the fifth sideband, q = 5. The analytical model do not consider the pump
depletion. Due to this feature, the parametric gain Gq is overestimated (Figure 4c).
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Figure 4. The parametric gain in regimes of the anomalous and normal average dispersion.
(a) β2 = −2.16 ps2km−1, β̃2 = −3.1 ps2km−1, β4 = −3.4 × 10−4 ps4km−1, and β̃4 = 0.19 ×
10−4 ps4km−1. (b,c) β2 = 2.16 ps2km−1, β̃2 = −2.98 ps2km−1, β4 = −3.77 × 10−4 ps4km−1, and
β̃4 = 0.32 × 10−4 ps4km−1. Pump-signal separation is (λp − λs), where λp is 1550 nm. Fiber length
L = 1.4 km, modulation period zmod = 40 m, pump power P0 = 0.5 W, φmod = 0, θ = 0. Other fiber
parameters are provided in text.

3.2. Role of Pump Phase θ and Modulation Phase φmod on Signal Gain

To demonstrate the effect of the dispersion oscillation on the PSA we solve
Equations (7) and (8) numerically. In these calculations, we assume that the initial power
of the pump wave P0 to be 0.5 W. The initial powers of the signal and idler waves are
|A−1(0)|2 = |A1(0)|2 = 10−6 W. Since for a PSA, the total gain depends on the common
phase (φ1 + φ−1 − 2θ − qφmod) (see Equations (23) and (24)), the signal and idler phases at
the input of the fiber are considered to be zero. Simulations are carried out for different
input pump phase θ and modulation phase φmod. The dispersion modulation profile of the
considered DOF with single modulation frequency follow Equation (5).

In the case of PSA in DOFs, the high-order sidebands (q ̸= 0) provide interesting
perspectives in terms of applications. To evaluate the signal gain GS we scan the pump-
signal frequency separation near the two resonant frequencies ν1 and ν2 (i.e., q = 1 and 2),
for different input phases θ and different dispersion modulation phases φmod (see Figure 5).
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At θ = −0.6 rad, a broadband amplification peak is observed. A change in the phase of
the pump wave leads to the emergence of a narrow parametric attenuation gap (anti-gain
dip) with a high extinction of about 30 dB [see Figure 5a]. As the phase is varied from
θ = −0.6 rad to θ = 1.2 rad, the anti-gain dip moves through the gain spectrum from low
to high frequency pump signal separation. The dip’s shift occurs synchronously for both
the first (q = 1) and second (q = 2) gain band. This is an interesting feature of the PSA
system that would allow preferentially filtering out unwanted frequencies in a wavelength
multiplexed system, just by tuning the phase of the input signal.
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Figure 5. Plot of gain of the signal as a function of the pump-signal frequency separation for different
values of the initial phase θ in radians. (a,b) φmod = 0 rad; (c,d) φmod = −1.2 rad. q = 1 in left
column and q = 2 in right column. Other fiber parameters are the same as in Figure 4b,c.

Contrary to a phase insensitive amplification with a DOF [12], we further found out
that the position of the anti-gain dip depends not only on the phase of the pump wave θ,
but also on the phase of the dispersion modulation φmod. From Figure 5c,d, we see that
for the modulation phase φmod = −1.2 rad the first band (q = 1) remains unaffected as the
modulation phase is increased from θ = −0.2 rad to θ = 0.2 rad. At the same conditions
the second band (q = 2) show the characteristic dip in the gain spectrum.

The behavior of anti-gain dip can be explained using the analytical model given in
Section 3.1. The gain bandwidth of the q-th spectral component is given by the frequency
dependency of the gain coefficient (22). The parametric attenuation within selected q-th
band is realized under the condition cos(Φq) = −1 in Equation (23). The value of Φq
depends on the phases as (φ1 + φ−1 − 2θ − qφmod). This value does not depends on the q
when φmod = 0. As a result, anti-gain dips appear in the first (q = 1) and second (q = 2)
bands synchronously (Figure 5a,b). Effect of the harmonic number q on the condition
cos(Φq) = −1 appears only for nonzero φmod. When φmod = −1.2 rad the condition
cos(Φq) = −1 is not reached within the first band (q = 1) (Figure 5c). The first band
remains unchanged for θ = −0.2, 0, and 0.2 radians. While for the second band (q = 2),
the frequency corresponding to the condition cos(Φq) = −1 moves across the entire band
(Figure 5d).
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3.3. DOF with Multiple Frequency of Dispersion Modulation

One impediment to the use of the high-order gain sidebands of a DOF-based PSA for
amplification purposes is its narrow bandwidth. However, using of multiple closely spaced
frequencies of dispersion modulation can alleviate this restriction to some degree [18]. Note
that different dispersion modulation frequencies will inevitably have their individual gain
band centers at different frequencies and hence the combined effect will lead to a wider
gain band. Thus we consider the case where modulation of the fiber core diameter is given
by a superposition of three sinusoidal functions:

a(z) = ā + ã1 sin
( 2π

zm1
z
)
+ ã2 sin

( 2π

zm2
z − 1.1

)
+ ã3 sin

( 2π

zm3
z
)

, (28)

where ā = 2.1µm, ã1 = 0.08 µm, ã2 = 0.1 µm, ã3 = 0.04 µm, zm1 = 40 m, zm2 = 40.5 m, and
zm3 = 41.5 m. The amplitudes and phases of the sine functions are selected so as to provide
a uniform amplification in the band from Ωps(2π)−1 = 1.28 THz to Ωps(2π)−1 = 1.32 THz.
The corresponding calculated dispersion parameters are shown in Figure 6a.
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Figure 6. (a) Fiber dispersion parameters as a function of the propagation length. (b,c) Plot of gain of
the signal as a function of the pump-signal frequency separation for different values of the initial
phase of the pump wave θ. q = 1 in (b) and q = 2 in (c). Fiber length L = 1.4 km, γ = 9.44 (W km)−1.
Other fiber parameters are provided in text.

Figure 6b,c show the signal gains calculated for q = 1 and q = 2 respectively for multi-
frequency modulation for different pump input phases. For q = 1, the gain bandwidth
is found to be 40 GHz with a gain ripple of 1 dB for θ = 2 rad. This is a significant
improvement over the DOF with a single dispersion modulation frequency [see Figure 5a,c]
where the gain bandwidth was 22 GHz. Nevertheless, an increase in bandwidth for the
multi-frequency modulation is accompanied by a decrease in the peak gain of about 15 dB.

To investigate this further we plot in Figure 7 the full gain spectrum dependence of
the system on the input pump phase θ for q = 1 and q = 2. The signal gain is found to
be a periodic function of θ, as is expected in a traditional PSA. The positive and negative
gains with an extinction of about 24 dB indicate a strong squeezing of the signal and
idler modes [45]. While for q = 1, the peak of the gain band corresponds to θ = −1 ± π,
−1 ± 2π, . . . , for q = 2 the peak gain corresponds to a different value φ0 = −1.87 ± π,
−1.87 ± 2π, . . . . This feature of the gain profile is associated with the dependence of the
gain on the modulation phase of the different dispersion modulation components.



Photonics 2024, 11, 3 12 of 28

 =1q

(a)

1.2 1.25 1.3 1.35 1.4

Pump signal separation  (THz)

-2

0

2

P
h
as

e 
 (

ra
d
)

−10

−5

0

5

10

S
ig

n
al

 g
ai

n
 (

d
B

)

 =2q

(b)

1.85 1.9 1.95 2

Pump signal separation  (THz)

-2

0

2

P
h
as

e 
 (

ra
d
)

−10

−5

0

5

10

S
ig

n
al

 g
ai

n
 (

d
B

)

Figure 7. Phase-spectral distribution of the gain GS for q = 1 (a) and q = 2 (b). Parameters are same
as in Figure 6.

4. PSA in a DOF: Dual Pump Configuration

In the preceding section, we focused on a single pump PSA system with a DOF.
However, a dual pump PSA system is often preferred to a single pump system, owing to
its ability to provide a larger gain [46], or for the amplification of polarization multiplexed
optical signals [47,48]. Since here our focus will be on achieving a larger gain for the PSA
system, we will restrict our discussion to the fundamental gain band (q = 0) of the system,
that typically can reach gains much larger than the high-order sidebands [49].

In this section we aim to optimize the dispersion modulation parameters of the DOF,
such that a high PSA gain can be attained. To this aim, we first introduce an analytical
model for a dual-pump PSA considering dispersion oscillation. The dual pump system
configuration is illustrated in Figure 8.

�
Figure 8. An illustration of the degenerate signal and the two pumps considered in a three-wave
model. Notations are same as Figure 3.

4.1. Analytical Model: Three Wave Approach

In this section we describe the standard three-wave (two pumps and a degenerate
signal) model [23] for studying the signal gain in a DOF. In this model we neglect the fiber
attenuation and consider the pumps to be undepleted along the length of the fiber. We also
set the phase of the dispersion modulation φmod = 0 rad.

The differential equations governing the evolution of the signal and the two pumps are
Equation (7) and Equation (8) respectively. Setting α = 0 in Equation (8) and considering
the two pumps to be undepleted along the length of the DOF, their slowly varying complex
amplitudes denoted by A±1 are given by:

A±1 =
√

Pei3γPz, (29)

where P is the undepleted pump power. Here we assumed the input phases of the pumps
to be 0 rad. Using Equation (29) in Equation (7), and considering the pump waves to be
much stronger than the signal, hence neglecting self-phase modulation, the evolution of
the slowly varying complex amplitude of the signal A0(z) is thus given by:

dA0

dz
= i2γP

[
2A0 + A∗

0ei6γPzeiξ(z)
]
. (30)

Considering Equation (10) for φmod = 0 and βj = 0, j = 4, 6, . . . , we get:

ξ(z) = Ω2
ps

[
β2z − β̃2

zmod
2π

cos
(

2πz
zmod

)
+

β̃2zmod
2π

]
. (31)
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We note from the above expression that the dispersion oscillation can only have a non-
negligible effect only when β̃2 is much larger than β2. This is typically the case for β2 ≈ 0.
One might argue that when β2 ≈ 0, the high order dispersion terms neglected in the Taylor
series expansion of β2 might have a significant impact on the gain dynamics. But, we should
also remember that in our case β2 ≈ 0 does not mean that β2 ≈ 0 throughout the fiber
length, since β2 depends on z. In fact, there are only few (as many as the number of cycles
of the dispersion oscillation) regions in the fiber where β2 ≈ 0. In all the other regions, the
absolute local value of β2 is larger, which depends on β̃2. Numerical simulations are utilized
to validate this assumption, as we discuss later. Using Equation (31) in Equation (30), the
evolution of A0 is given by:

dA0

dz
= iγP

[
4A0 + 2A∗

0 exp

(
i6γPz + iΩ2

psβ2z +
iΩ2

ps β̃2zmod

2π

)

×
∞

∑
n=−∞

in Jn

(
−Ω2

ps β̃2zmod

2π

)
exp

(
i2πnz
zmod

)]
,

(32)

where Jn() is the Bessel function of the first kind, of order n. Here we have used the
Jacobi-Anger expansion, to convert the cosine in the exponential term in Equation (30)
into an infinite series of exponentials with linear exponents. In order to solve for A0, we
perform the following transformation of variable:

A0 = Bq exp

[
i
(

3γP +
β2Ω2

ps

2
+

qπ

zmod

)
z +

iΩ2
ps β̃2zmod

4π

]
, (33)

where q ∈ Z is a parameter that corresponds to the DOF induced sideband order [17]. Thus
Equation (32) can be written as:

dBq

dz
= iγP

[(
1 −

β2Ω2
ps

2γP
− qπ

γPzmod

)
Bq + 2B∗

q

∞

∑
n=−∞

in Jn

(
−

Ω2
ps β̃2zmod

2π

)
exp

(
i2π(n − q)z

zmod

)]
. (34)

At this point, to get rid of the infinite series in Equation (34), we make the following
approximation. We note that the effective contribution of the oscillating terms in the series,
over large propagation distances (z ≫ zmod) is negligible. However, the only terms that
are not oscillating, appear when n = q [14]. Thus neglecting the terms with n ̸= q in
Equation (34), the q-th order state column vector Bq(z) =

[
Bq Bq

∗]T can be written in a
matrix form as:

dBq

dz
= MqBq, (35)

where Mq is the coefficient matrix for the ordinary differential equation (ODE) system,
given by:

Mq = iγP


(

1 − β2Ω2
ps

2γP − qπ
γPzm

)
2e

qπ
2 Jq

(
−Ω2

ps β̃2zm
2π

)
−2e

−qπ
2 Jq

(
−Ω2

ps β̃2zm
2π

)
−
(

1 − β2Ω2
ps

2γP − qπ
γPzm

)
. (36)

The solution of Bq(z) can be obtained through the matrix exponential method [5], and
is given by:

Bq(z) =
[

cos(gz)I +
sin(gz)

g
Mq

]
Bq(0) = Tq(z)Bq(0), (37)

where I is 2 × 2 identity matrix, Tq(z) is the transfer matrix that transforms state Bq(0) into
Bq(z), and the parametric gain coefficient g [50] is given by:
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g =γP

[(
1 −

β2Ω2
ps

2γP
− qπ

γPzmod

)2

− 4Jq

(
−Ω2

ps β̃2zmod

2π

)2] 1
2

. (38)

From the above expression of g in Equation (38) we notice that g can be either real or
imaginary depending on the balance between the first and the second term. As a conse-
quence, when g is imaginary, the sines and cosines in Equation (37) turn hyperbolic sines
and cosines leading to exponential, or in other words high gain situations.

It is easily proven that Tq(z) has a unity determinant. Thus Tq(z) is a symplectic
matrix. We also note here that Tq(z) has the same form of a transfer matrix of a standard
two-mode squeezed state arising from a fiber phase sensitive amplifier [45].

We are typically interested in the case of q = 0, or in other words the fundamental gain
band of the modulation instability (MI) spectrum of a DOF [14]. As a sanity check, putting
q = 0 (for the fundamental gain band) and β̃2 = 0 (meaning no dispersion oscillation) in
Equation (38) gives us:

g = γP

−3 −
β2Ω2

ps

γP
+

(
β2Ω2

ps

2γP

)2
 1

2

, (39)

which is the parametric gain coefficient for a standard HNLF in a dual-pump configuration
with a degenerate signal [43].

The analytical results of the maximum PSA signal gain in the fundamental gain band
(q = 0) for a DOF of length L = 1000 m, pump power P = 22 dBm, zmod = 250 m and
γ = 4 (W km)−1 and 10 (W km)−1 are plotted in Figures 9g,h,i and 10g,h,i respectively.
Three different values of β2 were considered, i.e., −5 ps2/km, 0 ps2/km, and 5 ps2/km,
corresponding to left, middle and right columns respectively.

���

Figure 9. False colour plots of maximum PSA signal gain (a–c,g–i) and gain extinction ratio (d–f) as
a function of the pump-signal frequency separation Ωps

2π and amplitude of dispersion oscillation β̃2

(denoted as β2,am). Top and middle row correspond to numerically calculated results, while the
bottom row is from the analytical 3-wave model. Three different average second order dispersion β2
(denoted as β2,av) values are considered: (a,d,g) −5 ps2/km, (b,e,h) 0 ps2/km and (c,f,i) 5 ps2/km.
L = 1000 m, γ = 4 (W km)−1, P = 22 dBm.



Photonics 2024, 11, 3 15 of 28

���

Figure 10. Same figure as Figure 9, except γ = 10 (W km)−1.

Since in this model, the high-order waves generated in the DOF, pump depletion, as
well as the high-order βm’s were ignored, it is necessary to compare the analytical results
with numerical calculation based on the nonlinear Schrödinger equation (NLSE) that is
immune to those assumptions.

4.2. Numerical Model: Nonlinear Schrödinger Equation (NLSE)

For an accurate numerical modeling of the propagation of the waves through the
dispersion tailored fiber, we resort to the high-order NLSE given by:

∂A
∂z

+
iβ2(z)

2
∂2 A
∂T2 − β3(z)

6
∂3 A
∂T3 − iβ4(z)

24
∂4 A
∂T4 − iγ|A|2 A = 0, (40)

where A(z, T) is the time domain complex amplitude of the wave propagating along z,
T = t − β1z is the retarded time. The variation of β2, β3 and β4 with fiber core radius are
modeled as linear functions [24] following the numerical results discussed in Section 2.1.
We utilize a split-step Fourier method (SSFM) to solve the NLSE. We consider a frequency
resolution of 67 MHz and a space step of size dz = 10 m. The step size was chosen such that
at each step of the SSFM propagation, the accumulated nonlinear phase in the spectrum is
much smaller than π. Thereafter we simulate the output spectrum for different values of
pump-signal frequency separation. The maximum PSA gain was obtained by scanning the
input signal phase from 0 to π.

In this work we focus on three principal regions, one with an average dispersion β2,
close to 0 ps2/km and the other two around 5 ps2/km and −5 ps2/km. In Figure 11 we
show the typical regime of core radius variation, for which a 5 ps2/km variation of β2 is
possible with a W-ratio clamped at 3. The three vertical dashed lines in Figure 11 indicate
β2 = 5 ps2/km (left), β2 = 0 ps2/km (middle) and β2 = −5 ps2/km (right). Thus a core
radius variation of 0.1 µm would lead to a β̃2 of 5 ps2/km.
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Figure 11. False color plot of β2 showing a region where β2 is within −10 ps2/km and 10 ps2/km.
Horizontal dashed line indicate W-ratio b/a = 3 and vertical dashed lines indicate values of
β2 = −5, 0, 5 ps2/km.

Consequenctly, the variation in β3 and β4 for 1.55 µm to 1.65 µm core radius variation
will be from 35.6 × 10−3 ps3/km to 5.7 × 10−3 ps3/km, and from 4.4 × 10−4 ps4/km to
2.3 × 10−4 ps4/km respectively.

4.3. Profile Optimization for Larger PSA Gain

Here we explore the quest of whether a sinusoidal profile is an optimal profile with
respect to providing a large PSA gain as well as reducing SBS due to its varying longitudinal
dispersion profile. To this aim, let us first focus our attention in Equation (32). We note that
each of the terms in the summation (corresponding to different values of n) at the right
hand side of Equation (32) are as if they are different FWM processes. But they give rise to
gain peaks at different pump-signal separations since their phase matching condition is
different. This is in fact the origin of high-order MI sidebands in DOF based parametric
amplifiers [49,51]. But now, let us consider the case where instead of one dispersion
oscillation wavelength zmod, there are two, zm1 and zm2. Note, now β2(z) is given by:

β2(z) = β2 + β̃2 sin
(

2πz
zm1

)
+ β̃2 sin

(
2πz
zm2

)
. (41)

Thus the linear phase mismatch ξ(z) becomes:

ξ(z) = Ω2
ps

[
β2z − β̃2

zm1

2π
cos
(

2πz
zm1

)
+

β̃2zm1

2π
− β̃2

zm2

2π
cos
(

2πz
zm2

)
+

β̃2zm2

2π

]
. (42)

However, this linear phase mismatch always manifests itself in the exponent as a phase, in
the evolution equation of the signal. Thus using the Jacobi-Anger identity, the exponential
of iξ is written as:

eiξ(z) = exp

(
iΩ2

psβ2z +
iΩ2

ps β̃2zm1

2π
z +

iΩ2
ps β̃2zm2

2π

)

×
[

∞

∑
n=−∞

in Jn

(
−Ω2

ps β̃2zm1

2π

)
exp

(
i2πnz

zm1

)]
×
[

∞

∑
p=−∞

ip Jp

(
−Ω2

ps β̃2zm2

2π

)
exp

(
i2πpz

zm2

)]
.

(43)

From the above equation it is now clear that in the signal evolution equation, now we
will start having inter-modulation tones due to the multiplication between the two infinite
series. Thus the gain peaks coming from the fundamental frequencies ( 1

zm1
and 1

zm2
) will be

now polluted by the inter-modulation frequencies (2 1
zm1

− 1
zm2

and 2 1
zm2

− 1
zm1

) that have a
different phase matching condition from the fundamental tones. To illustrate this point we
run a numerical NLSE simulation of the system considering different cases, i.e., a constant
random profile, a DOF with dispersion oscillation wavelength zm1, a profile with zm1 and
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zm2 wavelengths and finally a profile with zm1, zm2 and zm3 wavelengths. zm1 = 97 m,
zm2 = 111 m and zm3 = 122 m. In Figure 12a we provide the maximum PSA gain as a
function of the pump-signal frequency separation and in Figure 12b the corresponding
diameter variation along the fiber length is provided. Length of the fiber was 500 m,
nonlinear coefficient was 10 (W km)−1, β2 = 1 ps2/km and pump power was 22 dBm. The
maximum PSA gain spectra for these profiles along with the dispersion profiles are shown
in Figure 12.
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Figure 12. (a) Numerically computed maximum PSA gain vs. pump-signal frequency separation
for four different profiles. A random profile (in magenta), a profile with single dispersion oscilla-
tion wavelength zm1 = 97 m (in red), double dispersion oscillation wavelength, zm1 = 97 m and
zm2 = 111 m (in blue) and triple dispersion oscillation wavelength, zm1 = 97 m, zm2 = 111 m and
zm3 = 122 m (in green). (b) Variation of outer diameter as a function of length for the same profiles.
L = 500 m, γ = 10 (W km)−1, β2 = 1 ps2/km and P = 22 dBm.

From Figure 12a, we see that when there is only one dispersion oscillation wavelength
(red curve), the maximum PSA gain reaches a larger value compared to when two or three
wavelengths are present (blue and green curve). In fact, when we use a random profile
(magenta curve), it induces even more such wavelengths in the Fourier domain and hence
the gain spectrum peak further reduces and starts becoming more uniform and broadened.
Similarly, any other non-constant profile will have a large number of frequency components
and all these components will lead to a large number of FWM terms and hence would
finally compete and bring down the PSA gain spectrum. This same logic also explains the
lower peak power and larger bandwidth of the high order gain band in Figure 6 for the
single pump PSA case. Therefore, a sinusoidal profile is the most ideal non-constant profile
in terms of maximizing the PSA gain.

4.4. Numerical Results with Scanning of Dispersion Oscillation Parameters

Having argued that a DOF (with single dispersion modulation frequency) is the best
profile for maximizing the PSA gain, here we plot the PSA simulation results, viz, maximum
PSA signal gain (top row) and the gain extinction ratio (middle row) in Figures 9 and 10
as false color plots as a function of the pump-signal frequency separation ωps

2π , and the
amplitude of β2 oscillation, i.e., β̃2. A DOF of length L = 1000 m, pump power P = 22 dBm,
signal power Ps = −20 dBm, period of dispersion oscillation zmod = 250 m was considered.
γ = 4 (W km)−1 for Figure 9 and 10 (W km)−1 for Figure 10. Three different values of
β2 were considered, i.e., −5 ps2/km, 0 ps2/km, and 5 ps2/km, corresponding to the left,
middle and right columns respectively.

From Figure 9, firstly we see that the fundamental gain spectrum (q = 0, or when the
pump-signal frequency separation is small, <0.5 THz) is independent of the dispersion
oscillation amplitude β̃2 for an average β2 away from 0. This is because unless the disper-
sion oscillation amplitude is large compared to the average dispersion, or more specifically,
β2z is comparable to β̃2

zmod
2π , the effect of dispersion oscillation is negligible as can also be

seen from Equation (31). Nevertheless, for β2 away from 0, on increasing β̃2, the high-order
MI sidebands, corresponding to q ̸= 0 start to appear [49]. In this case, since the nonlinear
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phase γPL is about 0.6 rads, the maximum gain of the PSA is about 10 dB. On the contrary,
for Figure 10, where the nonlinear phase is about 1.5 rads, the gain is much larger, i.e.,
above 20 dB. It is also important to note from Figure 10b that a highly flat gain of about
10 dB can be obtained over a large bandwidth of about 1 THz while considering a small
β̃2 ≈ 0.4 ps2/km.

We also note by comparing the top and bottom rows of Figures 9 and 10, that for a
low nonlinearity, i.e., when the nonlinear phase is 0.6 rads, the analytical 3-wave model
agree satisfactorily with the numerical NLSE model. However, when the nonlinear phase
is 1.5 rads, the analytical model predicts a much larger gain than the numerical one for
β2 = −5 ps2/km and β2 = 5 ps2/km [43,46]. For β2 = 0 ps2/km, not only the analytical
model overestimates the maximum gain, it also predicts a shorter gain ripple wavelength.
This mismatch between the numerical and analytical models is due to the presence of
high-order waves that are generated from the FWM processes involving the two strong
pumps [49].

5. SBS in a DOF

The aim to achieve a large gain in a PSA relies on the ability to launch large pump
powers into the fiber. Stimulated Brillouin scattering (SBS) poses a challenge to this pursuit
since it limits the power that can be fed into the fiber. In fact, a high-power pump wave
causes a density variation along the fiber’s length that leads to formation of an acoustic
wave. This propagating acoustic mode acts as a Bragg grating for the optical wave, resulting
in forward and backward scattering. The backward scattered wave, known as the Stokes
wave, experiences frequency shifting due to the Doppler effect. The Stokes wave, in turn,
reinforces the acoustic wave, leading to further pump scattering and, consequently, a
stronger Stokes wave. This nonlinear interaction between the pump, Stokes, and acoustic
waves is known as electrostriction [41]. To overcome the problem of SBS, we investigate
the SBS dynamics theoretically in this section and outline the implementability of a DOF
for SBS mitigation.

5.1. Theory of SBS

The SBS dynamics in a fiber can be mathematically modeled through a set of partial
differential equations governing the complex amplitudes of the pump P , Stokes S, and
acoustic A waves [41]:

∂P
∂t

+
c
n

∂P
∂z

=
iωγe

2n2ρ0
AS, (44)

∂S
∂t

− c
n

∂S
∂z

=
iωγe

2n2ρ0
A∗P , (45)

∂A
∂t

+

(
Ω2

B − Ω2 − iΩΓB
)

(ΓB − 2iΩ)
A =

ε0γe q̃2

(ΓB − 2iΩ)
PS∗ + fL, (46)

where c represents the speed of light in vacuum, n stands for the effective index of the
optical mode, ω is the optical angular frequency of the pump, γe is the electrostriction
constant, ρ0 denotes fiber density, ε0 represents the vacuum electric perimittivity and fL
represents Langevin noise. Additionally, ΩB signifies the Brillouin frequency, Ω represents
the detuning of the probe angular frequency, q̃ = 2ωn

c represents the phase matching
condition, and ΓB is the acoustic linewidth.

The SBS dynamics in a fiber arise from the interplay between two optical waves and
an acoustic wave. Determining the SBS threshold relies on understanding the modal and
propagation characteristics of these three waves. To achieve this, modal field profiles and
the propagation constants of the optical and acoustic modes needs to be determined. The
optical modes can be obtained by numerically computing the solution of the Helmholtz
equation, i.e., Equation (3). The effective indices of the guided optical modes can then
used to compute the acoustic mode by applying the phase matching condition for the SBS
process [52]. In speciality optical fibers, like a DOF, where the transverse profile varies
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along the propagation direction, and modal characteristics can be computed at discrete
variation intervals along the propagation direction. Using this method the acousto-optic
overlap can be calculated which is essential in determining the SBS threshold for a DOF
as we discuss subsequently. While the spectral linewidth of the source can affect the SBS
threshold, in our analysis, we assume that the phonon linewidth ranges from 35 to 50 MHz,
which is much broader than the spectral linewidth of the source in our experimental setup
(in the range of a few kHz). As a result, we can safely ignore the influence of the source’s
spectral width in our simulations.

5.2. Steady State Analysis

A steady state condition implies that the interacting optical and acoustic fields are
invariant with respect to time. Imposing the steady state condition, we can model the
interdependence of their intensities through the following equations [35]:

dIp

dz
= −gIp Is =

dIs

dz
, (47)

where, Ip and Is are the intensities of the interacting optical pump and Stokes waves.
Here fiber losses were neglected and the Brillouin frequency shift was considered small
compared to the pump and Stokes frequencies. g(Ω, z) characterizes the Brillouin gain
spectrum, which in this case is also a function of z owing to the longitudinal variation of
the fiber profile. g(Ω, z) is given as:

g(Ω, z) =
g0(z)[ΓB/2]2

[ΩB(z)− Ω]2 + [ΓB/2]2
, where g0(z) =

4π2γ2
e

n(z)νa(z)λp
2cρ0ΓB

⟨A|O⟩, (48)

where λp is the pump wavelength, ⟨A|O⟩ stands for the acousto-optic overlap. Equation (47)
implies Ip(z) = Is(z) + C, where C is an arbirtary constant. Thus substituting Ip back in
Equation (47), we arrive at [41]:

dIs

dz
= −g(IS + C)Is. (49)

Thus integrating and solving for Is(z), we get:

ln
{

IS(z)[IS(0) + C]
IS(0)[IS(z) + C]

}
= −CMz, (50)

where Mz =
∫ z

0 g(z′)dz′. Substituting the boundary conditions and enforcing the threshold
condition of 1% reflectivity, we solve the steady state coupled differential equations for the
evolution of the pump and Stokes waves [41]. The pump intensity Ip(0) corresponding to
the threshold condition can be computed from the solution of the equation:

Is(L)−
0.01Ip(0)× 0.99

eML Ip×0.99 − 0.01
= 0. (51)

The above equation provides the minimum pump power required to achieve a 1% reflec-
tivity due to SBS. In the next subsection, we employ this method to compute an optimal
longitudinal perturbation profile for SBS suppression in a fiber with longitudinally varying
radius profile.

5.3. Numerical Optimization of Longitudinal Fiber Profile for SBS Mitigation

In a uniform optical fiber, the Brillouin Stokes wave naturally builds up throughout
the fiber at a specific frequency, which is determined by the fiber’s modal characteris-
tics. However, when we introduce variations in the transverse profile, whether caused
by mechanical stress or engineered during the fiber drawing process, a single Brillouin
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frequency shift is no longer sustainable. As a result, it becomes imperative to scan across a
frequency range to determine the Brillouin frequency shift corresponding to the maximum
Brillouin gain. The extent of this frequency range depends on the range of variation in the
modal characteristics of the fiber incurred due to the transverse change in the fiber profile.
Thus for a DOF our objective is to identify the optimal perturbation in the longitudinal
fiber profile that maximizes the suppression of SBS. To achieve this, first we compute
the modal parameters for various values of the fiber diameter. The core radius r(z), is
discretized along the length of the fiber and the SBS threshold power across a range of
Brillouin frequencies is computed numerically using the steady-state approach, with a weak
(10−15 W in power) seeded Stokes wave. We employ a non-linear optimization approach
using the predictor-corrector interior-point method (within the optimization toolbox in
MATLAB [53]) to find a r(z) that leads to the highest SBS threshold. This method relies
on a gradient-based optimization approach and assumes that the objective function is
differentiable. Starting from an initial guess, the algorithm computes subsequent points
in the direction of gradient descent. Given the unpredictability of the objective function’s
variation with respect to a large set of unknown parameters, we also implement both
gradient-based and gradient-free pattern search approaches to locate the global optima
function for r(z). The pattern search method, being gradient-free, is suitable for functions
that are non-smooth and non-differentiable. This technique calculates the functional value
at multiple initial points around an initial guess and proceeds toward the direction of the
minimum function value. In our investigation, we observed that the SBS threshold for a
sinusoidal variation profile was higher compared to other intuitive designs. Therefore, we
adopted a sinusoidal profile as the initial guess for all the optimization algorithms.

In Figure 13a, the radius profiles (optimal and standard) are shown. The corresponding
threshold power variation with frequency is plotted in Figure 13b. The SBS threshold power
for the optimal profiles are about 14 mW, around 3 times the threshold computed for a
constant profile of r = 2 µm. In fact the sinusoidal profile, which by the way was the
optimal profile for the PSA case, also shows an improvement of a factor of two in terms of
its SBS threshold power. While the power-frequency response corresponding to both the
optimal profiles are similar, the radial variation of the profiles are considerably different,
implying that multiple profiles could correspond to a similar threshold characteristics.
This also opens new perspectives in terms of investigating the PSA performances of the
SBS-optimized radius profiles. Clearly from Figure 13b, we see that the perturbation in
the longitudinal radius profiles lead to a flattening effect on the gain spectrum which is
typically a Lorentzian distribution for a uniform profile.
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Figure 13. (a) Variation of core radius along the length of the fiber for different profiles. (b) Nu-
merically computed SBS threshold power as a function of the seed frequency for different profiles.
Uniform profile in red, linear profile in blue, sinusoidal profile in magenta, computed optimal profiles
through interior point method in cyan and through pattern search method in black. Other parameters
are provided in the text.
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The above analysis can also be extended to include the optimization of the profile
with respect to the W-ratio of the fiber preform to reduce the acousto-optic overlap. In this
investigation we fixed the value of the W-ratio to 2.3. Furthermore, the SBS threshold was
evaluated as a function the dispersion oscillation period and the modulation depth which
is the ratio of β̃2 and β2 [see Figure 14a].

Figure 14a shows that an increase in the modulation depth leads to an elevation of
the SBS threshold. This is an expected trend as we reiterate from Equation (5) that the
variation in the dispersion profile is only significant when the modulation amplitude is
of the same order of magnitude or larger than the average dispersion. On the other hand,
the dependence of SBS threshold on the dispersion oscillation wavelength was found to
be feeble, albeit present. The inhomogenously separated bands that appear at different
modulation wavelengths arise due to the variation of the phase-matching criterion, and
is reminiscent of the band structure of modulation instability spectrum in a DOF [11]. As
discussed, the Brillouin frequency shift for a uniform fiber represents a singular value that
corresponds to the precise phase-matching condition necessary for the Brillouin process to
occur. However, in the presence of perturbations or variations along the fiber length, the
Brillouin gain can be dispersed over a range of frequencies. This dispersion of the gain
implies that the phase-matching condition is satisfied for different frequencies at distinct
locations along the length of the fiber. As a result, the Brillouin scattering process is not
confined to a single, fixed frequency but is distributed over a spectrum of frequencies. As
illustrated in Figure 15, for the system discussed in Figure 14, the periodic variations in
the fiber’s properties leads to a distribution of Brillouin frequencies throughout the fiber,
effectively demonstrating the impact of modulation on the Brillouin process.
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Figure 14. (a) False color plot of SBS threshold power vs. dispersion oscillation wavelength zmod vs.
modulation depth β̃2/β2. (b) SBS threshold power vs. 3 dB bandwidth of reflected Stokes wave for
different modulation depths [along the grey dashed lines in (a)], considering different dispersion
modulation wavelength: zmod = 181 m (red filled circles), 281 m (blue filled triangles) and 377 m
(magenta filled stars). These values of zmod are demarcated with dashed lines in (a). Parameters of
the DOF are provided in the text.

In essence, the act of elevating the SBS threshold brings about a notable consequence—the
flattening of the Brillouin gain spectrum. To gauge this phenomenon, we employ a quanti-
tative measure: the 3 dB bandwidth, signifying the range over which the SBS threshold
dwindles to precisely half its peak value. As demonstrated in Figure 14b, we graphically
depict the relationship between this bandwidth and the corresponding threshold power
for different values of modulation depth of three arbitrarily chosen modulation periods:
zmod = 181 m (red filled circles), 281 m (blue filled triangles) and 377 m (magenta filled
stars). A clear trend emerges in the plot, showcasing that broader bandwidths align with
higher threshold power values. In the context of a uniform fiber, this full Width at half
maximum (FWHM) relates to the acoustic line-width, often denoted as ΓB, which itself
is the reciprocal of the phonon lifetime τb. Remarkably, as shown in the figure, the intro-
duction of dispersion oscillations magnifies this bandwidth manifold, surging from an
initial 45 MHz to a substantial 250 MHz. This dramatic expansion in bandwidth equates
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to a staggering 5 dB augmentation in the threshold power. Thus an astute strategy to
mitigate the adverse impacts of SBS in highly non-linear fibers involves selecting a modula-
tion depth that corresponds to a Brillouin frequency shift range surpassing the acoustic
linewidth. This approach promises substantial benefits in taming the effects of SBS in
speciality optical fibers.
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Figure 15. Brillouin frequency shift vs. length of the fiber considering different dispersion modulation
wavelength: zmod = 181 m (red), 281 m (blue) and 377 m (magenta). Parameters of the DOF are
provided in the text.

6. Experiments on SBS Mitigation and Parametric Amplification with a DOF

In this section we aim at evaluating the performance of a DOF as a parametric amplifier,
in terms of its SBS threshold as well as its conversion efficiency (CE). We compare the DOF’s
performance with a standard highly nonlinear fiber (HNLF) with a constant longitudinal
dispersion profile.

6.1. Comparison of SBS Threshold

In this section, we discuss the experiment to determine the strength of SBS associated
with two nonlinear fibers, a DOF and a standard HNLF with constant dispersion. The
length of the standard HNLF used is 1 km with a constant dispersion of β2 = −0.07 ps2/km.
The available DOF used here is of length 1.25 km and has an oscillating dispersion profile
as with a wavelength zmod = 250 m and phase φmod = 0 rad. The average dispersion
β2 = 12 ps2/km, dispersion modulation amplitude β̃2 = 2 ps2/km.

Figure 16a depicts the schematic of the experimental setup that is employed to measure
the SBS threshold. First, light from a narrow linewidth laser is passed through an erbium
doped fiber amplifier (EDFA) and fed to the fiber under test (FUT) through a circulator.
The reflected signal from the FUT obtained at port 3 of the circulator constitutes of pump
and the Stokes wave if the input power to FUT is near to or higher than the SBS threshold.
The Stokes wave is filtered out from this reflected signal (also containing Rayleigh back-
reflections) using a flat-top band pass filter (Yenista, XTM-50) of bandwidth 10 GHz centered
at Stokes frequency (10.335 GHz for DOF and 9.634 GHz for HNLF). The power of the
filtered Stokes wave for different input power levels is then measured using a powermeter
(PM) to obtain the reflectivity as a function of input power, where reflectivity is defined as
the ratio of reflected power to input power. The reflectivity for different input power levels
for these FUT, indicating a significant difference in the SBS threshold levels are shown in
Figure 16. As expected, reflectivity is seen to be increasing with increase in input power in
both the fibers. From Figure 16b, the SBS threshold power, which is defined as the input
power for which the reflectivity is 1% (−20 dB), is found to be 12.2 dBm for HNLF and
15.5 dBm for DOF. The reflectivity at a particular input power is higher for the HNLF and
thus its SBS threshold is correspondingly lower than that of the DOF. In case of the DOF,
the coherent build-up of back-scattered waves is prevented through periodic oscillations
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of dispersion and hence, the threshold is found to be much higher compared to that of
the HNLF.
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Figure 16. (a) Scheme of the experimental setup for measuring the back reflected power from
a nonlinear fiber due to SBS. EDFA: Erbium doped fiber amplifier; FUT: Fiber under test; PM:
Powermeter. (b) Experimental data of reflectivity vs. input pump power for a standard HNLF (blue
filled circles) and a DOF (red filled circles). Intersection of the dashed lines denote the location of 1%
reflectivity of input power due to SBS. Fiber parameters are provided in the text.

6.2. Comparison of Conversion Efficiency (CE)

The efficacy of using a nonlinear fiber as a parametric amplifier is often quantified by
its conversion efficiency (CE) of converting an input signal to a conjugate idler through
four wave mixing (FWM) involving the pump. Thus CE is basically the ratio of the output
idler power to the input signal power. To find the CE of the DOF used, we perform an
experiment schematically represented in Figure 17. A degenerate pump and a signal are
launched into the nonlinear fiber (HNLF or DOF) and the power of the input signal as well
as the output idler are recorded for different pump powers and pump-signal detuning,
using an optical spectrum analyzer (OSA).

Pump Laser 

Signal Laser

50/50 
Coupler

OSA

99/1 
Coupler

1%

99%
FUT

EDFA

Signal

Pump
OSA

Pump

Signal
Pump

Idler
Signal

Figure 17. Experimental scheme for the measurement of CE of a nonlinear fiber (HNLF or DOF).
OSA: Optical spectrum analyzer; FUT: Fiber under test; EDFA: Erbium doped fiber amplifier. The
input and output spectra of the FUT illustrated with brown arrows.

We compared the experimental results, with a numerical NLSE model introduced
in Section 4.2. The fiber parameters for the DOF and the HNLF are same as in the pre-
vious subsection. The nonlinear coefficient γ for the DOF and HNLF used are, 3.5 and
11.1 (W km)−1.

The validation of the NLSE based simulation model is achieved through comparing
the CE as a function of pump-signal wavelength separation obtained from the experiment
as shown in Figure 18a. On the other hand, in Figure 18b, we investigate the CE of the
DOF (blue) and the HNLF (red) as a function of the input pump power, both through the
simulation (dotted lines) and the experiment (filled circles). The input signal power is
7 dBm. Needless to say, the experimental data satisfactorily conform to the numerically
predicted trend. From Figure 18b, we find that the DOF, similar to a standard HNLF, show
a linear growth of CE with respect to the pump power (in a log-log scale). The 10 dB
difference between the DOF and the HNLF in Figure 18b arise due to the combined effect
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of their unequal nonlinear coefficients, average dispersion values and lengths. To confirm
this hypothesis, we simulated the same curve for a hypothetical DOF (hDOF) with the
same length, γ and β2 as the HNLF (see green dashed curve in Figure 18b). Indeed, we find
the CE curve of the hDOF to coincide with that of the HNLF, confirming the CE is almost
unaffected due to the dispersion oscillation.
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Figure 18. Plot of conversion efficiency as a function of (a) the pump-signal wavelength separation
and (b) input pump power, both from the experiment (filled circles) and the NLSE simulation (dotted
and dashed lines). The data corresponding to the DOF is shown in blue while that of the standard
HNLF is in red. The green dashed curve correspond to a hypothetical DOF (hDOF) with the same
length, γ and β2 as the HNLF. Other parameters are provided in the text.

7. Discussion

As discussed previously, in this article we study the employment of a DOF as a PSA
from two different vantage points in the case of the single and dual pump configurations.
Therefore in this section we outline the implications of our performed investigations
separately for these two configurations.

7.1. Single Pump PSA with DOF

In the single pump PSA case, the effect of longitudinal dispersion variation leads to
the emergence of high-order PSA gain sidebands (>20 dBm signal gain and a bandwidth
of 22 GHz for q = 1) at large pump-signal detunings, of the order of a few Terahertz. The
ability to achieve PSA functionality at these large detunings in a single pump configu-
ration using just longitudinal dispersion variation is already an interesting aspect of the
investigated system. Furthermore, the obtained numerical results show us the presence
of an anti-gain dip within the high-order gain band. The spectral position of this dip can
be controlled either by varying the input pump phase θ, or by changing the phase of the
dispersion modulation φmod, allowing the system to behave as a tunable notch filter within
the gain band. Furthermore, to flatten and broaden the gain band, the dispersion profile
was generated with multiple optimized dispersion oscillation frequencies. This led to the
flattening of the gain band and broadened the spectrum almost two folds, however at a cost
of a reduced signal gain. Although such a multi-frequency profile is highly interesting in
terms of its bandwidth and tunability, fabrication of such a fiber will require precise control
over the drawn fiber’s core radius, and might pose a technological hurdle in practice. Nev-
ertheless, these results are highly encouraging for the development of modern all optical
signal processing techniques. For example, in all optical network as in [54], add/drop
operation of modulated optical signals can be achieved through a real time control over the
pump phase that can precisely position an anti-gain dip at the frequency of a channel to
be dropped in a WDM signal. We should also remind, that the longitudinal sinusoidal
dispersion variation of the DOF should provide an additional advantage in launching
larger pump powers into the system as already discussed in Sections 5 and 6.
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7.2. Dual Pump PSA with DOF

For the case of a dual pump PSA, our focus was primarily fixated on improving the
signal gain of the system. Using analytical and numerical approaches, we argued that
a sinusoidally varying profile can provide the largest gain, while profiles with multiple
frequencies or a uniform profile tend to flatten out the gain spectrum. Thus we considered a
dual pump PSA system with a sinusoidal dispersion profile and numerically evaluated the
maximum signal gain by scanning the dispersion oscillation amplitude β̃2 and the average
second order dispersion β2. The effect of dispersion oscillation amplitude was found to be
pronounced, only when β2 is close to 0. This is because only then β̃2 becomes comparable
to β2 and the dispersion oscillation effects are not averaged out over the fiber length. For
the case of β2 is close to 0, depending on the choice of β̃2, a large range of gain, gain flatness
and gain bandwidth is possible.

On the other hand, with respect to the SBS performance, although the sinusoidal
profile had a higher SBS threshold than a uniform or linear profile, it was slightly outper-
formed by other profiles obtained through optimization techniques. Therefore, for highly
specific applications with targeted gain, gain bandwidth and gain flatness requirements,
an advanced nonlinear optimization approach is required to optimize the SBS as well as
the PSA performance simultaneously. However, our investigation outright suggests the
advantage of using a DOF as a dual pump PSA over a standard HNLF in terms of achieving
a larger PSA gain, considering the same nonlinearity in both. To validate these claims, we
performed two experiments, one for the SBS and the other for the PSA to compare the
performance of a DOF with that of a standard HNLF. In the SBS experiment, the DOF exhib-
ited about 3 dB improvement of the SBS threshold over the HNLF, as expected. However,
the conversion efficiency (CE) of the DOF was found to be about 10 dB lower in the case of
the DOF compared to the HNLF. But the CE result should be treated with a caveat, since
the DOF and the HNLF used in the experiment had different lengths, dispersion values
and nonlinear coefficients. In fact, a numerically calculated CE of a DOF with the same
nonlinear parameters of the HNLF shows that a DOF and a HNLF can provide the same
CE, which is a crucial quantifier for the PSA gain of the system. These results convincingly
prove that a DOF can outperform a standard HNLF in terms of its gain performance in a
dual pump PSA system.

Another important technical question about the PSA functionality of a DOF is that how
to fabricate a DOF with a large nonlinear coefficient? This question might be addressed
in a few different ways. For example, the nonlinear coefficient of a nonlinear fiber can be
increased by reducing further the average core radius of the DOF. However that might
lead to a change in the dispersion properties of the fiber and hence additional nonlinear
optimization may be required to optimize the PSA performance. Also, changing the doping
concentration in the preform might be a resource to ramp up the nonlinear coefficient of
the fiber. Additionally, modifying the fiber preform profile might be another approach in
this regard, that can not only provide a handle over controlling the fiber nonlinearity, but
also the acousto-optic overlap for SBS mitigation [55].

8. Conclusions

To conclude, in this article we provided a comprehensive study on designing a fiber
phase sensitive amplifier with a dispersion tailored fiber. This study suggests that fibers
with a sinusoidally oscillating dispersion profile is a very strong candidate for the devel-
opment of PSAs with a large gain, owing to the ability to launch high pump powers due
to an elevated SBS threshold. While dual pump PSAs provide a large gain advantage,
single pump PSAs can be tailored to develop amplifiers and filters at large pump-signal
detunings. It was shown that the phase-sensitive amplification attribute can be realized in
high-order modulation instability sidebands of a single pump PSA. Further, we discovered
the system’s ability to act as a high extinction-ratio filter at frequencies that are tunable
with respect to the phase of the input pump, or the phase of dispersion oscillation. We
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also propose the use of DOFs for generation of a comb of multiple spectral sidebands with
phase-sensitive gain, that can find numerous applications.

We also studied the SBS mitigation properties of dispersion varying profiles numeri-
cally and optimal profiles were proposed targeted at acquiring large SBS thresholds. The
ability of a DOF to be used in a large-gain PSA were also confirmed experimentally both
in terms of its SBS performance as well as a parametric amplifier. These investigations
definitely open new possibilities to further optimize the dispersion profile of a DOF and
build PSAs that can outcompete standard HNLFs with a superior performance.
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