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Abstract: CO gas is not only lethal but also a significant forecasting indicator for the spontaneous
combustion of coal mines. It is imperative that monitoring modules for CO gas that work well in the
coal mine environment are available. A feasible solution is the detection of CO by using monitoring
modules based on tunable diode laser absorption spectroscopy (TDLAS) over a mid-infrared wave-
band near 4.6 µm. However, in most cases, the mid-infrared TDLAS-based CO monitoring module
tends to introduce severe interference fringe noise into the TDLAS spectral backgrounds which is
difficult to filter out using traditional spectral filtering methods, reducing the detection performance
of the module. In order to filter out the noise and improve the stability of the module in complex
coal mine environments, this work proposed an algorithm based on support vector regression (SVR)
to extract the TDLAS spectral backgrounds. Spectral analysis indicates that the TDLAS spectral
background can be predicted over the entire scanning spectrum range by using this algorithm, and
the noise in the spectral background can be effectively filtered out when calculating the absorbance
spectrum based on the Lambert–Beer law. Compared to extracting spectral backgrounds using the
traditional least square polynomial fit, the obtained correlation coefficients between regression models
of spectral backgrounds and corresponding training point datasets were increased from below 0.998
to above 0.999. The peak-to-peak value of the obtained N2 absorbance spectrum was suppressed
below 0.022 from nearly 0.045. The signal-to-noise ratio of the obtained 25 ppm CO absorbance
spectrum was increased to 13.35 from 6.95. A CO monitoring module polluted by dust was used
to conduct experiments to further test the SVR-based algorithm. The experiment results showed
that after programming the SVR-based algorithm to the module, the estimated limit of detection of
the module was reduced to 5.46 ppm from 29.08 ppm, and all the absolute measuring errors of the
standard CO gases with different low concentrations were reduced to less than 4 ppm from a majority
of the errors of more than 10 ppm, compared to least square polynomial fit. The CO monitoring
module could still maintain the performance of high-precision quantitative detection when using the
SVR-based algorithm even if it had been polluted severely. So, the CO monitoring module has good
adaptability to harsh field environments, and its operation stability can be effectively improved by
using the algorithm proposed in this work.

Keywords: carbon monoxide detection; TDLAS; spectral background; SVR

1. Introduction

Spontaneous combustion of coal is one of the main causes of coal mine fires and is
widely present in coal mines [1–4]. At present, the detection of several signature gaseous
products liberated during coal oxidation is the most fundamental and widely used means
to forecast spontaneous combustion in practice [5]. Carbon monoxide (CO) usually starts
to appear at the initial stage of coal–oxygen recombination and runs through the entire
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spontaneous combustion process [6,7]. Therefore, CO gas is a significant forecasting
indicator for the spontaneous combustion of coal mines. Furthermore, CO will come out of
the drill holes while drilling is performed in the mine, which represents a serious threat
to all miners at the worksite since CO is lethal [8]. Due to these facts, a CO monitoring
system is an important component of a coal mine safety monitoring system, and thus,
it is imperative that monitoring modules for CO gas that work well in the coal mine
environment are available. Currently, CO gas can be monitored by electrochemical sensors,
catalytic combustion-type sensors, semiconductor sensors, or sensors based on traditional
infrared absorption spectroscopy [9–12]. However, on one hand, these sensors will fail
when interfering gas components are present simultaneously in the detection field; on
the other hand, these sensors require frequent calibration, which is not suitable for the
long-term monitoring of CO gas in coal mines.

Tunable diode laser absorption spectroscopy (TDLAS) has been widely used for the
detection of various gases because of its use of a stable tunable diode laser source, the
higher spectral resolution available, no need for frequent calibration and potentially a
simple system construction for the in-the-field use [13]. Furthermore, TDLAS can detect gas
through the absorption of low-power laser beams at the milliwatt or even microwatt level
in the gas volume, which is usually seen as an intrinsically safe technology. Therefore, such
TDLAS-based systems are well suited for the purposes of monitoring CO in coal mines.
In recent years, there have been a number of papers discussing the use of TDLAS-based
techniques for CO monitoring in industrial, environmental, medical, and other applications.
Pan Yun reported using TDLAS detection of CO in thermal power plants, employing a
DFB laser that operates over the second overtone wavelength range (6200~6400 cm−1) [14].
Zhang LW et al. described a sensitive CO sensor for industrial process control based on
TDLAS with a DFB laser operating at 2.3 µm [15]. Ghorbani R et al. reported a TDLAS
sensor for real-time breath gas analysis of CO isotopes based on an interband cascade
laser (ICL) operating at 4.69 µm [16]. Nwaboh Javis A. et al. introduced an ICL-based
absorption spectrometer for atmospheric CO amount fraction measurements [17]. Ivan
Tadic et al. proposed measuring airborne CO by using a quantum cascade laser (QCL)
emitting near 4.6 µm [18].

The error requirement of CO measurement is less than ±4 ppm at 0–100 ppm in coal
mines of China according to Chinese coal industry standard MT/T 757-2019 issued by the
State Administration of Coal Mine Safety of China [19]. Most CO gas monitoring modules
comply with this standard in coal mines in China. MT/T 757-2019 sets a high standard
for the measurement performance of the CO monitoring modules in coal mines in China.
Given that the line intensities of CO are strong enough over the mid-infrared fundamental
band (near 4.6 µm) and there are no absorption characteristic spectral lines of other common
gas components in coal mines over the same wavelength range, the detection of CO in coal
mines by using TDLAS technology near 4.6 µm is indeed a feasible solution. However,
TDLAS technology based on the mid-infrared band is difficult to combine with optical fiber
components, and the emitted laser beam can only be transmitted in open space and then
tends to generate amounts of stray light, which is prone to cause etaloning and thus bring
interference fringe noise into the TDLAS spectral backgrounds of CO gas. And this is more
common in dusty coal mines. In field monitoring based on TDLAS, whether it is the direct
absorption method or wavelength modulation method, the spectral backgrounds of TDLAS
spectra are usually extracted first and then deducted based on the Lambert–Beer law so that
the absorbance near the gas absorption characteristic peaks is used for gas concentration
inversion. Therefore, the unavoidable spectral background noise is an important key
factor that leads to poor detection accuracy and instability of CO monitoring modules
in coal mines. Currently, methods such as wavelet transform and Kalman filtering are
used for the TDLAS spectral denoising [20,21]. The wavelet transform method essentially
uses the difference between the frequency characteristics of noise and the ones of the gas
absorption spectrum to denoise the TDLAS spectrum. Therefore, the effectiveness of the
wavelet transform method is reduced when the frequency characteristics of the noise are
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very close to the ones of the CO absorption peaks. The Kalman filtering method may
increase the sensor response time since it denoises the spectrum by predicting the system
state and system error at the current moment according to the previous ones. Another
method that is currently most commonly used is directly fitting and extracting the spectral
backgrounds using a least square polynomial fit and then filtering the noise out when
calculating the absorbance spectra based on the Lambert–Beer law [22]. However, it is
difficult to avoid underfitting when using the least square polynomial fit, and therefore,
it is impossible to effectively filter out the noise when calculating the absorbance spectra.
Given the drawbacks of the above methods, they are not very suitable for the field detection
of CO gas in coal mines. Thus, at present, a method of denoising TDLAS spectra is still
needed for the field monitoring of CO gas in coal mines and is worthy of further research.

This work proposes an algorithm for TDLAS spectral background extraction based
on support vector regression (SVR) to effectively denoise the TDLAS spectra. The aim of
this work was to improve the stability of the CO monitoring module which is integrated in
the tube bundle monitoring system for coal mine spontaneous combustion by using the
proposed algorithm. The tube bundle monitoring system mainly consists of a monitoring
host, the sampling control device, the air extraction pump, the polyethylene bundle tubes,
the sampling filtration device, and the gas monitoring module. The tube bundle monitoring
system samples the air in the goaf, enclosed area, and roadway of the coal mine through
polyethylene bundles. The sampled air samples are then sent to the gas monitoring module
for analysis by the sampling control device and the air pump. The tube bundle monitoring
system determines the danger level of spontaneous combustion based on the trend of gas
changes. SVR is a small-sample regression algorithm that can be used to build a regression
model with strong generalization ability through a small amount of training data [23].
Therefore, it is very suitable for real-time extraction of CO TDLAS spectral backgrounds. In
this work, for the obtained CO TDLAS spectrum, the spectral background data on either
side of the CO absorption characteristic peak were used as the training dataset, and the
regression model of the spectral background was established, through which the entire
TDLAS spectral background can be extracted. Related experiments were then conducted
to verify the effectiveness of the SVR-based algorithm by using a CO monitoring module
that was disassembled from a tube bundle monitoring system and had a gas absorption
cell that was severely polluted by dust in a coal mine.

2. Set-Up of the CO Monitoring Module and the Spectroscopic Principle

The CO monitoring module (shown in Figure 1) is a subsystem integrated into the tube
bundle monitoring system for coal mine spontaneous combustion. The measuring range
of the module is 0–400 ppm with an accuracy of ±4 ppm at 0–100 ppm and ±4% of the
true value at 100 ppm–400 ppm. The module utilizes an ICL laser operating near 4588 nm
and a gas absorption cell with an optical path of more than 450 mm as shown in Figure 1b.
The ICL laser is driven by a laser driver which allows the current to vary from 45 mA to
60 mA to scan for the output wavelength range with the center of 4588 nm. The ICL laser
operates in temperature-controlled mode at 5 ◦C by using the thermoelectric cooler circuit.
The laser beam collimated by an aspheric lens travels 5 times after 4 reflections in the gas
absorption cell, with a total optical path of more than 450 mm. The aspheric mirror turns
and focuses the laser beam to the InAsSb photodetector where the residual intensity of the
laser beam is measured after being absorbed in the gas cell. The photocurrent generated
by the photodetector is converted to a voltage signal by a preamplifier circuit and then
further converted to the raw TDLAS spectral dataset by an AD converter. Each set of raw
TDLAS spectral data contains 310 sampling points with the central wavelength of the CO
absorption characteristic peak located near the 155th sampling point. The data are then
read by a microcontrol unit (MCU) for the quantitative analysis of CO. The module is
also equipped with a communication interface (such as RS485 and WIFI) to transmit the
final detected CO gas concentration values to the upper computer systems. The module
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has advantages such as high integration and fast response. Its power consumption is
below 2 watts.

Photonics 2023, 10, x FOR PEER REVIEW 4 of 19 
 

 

RS485 and WIFI) to transmit the final detected CO gas concentration values to the upper 
computer systems. The module has advantages such as high integration and fast response. 
Its power consumption is below 2 watts. 

(a) 

 
(b) 

Figure 1. Physical image and schematic diagram of the CO monitoring module: (a) schematic dia-
gram of the CO monitoring module; (b) physical image of the CO monitoring module. 
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Under normal pressure, the absorption characteristic peak of CO gas is the Lorentz
line. as shown in Figure 2. Figure 2 shows the standard characteristic absorbance spectrum
of 100 ppm CO gas near 4588 nm in the HITRAN database, with the absorption optical
path length of 15 cm, temperature of 298 K, and pressure of 1 atm.

Thus, in theory, when the spectral wavelength scanning range is wide enough, the
intensity values of the spectral edge far from the absorption characteristic peak are approxi-
mately equal to the intensity values of the spectral background. Therefore, it is possible
to predict the TDLAS spectral background Ib f over the entire wavelength scanning range
by using the points at the TDLAS spectral edge as the training dataset. According to the
Lambert–Beer law, the absorbance of CO gas, Iabsorption, also known as the absorbance
spectrum, can be approximately given as

Iabsorption = ln
Ib f

I
= PcSϕL (1)
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where I is the raw TDLAS spectral dataset, also known as the raw absorption spectrum;
P is the total pressure of the gas in the gas absorption cell; c is the concentration of CO
gas; S is the spectral feature line strength near 4588 nm; ϕ is Lorentz line shape function;
and L is the overall absorption path length. Due to the fixed absorption optical path of the
gas absorption cell, the absorbance value near the absorption characteristic peak of CO is
proportional to the concentration of CO gas.
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Figure 2. The standard characteristic absorbance spectrum of 100 ppm CO gas near 4588 nm in the
HITRAN database (The absorption optical path length is 15 cm, the temperature is 298 K and the
pressure is 1 atm).

However, it is difficult to completely avoid the etaloning fringe noise which is mainly
caused by the reflections between the surfaces of the two mirrors of the gas absorption
cell, the surfaces of the detector windows, and so on. Usually, the etaloning fringe
noise is small. However, in a sensor system for field applications, it is difficult to avoid
environmental disturbance during field operation. The dust attached to the surfaces of the
two mirrors of the gas absorption cell, the surfaces of the detector windows, and so on will
not only reduce the signal-to-noise ratio by attenuating the intensity of spectral signals,
but also make the etaloning fringe noise more severe by generating more stray light.
The mentioned factors will introduce severe noise into the TDLAS spectral backgrounds.
Figure 3a shows a raw TDLAS spectrum of pure nitrogen (N2) (using pure nitrogen as
the blank sample for CO gas) with only small etaloning fringe noise (less noise), and
Figure 3b shows the one of N2 with severe noise. Comparing Figure 3a with Figure 3b, it
can be seen that although they are both the N2 raw TDLAS spectra, when there is severe
noise in the spectra, there will be a noticeable concavity similar to the absorption peak
near the CO absorption characteristic peak, which will bring about the illusion of CO
gas absorption. Figure 4a shows the raw TDLAS spectrum of 25 ppm CO gas with less
noise, while Figure 4b shows the one with severe noise. The 25 ppm CO gas is balanced
by pure N2. Comparing Figure 4a with Figure 4b, it can be preliminarily inferred that the
concavity near the central wavelength of the characteristic absorption peak is caused by
both CO gas absorption and the noise in the spectral background. The severe noise in the
spectral backgrounds will directly disturb the calculation of the absorbance values near
the absorption characteristic peak of CO according to Formula (1), thereby deteriorating
the accuracy of CO quantitative analysis.
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Moreover, the frequency spectra of the mentioned noise are very similar to those of the
absorption characteristic spectra of CO gas, as shown in Figures 5 and 6. Figures 5a and 6a
show the frequency spectra of the N2 raw TDLAS spectrum with less noise and the 25 ppm
CO raw TDLAS spectrum with less noise, respectively, while Figures 5b and 6b show the
ones of the N2 raw TDLAS spectrum with severe noise and the 25 ppm CO raw TDLAS
spectrum with severe noise, respectively. Comparing Figure 5a,b as well as Figure 6a,b, it
can be seen that the frequency spectra of the raw spectra with severe noise are very similar
to the ones with less noise. This indicates the fundamental inability to filter the noise in
the spectral backgrounds using traditional filtering methods such as wavelet transform.
Therefore, this work proposed an SVR-based algorithm to accurately predict and extract
the spectral backgrounds of CO gas so that the noise can be finally filtered out.
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3. Principle of TDLAS Spectral Background Extraction for CO Gas

SVR is the application of the ideas and methods of support vector machine (SVM) in
regression problems. SVR is a process of establishing the convex optimization problem
based on the training data and analyzing this problem, aiming to find a regression model
that minimizes the expected error relative to the training sample data. SVR only requires
a small number of training samples to get a regression model with strong generalization
ability, which is widely regarded as one of the best small sample regression algorithms
currently available. In addition, the use of the kernel trick in SVR makes it highly suitable
for nonlinear regression problems. According to the feature of the Lorentz line shape,
the intensity values of the sampling points on both sides of the spectrum far from the
absorption characteristic peak are approximately equal to the intensity values of the spectral
background. Due to the advantage of SVR in constructing a regression model with strong
generalization ability by using small samples, the TDLAS spectral background over the
entire wavelength scanning range can be predicted by using the edge points at both sides
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of the CO TDLAS spectrum as training samples to construct a regression model based
on SVR.

The primal problem of TDLAS spectral background extraction based on SVR can be
given as

mim
w,b,

⇀
ξ
∧

,
⇀
ξ
∨

1
2

w2 + C∑K
i=1

(
ξ∧i + ξ∨i

)
(2)

s.t. yi − (w·xi + b) ≤ ε + ξ∧i , i = 1, 2, · · · , K (3)

−ξ∨i − ε ≤ yi − (w·xi + b), i = 1, 2, · · · , K (4)

ξ∧i ≥ 0, i = 1, 2, · · · , K (5)

ξ∨i ≥ 0, i = 1, 2, · · · , K (6)

where ε is the deviation between the spectral background regression model and the intensity
values of the spectral background training samples; w is the slope of the linear SVR
regression line; ξ∧i is the upper bound slack variable, ξ∨i is the lower bound slack variable,
and the two slack variables prevent the regression model curve from being disturbed by
abnormal sample values and also avoid the occurrence of underfitting phenomena; C is the
penalty factor used to limit the slack variables; b is the intercept of the regression line; xi
represents the sampling point in the TDLAS spectrum; yi is the spectral intensity value of
the xith sampling point in the TDLAS spectrum; K represents the number of the spectral
background training points. Formulas (2)–(6) indicate that SVR-based TDLAS spectral
background extraction of CO is a convex optimization problem. In order to find the optimal
solution to this problem, the primal problem is usually transformed into the dual problem.
According to Formulas (2)–(6), the dual problem can be given as

mim
⇀
α
∧

,
⇀
α
∨

1
2∑K

i=1 ∑K
j=1

(
α∧i − α∨i

)(
α∧j − α∨j

)
xi·xj + ∑K

i=1

(
α∧i (ε − yi) + α∨i (ε + yi)

)
(7)

s.t. 0 ≤ α∧i ≤ C, 0 ≤ α∨i ≤ C, i = 1, 2, · · · , K (8)

∑K
i=1

(
α∧i − α∨i

)
= 0 (9)

where α∧i and α∨i are the Lagrange multipliers corresponding to the constraint Formula (3)
and the constraint Formula (4), respectively. In order to find the optimal solution to the dual
problem fast, it is necessary to further organize the formulations of the dual problem; let

γi =

{
1, i = 1, 2, · · · , K

−1, i = K + 1, 2K + 2, · · · , 2K
(10)

ti =

{
xi, i = 1, 2, · · · , K

xi−K, i = K + 1, 2K + 2, · · · , 2K
(11)

βi =

{
α∧i , i = 1, 2, · · · , K

α∨i−K, i = K + 1, 2K + 2, · · · , 2K (12)

ei =

{
yi − ε, i = 1, 2, · · · , K

−ε − yi−K, i = K + 1, 2K + 2, · · · , 2K
(13)

Then the objective function of the dual problem can be given as

mim
⇀
β

1
2∑2K

i=1 ∑2K
i=j βiβ jγiγjti·tj − ∑2K

i=1 eiβi (14)
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Considering that the fitting of the CO gas TDLAS spectral background is nonlinear,
the nonlinear Gaussian radial basis kernel function is introduced into the objective function,
and then the dual problem can be finally given as follows [24]:

mim
⇀
β

1
2∑2K

i=1 ∑2K
i=j βiβ jγiγjexp

(
−
∣∣ti − tj

∣∣2
2σ2

)
− ∑2K

i=1 eiβi (15)

s.t. ∑2K
i=1 γiβi = 0 (16)

0 ≤ βi ≤ C, i = 1, 2, · · · , 2K (17)

where σ is the width argument of the Gaussian radial basis kernel function. The dual problem
is actually to search for the optimal values of all the βi (i = 1, 2, · · · , 2K) which minimize the
objective function (Formula (15)) subject to the constraints given by Formulas (16) and (17).

Finally, the dual problem (Formulas (15)–(17)) can be solved by using the sequence
minimum optimization algorithm (SMO) [25], and then the above SVR nonlinear regression
model can be given as

y = ∑2K
i=1 βiγiexp

(
−|x − ti|2

2σ2

)
+ b (18)

Formula (18) describes the prediction regression model for CO TDLAS spectral back-
ground, where x represents the spectral sampling points and y is the TDLAS spectral
intensity value of CO predicted by the regression model at sampling point x. The regres-
sion model predicts the spectral background intensity value at any spectral sampling point,
thus achieving the prediction and extraction of the CO TDLAS spectral background over
the entire scanning spectrum range.

4. Analysis
4.1. TDLAS Spectral Background Extraction

Due to the inherent high-frequency noise in the circuits and photodetector and the
small high-frequency etaloning fringe noise, the spectra of the CO gas TDLAS spectra
usually contain high-frequency noise. Therefore, the high-frequency noise over the entire
spectrum is first filtered out by using a moving average before extracting the spectral
background. Taking the raw TDLAS spectrum of N2 shown in Figure 3b and the one of
25 ppm CO gas shown in Figure 4b as examples, the spectra after moving average filtering
are shown in Figure 7.
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From Figure 7, it can be seen that although high-frequency noise is effectively filtered
out, there are still significant fluctuations caused by the noise in the spectra, and the line
shapes of these fluctuations are very similar to the CO absorption characteristic peak.
Therefore, it is necessary to extract the TDLAS spectral background by using the SVR-based
algorithm. According to the performance indicators of the module and the feature of the
obtained TDLAS spectral data, multiple experiments were conducted to determine the
penalty factor C = 200, deviation ε = 0.005, and the width parameter in Gaussian radial
basis function δ = 18.5. Then the backgrounds of the spectra shown in Figure 7 were
extracted as shown in Figures 8a and 9a.
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Figures 8a and 9a show the high predictive ability of the spectral background regres-
sion model obtained using the SVR-based algorithm. Whether it is N2 or 25 ppm CO gas,
the correlation coefficients between the regression model and the training point dataset
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are both above 0.999. The spectral background extracted using the SVR-based algorithm
provides a detailed prediction of the fluctuations near the CO absorption characteristic
peak. There is no spectral absorption of N2 near the CO absorption characteristic peak,
and the concavity here is completely caused by the noise. The SVR-based algorithm ac-
curately predicts and identifies the concavity near the CO absorption characteristic peak
as the spectral background, as shown in Figure 8a. Based on Formula (1), the absorbance
spectrum of N2 calculated by using the extracted background is shown as the solid line in
Figure 10. The noise is effectively filtered out, and the peak-to-peak value of the obtained
absorbance spectrum is suppressed below 0.022. For the TDLAS spectrum of 25 ppm CO,
the concavity near the CO absorption characteristic peak is generated by both the CO
absorption and the noise. The SVR-based algorithm accurately identifies that the concavity
is partially generated by the noise and predicts the detail of the spectral background near
the CO absorption characteristic peak, as shown in Figure 9a. Based on Formula (1), the
absorbance spectrum of 25 ppm CO gas calculated by using the extracted background is
shown as the solid line in Figure 11. The noise in the spectral background is effectively
filtered out, so that the absorbance values entirely depend on the absorption of CO gas,
and the signal-to-noise ratio of the obtained absorbance spectrum is above 13.35.
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As a comparison, the least square polynomial fit was also used to extract the spectral
backgrounds of the same TDLAS spectra. However, there is a significant underfitting
when using the least square polynomial fit to extract the spectral backgrounds, and the
fitting correlation coefficients are both less than 0.998, as shown in Figures 8b and 9b.
Figures 8b and 9b show that the spectral backgrounds extracted by using the least square
polynomial fit have lost the fluctuation details of the real spectral backgrounds, and none
of the concavities generated by the noise was predicted near the CO gas absorption char-
acteristic peak. The corresponding absorbance spectrum of N2 is shown as the dashed
line in Figure 10, and the peak-to-peak value of the absorbance spectrum is nearly 0.045.
The corresponding absorbance spectrum of 25 ppm CO gas is shown as the dashed line in
Figure 11, and the signal-to-noise ratio of the absorbance spectrum is below 6.9.

The comparison is further summarized in Table 1, which shows that the SVR-based
algorithm can fit the fluctuating spectral backgrounds more accurately, especially accurately
predicting the spectral background details near the CO gas absorption characteristic peak,
and then the residual noise in the spectra can be effectively filtered out when calculating
the absorbance spectra based on Formula (1).

Table 1. Comparisons of the values related to TDLAS spectral background extraction.

By Using the SVR-Based
Algorithm

By Using Least Square
Polynomial Fit

Correlation coefficients of the
extracted spectral backgrounds for

N2 and 25 ppm CO

N2: 0.9996
25 ppm CO: 0.9997

N2: 0.9971
25 ppm CO: 0.9962

Peak-to-peak values of N2
absorbance spectra 0.022 0.045

Signal-to-noise ratios of 25 ppm CO
absorbance spectra 13.35 6.95

4.2. Quantitative Analysis

In order to further verify that using the SVR-based algorithm to extract the TDLAS
spectral backgrounds can effectively improve the adaptability of the CO monitoring module
to adverse field environments and thus enhance its stability, a CO monitoring module was
disassembled from a bundle system that had been working continuously in a coal mine
for more than one year for experimental testing. Due to the damage and shutdown of the
dust removal system in the bundle tube system, the dust pollution was severe inside the
module, as shown in Figure 12. Dust causes amounts of stray light, resulting in significant
noise in the TDLAS spectral backgrounds, as shown in Figures 3b and 4b, and Figure 7.
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The algorithms based on SVR and least square polynomial fit were programmed
in the microcontrol unit of the module. Considering that the measuring range of the
module is from 0 to 400 ppm, 20 standard CO gases with different concentrations which
were set to range from 10 ppm to 390 ppm (in increments of 20 ppm) were taken as
the training samples for the quantitative regression model. All the standard CO gas
samples were balanced with pure N2 gas. The 20 standard CO gases were detected
by the CO monitoring module obtaining the corresponding raw TDLAS spectra. The
TDLAS spectral backgrounds of the 20 standard gas samples were extracted using the SVR-
based algorithm first. Thereafter, the absorbance spectra of the 20 standard gas samples
were calculated based on Formula (1), and the maximum absorbance value near the CO
absorption characteristic peak was found for each corresponding absorbance spectrum.
Finally, a linear quantitative regression model between the CO concentration value and
the corresponding maximum absorbance value was set up, as shown in Figure 13a. As a
comparison, least square polynomial fit was also used to extract the spectral backgrounds
of the same set of TDLAS spectra, and the corresponding quantitative regression model
was set up, as shown in Figure 13b.
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Figure 13a,b show that the fitting correlation coefficients between the two quantitative
regression lines and their respective training sample points are similar and the slopes of the
lines are also approximately the same, but over the low concentration range (0–100 ppm),
the correlation between the quantitative regression line set up by using SVR-based al-
gorithm to extract the TDLAS spectral backgrounds and the training sample points is
significantly higher than the one set up by using the least square polynomial fit. When
extracting the spectral backgrounds by using the least square polynomial fit, the quan-
titative regression line shows underfitting to the corresponding training points over the
low concentration range, and the training points deviate from the quantitative regression
line significantly. In addition, the intercept value of the quantitative regression line corre-
sponding to the SVR-based algorithm is only 0.0033 (less than 1

10 of the intercept value of
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the quantitative regression line corresponding to the least square polynomial fit), which
is more in line with the theoretical fact described by Formula (1). This also indicates that
the SVR-based algorithm removes the noise in the TDLAS spectral backgrounds more
completely, thereby suppressing the bias of the quantitative regression line effectively. The
quantitative regression lines can be used to further calculate the limit of detection of the
CO monitoring module:

CL =
3Sb

k
(19)

where the confidence level is set to 3, k is the slope of the corresponding quantitative regres-
sion line, and S is the standard deviation of the background values of the corresponding
absorbance spectrum. In this work, the standard deviation of the absorbance values of
the points at the edge of the absorbance spectrum (the 1st to 90th sampling points and the
211th to 300th sampling points) of each standard CO gas sample was calculated, and then
the average of the corresponding standard deviations of all the 20 standard CO gases was
calculated as the value of S. Compared to the least square polynomial fit, the estimated
limit of detection was reduced to 5.46 ppm from 29.08 ppm when extracting the TDLAS
spectral backgrounds by using the SVR-based algorithm.

Considering that over the low concentration range (0–100 ppm), the quantitative
analysis performance of the CO monitoring module was more susceptible to adverse
environmental factors (such as dust pollution in the gas absorption cell), making it difficult
to satisfy the design indicators (with an accuracy of ±4 ppm at 0–100 ppm), the standard CO
gases with concentrations of 17 ppm, 25 ppm, and 40 ppm (with N2 as the balance gas) were
selected to continue testing the module. The CO monitoring module was placed in a high-
and low-temperature environment test chamber for testing. During the testing process, the
temperature of the chamber was controlled to switch from 0 ◦C to 40 ◦C in a square wave
cycle with a switching period of 2 h. The standard CO gases with concentrations of 17 ppm,
25 ppm, and 40 ppm were successively pumped into the CO monitoring module. Each
of the gases was continuously detected for 24 h. A raw TDLAS spectrum was obtained
every minute, and the TDLAS spectral background was subsequently extracted by using
the SVR-based algorithm and least square polynomial fit. The corresponding continuous
24 h measurements of the standard CO gases are shown in Figure 14, and the absolute
measurement errors are shown in Figure 15.

When extracting the TDLAS spectral backgrounds by using the SVR-based algorithm,
the measured concentration values of the standard CO gases are all distributed near the
true values, and the absolute measuring errors of all the measurements are less than 4 ppm.
Therefore, even if the gas absorption cell of the CO monitoring module is severely polluted,
its quantitative analysis performance for the standard CO gases still satisfies the design
indicators, which further validates the stability of the module. However, when using
the least square polynomial fit, the quantitative analysis performance is so poor that the
measured concentration values of the standard CO gases deviate significantly from the true
values and the majority of the absolute measuring errors are greater than 10 ppm, clearly
no longer satisfying the design indicators of the module. The above comparison means that
when the SVR-based algorithm is used to extract the TDLAS spectral backgrounds, it will
effectively overcome the disturbance of adverse environmental factors in the quantitative
analysis of CO gas, thereby improving the adaptability of the CO monitoring module to
harsh application environments and its operation stability.
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5. Conclusions and Discussion

In order to improve the field environmental adaptability of CO monitoring modules
in coal mines and their stability in harsh environments, this work proposed an algorithm
for TDLAS spectral background extraction based on SVR to predict the TDLAS spectral
background over the entire wavelength scanning range. In harsh operating environments
(such as in the case of severe dust pollution inside the gas absorption cell), the raw TDLAS
spectral backgrounds contain amounts of noise that are difficult to filter out only through
traditional methods of spectral filtering. However, using the SVR-based algorithm to
extract the TDLAS spectral backgrounds can accurately predict the spectral background
fluctuations, thereby effectively filtering out the noise in the TDLAS spectral backgrounds
when calculating the absorbance spectra based on Formula (1). Compared to the widely
used traditional least square polynomial fit, when using the SVR-based algorithm to extract
the TDLAS spectral backgrounds, the obtained correlation coefficients between regression
models of spectral backgrounds and corresponding training point datasets were increased
from below 0.998 to above 0.999. The peak-to-peak value of the obtained N2 absorbance
spectrum was suppressed below 0.022 from nearly 0.045. The signal-to-noise ratio of
the obtained 25 ppm CO absorbance spectrum was increased to 13.35 from 6.95. A CO
monitoring module which was disassembled from a bundle tube system in the coal mine
and had severe dust pollution inside its gas absorption cell was used to conduct further
experimental testing. The corresponding quantitative regression models were set up by
using the SVR-based algorithm and least square polynomial to extract the TDLAS spectral
backgrounds. Twenty-four-hour testing experiments on three standard CO gases of low
concentrations were conducted based on the corresponding quantitative regression models.
Compared to the least square polynomial fit, the estimated limit of detection was reduced to
5.46 ppm from 29.08 ppm, and all the absolute measuring errors of the tests for the standard
CO gases were reduced to within 4 ppm from large values. The testing experiments further
indicate the obvious advantages in quantitative analysis when using the SVR algorithm.

In summary, even if the CO monitoring module is severely polluted by dust and
then amounts of stray light bring noise into the raw TDLAS spectrum of CO gas, the
module can overcome the noise by using the SVR-based algorithm to predict the TDLAS
spectral background over the entire scanning spectrum range and thus still maintain the
performance of high-precision quantitative detection. So, the CO monitoring module has
good adaptability to harsh application field environments, and its operation stability in
various complex environments has been effectively improved. The SVR-based algorithm
provides an effective technical means to improve the stability performance of the module.
When the proposed algorithm is combined with other technical methods, it will definitely
extend the maintenance cycle and operation life of the module in a coal mine. In addition,
the SVR-based algorithm proposed in this work not only is suitable for improving the
stability of CO detection in coal mines, but also provides a method reference for TDLAS
detection of other gases, especially for the TDLAS technology based on the mid-infrared
waveband. It also has the potential to be used in applications that need high-precision in
situ monitoring of specific gases and have relatively complex field operation environments,
such as environmental protection and industrial process control.
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