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Abstract: We create a rate equation theoretical model of a continuous-wave end-pumped Pr3+:YLF
SLM laser that characterizes the output properties of a single-longitudinal-mode (SLM) green laser.
After inserting two Fabry–Perot (F–P) etalons with thicknesses of 0.3 mm and 0.5 mm and angles of
1.42◦ and 0.69◦ into the cavity, a single-longitudinal-mode green laser was generated. The maximum
output power in single-longitudinal mode was 183 mW. The maximum absorbed pump power
was 6.2 W. The corresponding linewidth is about 18 MHz. This work presents a simple method
for generating a single-longitudinal-mode laser in the green spectral region, providing a practical
approach for various green-laser-related applications.
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1. Introduction

Single-longitudinal-mode (SLM) laser sources have a narrow linewidth and low noise,
and they are widely employed in coherent optical communication, precision measurement,
holography, and high-resolution spectrum [1–4]. The SLM green laser has potential appli-
cations in spectroscopic analysis as an excitation source for optical frequency standards
and Doppler wind lidar [5,6]. After the doubling frequency of the green laser, it is also
possible to easily create 261 nm ultraviolet lasers or other ultraviolet lasers with differ-
ent wavelengths. The traditional and standard method of generating continuous-wave
green SLM lasers is nonlinear frequency conversion using the double frequency or sum
frequency. On the other hand, additional phases of nonlinear frequency conversion need a
fine temperature-controlled nonlinear crystal, resulting in a laser system with high com-
plexity, high cost, green noise, and low conversion efficiency [7,8]. We all know that yttrium
lithium fluoride (YLF) can produce linearly polarized outputs with almost no depolar-
ization loss. In addition, praseodymium-doped laser crystals (Pr3+) have lower phonon
energy, abundant wavelengths (720, 640, 604, 522, and 479 nm) can be acquired directly,
and the crystals can also greatly alleviate the laser thermal lens effect [9–13]. Luo et al., for
example, employed a diode-pumped solid-state laser directly generating continuous-wave
SLM outputs at 640 nm in 2019, achieving a maximum output power of 403 mW with
a threshold of 600 mW and a slope efficiency of 26.8%. The linewidth of the emission
spectrum was 150 MHz [14]. Zhang et al. developed diode-pumped single-wavelength
SLM lasers at 607 nm and 604 nm in 2020. The maximum output powers were 175 mW
and 91 mW, and the corresponding linewidth are 6 and 22 MHz, respectively [15]. Mu et al.
developed a dual-pulse narrow linewidth laser at 639 nm with a maximum output average
power of 78 mW in 2023. The laser achieves a single-longitudinal-mode operation with
a linewidth of 37.5 MHz with an average output power of 23 mW [16]. Unlike the previ-
ous work, this paper establishes the rate equation containing the transmission loss of the
combined F–P etalons and solves it numerically for the green continuous laser. However,
no one has reported the Pr3+:YLF SLM green laser until now. To eliminate the “green
problem (The conventional method of obtaining green laser by frequency doubling is often
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accompanied by high-frequency noise.)”, single-frequency operation is needed. There are
now various techniques for realizing the SLM output of a solid-state laser, for example,
ring-cavity, two Fabry–Perot etalons, birefringent filters, twisted-mode cavities, and so
on [17–20]. Compared to other technologies, the Fabry–Perot (F–P) etalon has several
benefits, including simple fabrication, broad bandwidth, and a large free spectral range.
This approach offers the option of achieving Pr3+:YLF SLM laser output.

To the best of our knowledge, we directly obtained the visible Pr3+:YLF SLM laser
at 522.67 nm in this investigation by selecting two Fabry–Perot etalons with acceptable
thicknesses or an adequate free spectral range.

2. Experimental Setup

The Pr3+:YLF SLM laser’s schematic is observed in Figure 1. It uses a straightforward
two-mirror plane-concave arrangement. An input mirror (IM), an a-cut Pr3+:YLF crystal
used as the gain medium, two Fabry–Perot etalons, and an output coupler (OC) comprised
the resonator’s cavity. The pump source was an InGaN diode laser with a 444 nm emis-
sion wavelength. Because the pump source uses a semiconductor laser, it will produce
temperature drifts with increased output power. Its central wavelength is 441.3 nm near
the threshold, and this value changes to 444.1 nm when the maximum output power is
reached. A 50 mm focusing lens focused the pump beam into the laser crystal. The pump
laser spot is as small as 220 µm in the crystal. The highly reflective mirror IM was coated
for anti-reflection transmission at 443 nm (T > 99.5%) and a reflectivity of 99.8% at 522 nm.
The OC comprised a concave mirror with a 50 mm curvature radius, a 2.5% at 522 nm
transmission coating, and anti-reflection transmission at 470–490 nm and 590–650 nm
(T > 99.5%) to suppress this high-gain emission. The Pr3+:YLF crystal was a-cut at 0.5% and
doped at the size of 3 mm × 3 mm × 5 mm. The filter was coated for a reflectivity of 99.8%
at 444 nm and had a transmittance of 99.8% at 522 nm. The temperature of the Pr3+:YLF
crystal is maintained at 18 ◦C by mounting it on top of a copper radiator that is cooled
using a water cooler and sealed with indium foil. The uncoated Fabry–Perot etalons, which
were placed in the cavity to enhance SLM selection, have 0.3 and 0.5 mm thicknesses and
are composed of fused silica. Fused silica material (5.5 × 10−7/K) has a lower coefficient of
thermal expansion than BK7 glass material (7.1 × 10−6/K). The F–P etalons’ tilt angles are
controlled by two five-dimensional optical adjustment frames. The physical cavity’s length
between the input and output mirror was obtained via experimentation and theoretical
calculations, and the length is roughly 46 mm.
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Figure 1. Pr3+:YLF SLM laser experimental setup at 522.67 nm.

3. Experimental Principle

According to the rate equations of the four-level laser [21], the one-way total of the
two F–P etalons of the four-level laser was obtained:

dN
dt

= Rp − BϕN − N
τ

(1)

dϕ

dt
=

(
BVαN − 1

τc

)
ϕ (2)

TI(v) =
1

1 + 4R/(1− R)2sin2(2πndcosθ1/λ)
(3)

TI I(v) =
1

1 + 4R/(1− R)2sin2(2πndcosθ2/λ)
(4)

τc =
Le

γc
, γ = −ln

(
R′
)
− ln(R′′ ) + T + Lloss− f pI + Lloss− f pI I (5)

Equations (1) and (2) are the rate equations of the four-level laser. ϕ is the intra-
cavity photon number of the four-level laser. N is the upper level’s inverse population.
Rp = Pab/hνπω2l is the pumping rate of the four-level laser. τc is the intra-cavity pho-
ton lifetimes of the four-level laser, and Vα is constant related to the mode volume. The
four-level laser’s spot size and gain medium are described by the constant B = 2σc/πωLe.
TI(v) and TI I(v) are the transmittance functions of the etalons, R is the reflectivity of the
etalon, and n and d are the refractive index and thickness of the etalon, respectively. θ is the
refractive angle of the beam in the Fabry–Perot etalon. λ is the wavelength of the incident
light. R′ and R′′ are the reflectivity of the reflection mirror and output mirror; −ln(R′) and
−ln(R′′ ) are the losses at the total reflection mirror and output mirror, respectively. T is
the dissipative loss; Lloss− f pI = 1− TI(v) and Lloss− f pI I = 1− TI I(v) are the loss of F–P
etalons. The lasing threshold Pth of the 522 nm Pr3+:YLF laser, considering the F–P group
effect, is represented by Equation (6).

Pth =
γπω2hν

τf ηpσ
(6)

To realize the SLM laser output of a specific frequency, inserting the Fabry–Perot etalon
into the cavity is a simple and effective method. The relationship of the transmittance
product of two Fabry–Perot etalons is established to achieve the highest laser conversion
efficiency in the SLM laser. Its key parameters are optimized to maximize the gain of the
central mode. Meanwhile, other methods are suppressed. Thus, the excitation SLM is
realized. The transmission function of two Fabry–Perot etalons is given:
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T = T1T2 =
1

1 + 4R/(1− R)2sin2(2πnd1cosθ1/λ)

1

1 + 4R/(1− R)2sin2(2πnd2cosθ2/λ)
(7)

Changing the F–P etalons’ characteristics makes it possible to manipulate the trans-
mittance of various wavelengths intentionally. Based on Equations (3) and (4), the best
incidence angle (θ1 = 0.69◦, θ2 = 1.42◦) of the maximum transmittance of the central
wavelength (522 nm) can be calculated, as shown in Figure 2.
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The losses per pass at each longitudinal mode were then calculated using
Equations (3), (4) and (7), as shown in Figure 3. The etalon group thus has improved
capabilities in wavelength discrimination. The etalons’ angle may be changed to ensure
that only one mode T(λ1) is at its transmission peak and has the maximum gain, while the
neighboring T(λ2) and T(λ3) modes suffer significant losses and are suppressed.
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4. Experimental Results and Discussion

In the experimental procedure, we have developed a continuous-wave green laser at
522 nm with a maximum output power of 1.226 W at an absorbed power of 6.2 W, a laser
threshold of roughly 1.19 W, and a slope efficiency of 19.8%. We employed a scanning F–P
etalon interferometer (SA200-3B, Thorlabs) with a free spectral range of 1.5 GHz to assess
the laser spectral characteristic. The red curve in the figure shows the level profile applied
to the piezoelectric ceramic within the F–P interferometer. The level curve is usually a
triangular wave that increases and decreases linearly over one cycle. Piezoelectric ceramics
control the air gap thickness within the F–P interferometer. The air gap thickness varies, and
the time it takes for the laser’s different longitudinal modes (with a resolution of 7.5 MHz)
to reach the photoelectric conversion device (CCD) varies. The green curve is the received
signal curve of the photoelectric conversion device. For a single-longitudinal-mode laser,
only one group of two signals of similar intensity will appear in one scanning cycle. For a
multi-longitudinal mode laser, there will be multiple sets of signals with different intensities
in one scanning cycle. Free-running Pr3+:YLF lasers typically operate under multimode
oscillations, and competition between the various models is fierce, as shown in Figure 4.
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The following explanation explains the green laser’s slope efficiency [22]. The slope
efficiency formula is as follows:

ηs = ηpηtηStokesηc (8)

where ηStokes = λp/λt is the Stokes efficiency. ηp is the ratio of excited ions to absorbed
pump photons, which is often taken to be one. Suppose that the overlapping efficiency of
the pumping laser and the laser mode is ηt = 1 and ηStokes =

λp
λt

= 85%. We can calculate
ηc = 23.3%, according to the following:

ηc = −ln(1− Toc)/[−ln(1− Toc) + Li] (9)

The internal round-trip cavity losses are denoted by Li, and the output mirror’s
transmission is denoted by Toc. Li = 8.3% is calculated. This indicates that current lasers
have a medium loss. We may deduce from this calculation that the green laser has the
maximum Stokes efficiency. A 0.3 mm Fabry–Perot etalon is then placed within the cavity.
The Pr3+:YLF laser has a reduced longitudinal model number and a maximum output
power of 700 mW with a slope efficiency of 12.7%. As observed in Figure 5, how close the
laser is to performing SLM operations is demonstrated.
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To realize the SLM of the Pr3+:YLF laser, we used two Fabry–Perot etalons in the
resonator. According to Figure 6, the theoretical value is greater than the experimental
value, and both theoretical and experimental analyses’ results indicate an upward tendency.
Various variables impact experimental outcomes, whereas the theoretical number represents
the simulation’s idealized results. There is a 183 mW maximum output power and a 3.6%
slope efficiency. Two Fabry–Perot etalon transmission and diffraction losses might be the
reason for the SLM Pr3+:YLF lasers’ poorer efficiency and higher threshold. Of course, the
theoretical model does not take into account the reabsorption loss specific to quasi-triple
energy level lasers, which is also the main reason for the deviation. The stability of the laser
power over time is also great. The laser works for about an hour, during which the output
power change rate does not exceed 2%.
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Figure 6. Output characteristics of the Pr3+:YLF laser based on combined Fabry–Perot etalons.

By setting the angle of each of the two F–P standards in the resonant cavity, it is
ensured that only one of the longitudinal modes of the output laser is at peak transmission
and has maximum gain. Additionally, when the F–P etalon angle is 1.42◦ for 0.3 mm
thickness and 0.69◦ for 0.5 mm thickness, the single-mode wavelength output is achieved
by rotating the etalon’s angle. The laser can then provide an SLM output, as observed in
Figure 7a.
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Figure 7. (a) F–P interferometer scanning spectrum and (b) linewidth measurement of the 522.67 nm
SLM laser.

According to previous accounts, the waveform was a spectral Lorentzian waveform
based on an approximation of the linewidth solution [23]. As shown in Figure 7b, we
process them using collected data. This indicates that they are all realized by software
programs. The corresponding linewidth is about 18 MHz.

As shown in Figure 8, we obtained a wavelength of 522.67 nm with respect to the
green laser using a spectrum analyzer (AQ6373, Yokogawa, Tokyo, Japan). The side
mode rejection ratio is more than 40 dB, as measured using the spectrum analyzer. Al-
though its resolution of 0.02 nm is insufficient for single longitudinal mode laser linewidth
measurements, it can still be used to measure the center wavelength and the side mode
suppression ratio.
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Figure 8. Spectrum of the 522.67 nm laser measured using the spectrum analyzer.

The SLM laser was measured using the beam profiler, and the output beam of the laser
was collected and analyzed. Its two-dimensional and three-dimensional results are shown
in Figure 9a,b. The center spotlight’s field intensity is high, the edge light’s field intensity is
weak, and the overall spot shows a near-Gaussian distribution. Beam quality factor M2 at
the maximum output power of the SLM laser is obtained using the 90/10 knife edge method.
Beam quality factor M2 was calculated to be 1.39 and 1.37 in the x- and y-axes, respectively.
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Figure 9. Measurement of the output beam profile of the 522.67 nm SLM laser. Beam intensity
distribution in 2-D (a) and 3-D (b).

In addition, the stability of the emission wavelength over time is also good. Since
two F–P etalons are introduced into the laser cavity, the output central wavelength will
change with the inclination of F–P etalons. To ensure the stable operation of the two single-
frequency lasers from the threshold to the maximum output power, we had to carefully
re-adjust the angle of the standard fixtures at each output power, which resulted in a change
in the center wavelength at different injection powers. Via the measurement of the spectrom-
eter, it was found that the variation range of the central wavelength is 522.54–522.71 nm.
However, it is worth noting that due to the unchanged cavity length and the control of
crystal temperature, the wavelength will not have a substantial tuning amount.

5. Conclusions

We created a theoretical model of a continuous-wave end-pumped Pr3+:YLF SLM laser
rate equation, and using theoretical simulations, we could describe the SLM green laser’s
output characteristics. Previous theoretical studies were conducted using a double-pulse
639 nm red laser. Most laser intracavity losses come from acousto-optic Q-switched losses
rather than F–P etalons’ losses. Since the pulsed laser is in a changing state, it does not solve
for values such as the slope efficiency and threshold of the laser. In this paper, the solution
and validation of the above parameters are obtained for continuous lasers. The current
theoretical model was validated using the real-world example of the diode-end-pumped
Pr3+:YLF laser based on dual Fabry–Perot etalons. We can obtain the highest SLM output
power of 183 mW and the associated linewidth of 18 MHz by adjusting the angle of two F–P
etalons to 1.42◦ and 0.69◦. Compared to a traditional green laser, the SLM device’s design
is straightforward and simple and represents a new technical approach to developing the
green laser.
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