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Abstract: The spectral and spatial output parameters of a two-channel, Yb-doped fiber laser operating
in the intracavity spectral beam combining mode were investigated. We showed that by using active
media with slightly different gain spectra, it is possible to implement either the spectral combining
mode of the independent laser channels or the mode of collective lasing of the channels. The difference
in the gain spectra of the active media was realized due to the difference in the threshold inverse
population in the Yb-doped fibers.
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1. Introduction

Beam combining (BC) can realize power scaling of lasers. One of the methods of BC is
spectral beam combining (SBC). In one version of this method, intracavity combining of
laser channels with different wavelengths is performed. Recent laser SBC systems based
on fiber active media reach an output power ranging from a few kW [1–3] to over 30 kW
when 96 channels are combined [4].

A number of aspects of SBC during the implementation of a set of lasers being placed
in a common cavity have been considered in different publications [5–10]. System efficiency
is analyzed with spectral and power restrictions on the number of combined laser channels,
inclusion of the influence of an aberration on the lasing parameters, etc. However, each laser
oscillator in the set is considered independently. At the same time, the situation is possible
when some of the laser channels are involved in common (collective) lasing [11–16]. Such a
regime was experimentally realized and theoretically justified in [17]. It was demonstrated
that the spectral and spatial (directions of beam propagation) parameters of collective lasing
(CL) might be essentially different from the parameters in an SBC mode with independent
channels. At the same time, CL can take a significant portion of the power from SBC lasing.
In such cases, it can be considered a negative effect.

The purpose of our current study is to investigate the possibility of both suppression
and implementation of CL in a laser with an intracavity SBC. A two-channel Yb-fiber laser
with different gain spectra was used as a model system. The difference in gain spectra
might be demonstrated by the difference in amplified spontaneous emission (ASE) spectra
of the different channels. The laser cavity was designed according to a scheme with a
common output coupler and a diffraction grating (DG) mounted under a grazing angle of
incidence [5–8,10,17] (Littman–Metcalf scheme).

The difference in the gain spectra of Yb-active fiber media can be produced in several
ways. For example, it can be caused by the difference in the length of the active medium in
different laser channels [18]. In our case, this difference was realized via the difference in
reflectivity of the fiber end mirrors. This difference led to a difference in the active media’s
threshold inverse populations in different laser channels. This, in turn, led to a spectral
change in the balance between the processes of absorption and amplification of radiation
and to a change in the spectral parameters of the gain (and ASE also) [18].
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2. Experimental Setup

The basic optical schematics of the experiment and the beams paths in the laser cavity
were designed to be similar to [17] and are shown in Figure 1. Two single-mode, silica
glass, double-clad Yb-doped fibers, A and B, were used as the active media. During the
experiment, fibers A and B could occupy position 1 or position 2 (Figure 1). The core
diameter of the fibers was about 6 µm and the numerical aperture was NAF = 0.11. The
lengths of the active fibers were practically the same and equal to 2 m. The front-end faces
(facing the output mirror, Figure 1) of the fibers were polished under an angle of 10◦. The
polished fiber ends were fixed in the common holder in such a way that the center-to-center
distance of the fibers was ∆X ∼= 125 µm, and the axes of the fibers were parallel and settled
in the XY plane. The axes of the beams leaving both fibers were parallel to each other and
with the cavity axis. Both fibers could move synchronously along the X-axis. A fiber ring
mirror with a reflectivity of RB = 90% was placed on the back of fiber B, but the back facet
of fiber A was cleaved (RA = 4%). For the pumping of the active fibers, we used 976 nm
laser diodes.
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NAF = 0.11) into quasi-parallel (2 V ≈ 5 × 10−5 rad) Gaussian beams with radii of ω ≈ 6.3 
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groove density of N = 300 g/mm. The diffracted beams fell normal on the plane output 
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rays) was located in the right focal plane of lens F. The sum of the angle of incidence θ0 
(an angle between the X-axis and the normal to the DG) and the angle of diffraction φ0 
(diffraction order equal to −1) became θ0 + φ0 = 90° at a lasing wavelength equal to 1040 
nm. The values of θ0 = 32.25° and φ0 = 57.75° corresponded to these requirements. The 

Figure 1. The optical scheme of the laser cavity and the schematic of the beam paths. “Beam” means
the central ray of the beam.

The threshold pump power of lasing channel 1 with active fiber B (position 1 (X = 0),
λ1 = 1040 ± 0.4 nm) was about 0.6 W. The threshold pump power of active fiber A (position 2,
X ∼= 125 µm, λ2 = 1033.3 nm) was near 1.4 W. The amplified spontaneous emission spectra of
active fibers A and B are shown in Figure 2a. The front ends of the fibers were placed in the
focal plane of a positive lens F, with a focal length of F = 55 mm. This lens transformed the
initial beams with a full divergence angle of 2 VF ≈ 0.22 rad (corresponding to NAF = 0.11)
into quasi-parallel (2 V ≈ 5 × 10−5 rad) Gaussian beams with radii of ω ≈ 6.3 mm at
the 1/e2 level. Furthermore, these beams were reflected by the DG with a grating groove
density of N = 300 g/mm. The diffracted beams fell normal on the plane output mirror
(Rout = 85% in a spectral range of 1000–1100 nm). The point of intersection of the grating
surface with the optical axis of the cavity and the optical axes of the beams (central rays)
was located in the right focal plane of lens F. The sum of the angle of incidence θ0 (an angle
between the X-axis and the normal to the DG) and the angle of diffraction ϕ0 (diffraction
order equal to −1) became θ0 + ϕ0 = 90◦ at a lasing wavelength equal to 1040 nm. The
values of θ0 = 32.25◦ and ϕ0 = 57.75◦ corresponded to these requirements. The diffraction
efficiency was about 60%. The distance from the DG to the output mirror was 85 mm.
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Figure 2. (a) The ASE spectra of fibers A and B and relative position of the lasing wavelengths of
fiber 1 (λ1), fiber 2 (λ2), and the collective mode (λC). (b) Dependence of lasing wavelength on the
single-fiber transversal coordinate X.

The spectral parameters of the laser output were studied using a spectrum analyzer
ASP-150C (Avesta-Project Inc., Moscow, Russia). The spectral range of the analyzer was
460–1100 nm, and the resolution was equal to 0.4 nm.

3. Results

The wavelengths λ1 and λ2 corresponding to the independent lasing of channels 1 and 2
are determined based on the positions (transverse coordinates Xi) of the active fibers and are
defined by the following equation [17]:

λ1,2 = d(sin(θ0 + arctg(X1,2/F))− sinϕ0)/m1, (1)

where d = 1/N; F = 55 mm, which is the focal length of the positive lens F; and m1 = −1,
which is the diffraction order. Figure 2b shows the calculated dependence of the lasing
wavelengths on the single-fiber transverse coordinate X.

The Xi coordinates of both active fibers are connected in our case: X2 = X1 + ∆X, where
∆X = 125 µm is the distance between the fiber centers. At X1 = 0 and λ1 ∼= 1040 nm, the
calculated value of λ2 is approximately 1033.6 nm. The calculated difference between the
wavelengths of the laser channels is practically constant in the range λ1 = 1030 ÷ 1050 nm
and is within ∆λ = λ1 − λ2 = 6.39 ÷ 6.41 nm. The wavelength of the collective wave λC
should be between the wavelengths λ1 and λ2 and should be equal to the following [17]:

λc ∼= (λ 1 + λ2)/2, (2)

The calculated value of the collective beam wavelength is equal to 1036.7 nm at X1 = 0.
The collective laser emission consists of two beams (Figure 1) that propagate at angles ±ψ
with respect to the normal to the output mirror. These angles are calculated as follows [17]:

ψ(λc) = ϕ0 ±ϕc(λc), (3)

where
ϕc(λc) = arcsin [sin(θo + arctg(X1/F))− m1λc/d]. (4)

Under our experimental conditions and X1 = 0 and λ1 ∼= 1040 nm, the inclination
angles of the output collective beams are ψ = ±1.8 mrad.

The results of the experimental studies demonstrate that the lasing spectrum and
the propagation direction of the output emission depend on the positions occupied by
the active fibers A and B. In the case when position 1 (X1 = 0) is occupied by active
fiber B, the lasing spectrum consists of two lines with maximum λ1 = (1040 ± 0.4) nm and
λ2 = (1033.3 ± 0.4) nm. This spectrum is shown in Figure 3a. These wavelengths are
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in good agreement with the calculated values for λ1 and λ2. The output radiation was
realized as a single beam propagating along the resonator axis. This is a spectral beam
combining mode.
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Figure 3. Spectra of lasing when (a) fiber B is in position 1 while fiber A is in position 2, and (b) fiber A
is in position 1 while fiber B is in position 2.

In the case where position 1 (X1 = 0) is occupied by fiber A, the spectrum presents a
single line with the maximum at (1036.3 ± 0.4) nm (Figure 3b). This value corresponds
to the wavelength of the collective beam. The laser output radiation was realized by two
beams propagating at angles of ±(1.8 ± 0.2) mrad with respect to the normal to the output
mirror. These values are in good agreement with the values predicted by Equation (3). This
is collective mode lasing.

The beam quality is the same with the measured value M2 ≈ 1.2 for all the beams,
both for single-beam and two-beam lasing.

The measured values of the laser linewidth are about 0.4 nm. However, these values
are consistent with the instrument function of the spectrum analyzer. The calculated value
of linewidth is identical for all lines and is about 0.2 nm.

4. Discussion

The presence of two different lasing modes can be explained as follows: When active
fiber B is located in position 1 (on the resonator axis, X1 = 0), it is responsible for lasing
beam 1 (λ1 = 1040 nm) (Figures 1 and 2a). Beam 2 (λ2 = 1033.3 nm) is generated by active
fiber A. The collective beam (λc = 1036.3 nm) is generated simultaneously by fibers 1 and 2.
Therefore, the gain of independent beams 1 and 2 is higher than the collective beam
(Figure 2). Therefore, lasing of beams 1 and 2 is preferable when position 1 is occupied by
fiber B.

If fiber A is located at position 1, then the situation is reversed and collective beam
lasing with wavelength λc is preferable.

This situation may be illustrated as follows: We can calculate the gain of the collective
wave Gc (λc) after a round trip of the collective beam in the cavity. In this case, we
assume that the threshold conditions for laser channels 1 (beam 1, λ1 = λc + ∆λ/2, where
∆λ = λ1 − λ2) and 2 (beam 2, λ2 = λc − ∆λ/2) are satisfied at any value of λc. At and below
this value, we assume that lasing in each of the possible channels (1, 2, and collective)
is absent. It should also be noted that the resonator length and the length of the active
medium of the collective lasing channel are twice as long as the lengths of the cavities and
the active media of channels 1 and 2, respectively.

The threshold radiation gain per pass of the active media A and B (regardless of
their position) is gA

th = 9.04 and gB
th = 1.9. The gain spectra (normalized to their maximum

values), gA(λ)and gB(λ), of media A and B in our case are well approximated by the
Gaussian function:
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gA,B(λ) = exp

[
−4ln2

(
(λ− λA,B)

2

∆λA,B
2

)]
, (5)

where λA = 1033.5 nm and λB = 1040 nm are the maxima of the spectral lines, and
∆λA = 11.5 nm and ∆λB = 11.5 nm are their full widths at half maximum. Taking into
account the above information, the gain of the collective wave after one round trip in the
resonator along its trajectory is equal to

G1A
c (λ) = gA

th
2
gB

th
2
(

gA(λ)

gA(λ+ ∆λ/2)
)

2

(
gB(λ)

gB(λ− ∆λ/2)
)

2

Rout
2D4RARB, (6)

when active fiber A is in position 1. Here, D = 0.6 is the absolute efficiency of the DG,
Rout = 0.85 is the reflectivity of the output mirror, and RA = 0.04 and RB = 0.9 are the
reflectivity of the back-end mirrors of fibers A and B, respectively.

For the case when fiber A is in position 2, the corresponding collective wave gain is

G2A
c (λ) = gA

th
2
gB

th
2
(

gA(λ)

gA(λ− ∆λ/2)

)2( gB(λ)

gB(λ+ ∆λ/2)

)2

Rout
2D4RARB, (7)

The dependencies are shown in Figure 4 for both cases.
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Figure 4. Gain of collective lasing radiation Gc after one round trip in the resonator as a function of λ

at different positions of active fibers. The same gains G1 and G2 of beams 1 and 2 are equal to the
threshold value.

As can be seen from the calculation results (Figure 4), the laser operates either in
the spectral combining mode of the independent laser channels or in the collective laser
channel mode, depending on the positions of the active fibers A and B.

In our case, the values of G1A
C and G2A

C are practically independent of the wavelengths.
The results of the analysis show that the dependence of G1A

C and G2A
C on λ occurs only

at different widths of the gain spectral lines of media A or B. For example, under our
conditions and with a possible change in the value of ∆λA or ∆λB at ±0.5 nm, the changes
in both G1A

C (λ) and G2A
C (λ) reach a twofold value within the considered spectral range of

1030–1045 nm. In the case of a higher difference between ∆λA and ∆λB, in both positions of
the fibers, it is possible to achieve either independent generation or collective one.

5. Conclusions

An explanation is proposed for the effect of collective lasing in a laser with intracavity
spectral beam combining due to the difference in gain spectra in the channels. It is shown
that the spectral (lasing wavelengths) and spatial (radiation propagation direction) laser
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output parameters differ in the independent-channel lasing mode and in the spectral beam
combining mode. This should be considered in the design of multichannel lasers. A method
for both suppression and implementation of collective lasing in a laser with intracavity
spectral beam combining is proposed and investigated.
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