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Abstract: To solve the problem of multiple sound recognition in the application of Sagnac optical fiber
acoustic sensing system, a multi-source synchronous recognition algorithm was proposed, which
combined the VMD (variational modal decomposition) algorithm and MFCC (Mel-frequency cepstral
coefficient algorithm) algorithm to pre-process the photoacoustic sensing signal, and uses BP neural
network to recognize the photoacoustic sensing signal. The modal analysis and feature extraction
theory of photoacoustic sensing signal based on the VMD and MFCC algorithms were presented.
The signal recognition theory analysis and system recognition program design were completed based
on the BP neural network. Signal acquisition of different sounds and verification experiments of the
recognition system have been carried out in a laboratory environment based on the Sagnac fiber optic
sound sensing system. The experimental results show that the proposed optical fiber acoustic sensing
signal recognition algorithm has a simultaneous recognition rate better than 96.5% for six types of
sounds, and the optical acoustic signal recognition takes less than 5.3 s, which has the capability of
real-time sound detection and recognition, and provides the possibility of further application of the
Sagnac-based optical fiber acoustic sensing system.

Keywords: Sagnac interference; photoacoustic sensing; multi-source identification; BP neural network

1. Introduction

In recent years, distributed fiber optic sensing technology has become a hot spot in
the field of sensing technology research, because of its advantages of good environmental
tolerance, anti-electromagnetic interference, and ease to realize long-distance and wide-
range monitoring. Distributed fiber optic sensing technology is widely used in the fields of
perimeter security [1], intrusion detection [2,3], and so on.

Compared with other fiber optic sensors, Sagnac interference-based fiber optic sensing
technology has been widely explored by researchers because of its higher signal-to-noise
ratio, higher sensitivity, and better adaptability to harsh environments [4–6]. In the research
of a Sagnac fiber optic sensing system, the real-time online identification of the detection
signal is an important research direction. Bao et al. used VMD algorithm to improve the
recognition accuracy of Sagnac fiber optic perimeter security system for intrusion signals [7];
Wang et al. used an ESN (echo state network)-based intrusion signal identification method
to accurately identify different types of intrusion signals in fiber optic perimeter security
systems [8]; Ren et al. proposed a high-performance railroad perimeter security system,
which based on an online TDM-FFPI (time-division multiplexed fiber-optic Fabry–Perot
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interferometric) sensor array, with an average recognition rate of 94.5% for four types of
intrusion signals [9]; Li et al. proposed a novel, generalized DAS (distributed acoustic
sensing) identification framework to be deployed on high-speed railroads for real-time
intrusion threat detection with an 85.6% recognition rate [2]; Chen et al. applied the
SMS (Single mode-Multimode-Single mode) fiber optic structure to an intrusion detection
system, thus enabling the effective identification of man-made and natural events in the
area perimeter. The above research provides solutions for intrusion signal recognition in
a variety of application scenarios. However, research on multi-target identification for
Sagnac fiber optic sensing systems deployed in harsh environments such as plateaus border
security has not been reported. Therefore, in this paper, a multi-target online recognition
algorithm study is carried out for the linear Sagnac fiber optic sound sensing system [10,11].

2. Principle
2.1. Sagnac Interference-Based Fiber Optic Acoustic Sensing Principle

As shown in Figure 1, the linear Sagnac fiber optic acoustic sensing system reduced
the length of the non-sensing signal transmission fiber by nearly half. It also reduced
the interference of environmental noise to the system at the source. In the linear Sagnac
interferometric optical path, the light emitted by a SLD (super-luminescent light-emitting
diode) the optical path from port 1 of 3 × 3 coupler C1, and is split by C1 and output from
ports 5 CCW (counterclockwise) and 6 CW(clockwise), respectively. The light output from
port 6 arrives at 2 × 1 coupler C2 after delayed fiber ring L1, and the light output from port
5 directly enters C2. The two beams of light pass through C2 propagate independently and
arrive at port 1 of 1 × 2 coupler C3 after pickup fiber ring L2, respectively. Then, the beams
are re-entered from another port when it is output from port 2 or 3 of C3 and exits from
port 1 and returns along the original optical path. Eventually, the two beams interfere at C1,
and the interfering light is output to the PD (photoelectric detector) via the 3rd port of C1.
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Figure 1. Linear Sagnac fiber optic acoustic sensor.

When the sound field is applied to the pickup L2 of the linear Sagnac fiber optic
sound sensing system, the light from the different optical paths entering the sensing system
all pass through the pickup twice; therefore, the phase sensitivity of the system can be
expressed as follows [10]:

∆ϕ =

[
8πnkL2

λ
sin
(

nπL1 f
c

)]
P (1)

where ∆ϕ denotes the phase difference between the two beams of coherent light under
the action of the sound field, n denotes the refractive index of the optical fiber, f denotes
the frequency of the sound, k is a constant influenced by the refractive index of the fiber,
the modulus of elasticity of the pick-up structure and the optical fiber bounce coefficient,
L1 is the length of the delay fiber ring, L2 is the length of the sensing fiber ring, λ is the
wavelength of light, c is the speed of light in a vacuum and P is the sound pressure acting
on the pick-up structure.
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In the linear Sagnac fiber optic sound sensing system, the interferometric light intensity
obtained from the detector can be expressed as follows [10]:

I =
1
9
[1 + cos(∆ϕ + ∆ψ)] (2)

where ∆ψ is the non-reciprocal phase shift introduced by the 3 × 3 coupler, and ∆ψ = 2π/3.
Bringing Equation (1) into Equation (2), the following is obtained:

I =
1
9

I0

{
1 + cos

[
8πnkL2

λ
Psin

(
nπL1 f

c

)
+ ∆ψ

]}
(3)

In the linear Sagnac fiber optic sound sensing system, the photodetector receives the
interferometric light signal carrying sound information and converts it into a current signal.
Through the high-speed data acquisition circuit based on the FPGA (Field-programmable
gate array) chip, the I-V conversion, amplification and filtering, analogue-to-digital conver-
sion and data storage of the broadband signal are completed to obtain the digital optical
sound sensing signal, and finally the recognition of the sound signal is completed through
the characterization of the optical sound sensing signal.

2.2. Optical and Acoustic Signal Recognition Algorithm Design

The block diagram of the linear Sagnac fiber optic sound sensing system for sound
signal recognition is shown in Figure 2. The photoacoustic signals collected by the Sagnac
fiber optic sound sensing system are preprocessed into the signal recognition system.
Firstly, the optical sound signal preprocessing is completed and sufficient sound signals
are selected as training signals for feature extraction using the VMD algorithm [12,13] and
MFCC [14]. The extracted features are used in a classification model based on BP neural
network to complete the signal classification recognition and output the sound recognition
results to be detected.
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Figure 2. Block diagram of the sound recognition system.

In the signal preprocessing stage, the VMD algorithm is used to complete the signal de-
composition [15–17]. It achieves the signal bandwidth and minimization of each mode, and
keeps the decomposed modes consistent with the original signal. VMD-based modal de-
composition increases the number of dimensions of the signal and facilitates the extraction
of more signal features. On the one hand, it increases the amount of training data; on the
other hand, the most important feature components of the signal features can be extracted
comparing with the original signal, thus reducing the degree of interference of secondary
components to the target classification and greatly improving the classification accuracy.

During signal feature extraction using the VMD algorithm, the IMF (intrinsic mode
function) is expressed as follows [15]:

In(t) = An(t) cos(φn(t)) (4)

where φn(t) is the phase of In(t), and φn
′(t) ≥ 0; An(t) is the instantaneous amplitude of

In(t), and An(t) ≥ 0; ωn(t) is the instantaneous frequency of In(t), and ωn(t) = φn
′(t);
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An(t) and ωn(t) change more slowly than the phase φn(t); and In(t) is approximately a
harmonic signal of amplitude An(t) and frequency ωn(t).

In the process of iteratively solving the variational model, the center frequencies and
bandwidths of the IMF components are continuously updated. Based on the frequency
domain characteristics of the signal, the frequency band of the signal is adaptively parti-
tioned to obtain multiple narrowband IMF components. The original signal is decomposed
into n IMF classifications via VMD, and the corresponding constrained variational model is
as follows: 

min
{In},{ωn}

{∑
n

∥∥∥∂t[(δ(t) +
j

πt ) ∗ In(t)e−jωnt]
∥∥∥2

2
}

s.t.∑
n

In = f
(5)

where {In} = {I1, I2,······, In} is the n IMF components decomposed using the VMD method,
{ωn} = {ω1, ω2,······, ωn} is the center frequency of each IMF component and δ(t) is the
unit impulse function.

To transform the constrained variational problem into an unconstrained variational
problem, a quadratic penalty term α and a Lagrange multiplier λ, are introduced in
Equation (5) to obtain the Lagrange expression as follows:

L({In}, {ωn}, λ) = α∑n

∥∥∥∥∂t

[(
δ(t) +

j
πt

)
∗ In(t)e−jωnt

]∥∥∥∥2

2
+
∥∥ f −∑ In

∥∥2
2 +

〈
λ, f −∑ In

〉
(6)

The optimal solution of Equation (6) is obtained using the alternating direction method
of the multiplicative operator to obtain the n narrowband IMF components. According
to the above principle, the photoacoustic signal is decomposed into n IMF signals via the
VMD algorithm. In this paper, the decomposition of the VMD algorithm is better when
the value of n is determined as 6, i.e., the VMD algorithm decomposes the signal into six
different modes.

After the signal modal decomposition using the VMD algorithm, the MFCC [18,19]
algorithm, which has good robustness and is not easily disturbed by fluctuations in signal-
to-noise ratio, was used to perform feature extraction of the signal. In the process of signal
feature extraction using MFCC, the Mel frequency is introduced to convert the non-linearity
of sound sensitivity to a linearized description, and the conversion relationship between
the Mel frequency and the actual frequency is as follows [20]:

m = 2595log10(1 +
f

700
) (7)

where m is the Mel frequency and f is the actual frequency. The relationship between the
Mel frequency and the actual linear frequency is shown in Figure 3a.

As shown in Figure 3b, MFCC is based on the critical bandwidth size from dense to
sparse, setting up Meier filters from low to high frequencies, and filtering the input signal
to obtain the output signal energy, which will be used as the basic features of the signal. The
MFCC parameters in the signal feature extraction process can be expressed as follows [18]:

dt =


Ct+1 − Ct,t<k
∑K

k=1 k(Ct+k−Ct−k)√
2∑K

k=1 k2

Ct − Ct−1, t ≥ Q− K

(8)

where dt denotes the t-th 1st order difference and Ct denotes the t-th standard MFCC
parameter; k denotes the time difference of the 1st order derivative, and in the process
of programming, k = 1 is usually taken; Q denotes the order of the MFCC parameter.
The MFCC parameters used in this paper consist of the static MFCC parameters of the
photoacoustic signal, the first-order difference, and the second-order difference MFCC
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parameters [21], which can be calculated by substituting the calculation results from the
above equation into Equation (8) again.
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The characteristic parameters of the photoacoustic signal obtained via MFCC are
identified using a BP neural network [22]. The topology of the neurons in the BP neural
network is represented as follows:

yn = f (
n

∑
i=0

ωi × xi) (9)

The Sigmoid function is used as the activation function in the recognition procedure,
and the expression of the Sigmoid function is shown in Equation (10), as follows:

f (x) =
1

1 + e−x (10)

The mapping of any m-dimension to n-dimension is achieved by a three-layer BP
neural network, the structure of which is shown in Figure 4.
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The number of nodes in the input and output layers in a BP network is determined
as m and n, respectively; the number of nodes in the hidden layer is l. The following
relationship is generally satisfied.

l =
√

m + n + c (11)

where c is the regulation parameter, which is taken as 1 to 10 in this paper.
The BP neural network modelling process involves two stages of forward information

transfer and reverse error transfer [23–25].
Positive information transfer process
The forward pass is the input mode, which is passed from the input layer to the output

layer via the implicit layer processing. Let the output value of the i-th node at layer m
be ym

i , the threshold value be θi, the activation value be Si, the activation function f be a
Sigmoid function, and the connection weight between this node and the j-th node at layer
m − 1 be ωij, as shown in Equation (12).{

Si = ∑
Nm−1
j=0 ωijym−1

j
ym

i = f (Si)
(12)

The forward pass process calculates the output of each network node in turn according
to Equation (12).

Reverse error transfer process
The process of adjusting the weights and thresholds of the network is carried out so

that the output value approximates the desired value, which is based on the rule of gradient
most rapid descent, i.e., adjusting the weights and thresholds along the direction of the
most rapid descent of the squared relative error. The output error function of the BP neural
network is

E(ω, b) =
1
2∑n−1

i=0

(
di − yi)

2 (13)

In Equation (13), d denotes the output layer output result and y denotes the expected
value.

The adjustment process for weights and thresholds can be expressed by the following
equation:  ωij = ωij − η1 · ∂E(ω,b)

∂ωij

bi = bi − η2 · ∂E(ω,b)
∂bi

(14)

In Equation (14), η1 is the weight learning efficiency and η2 is the threshold learning
efficiency. Each node is adjusted in the BP neural network according to Equation (14), and
the reverse transfer process is controlled by setting the error accuracy and the number of
iterations. The flow chart of photoacoustic signal recognition based on BP neural network
is shown in Figure 5.

During model training, the training samples are input to the initialized BP neural
network, and the output value and the expected error value E are obtained, through
implicit layer processing and output layer output. When the output results meet the
accuracy requirements or the number of iterations reaches the specified number, the BP
neural network modelling is completed and the recognition and classification function of
the test signal is realized.
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3. Experiment

LabVIEW is used to build a virtual instrument platform to complete the acquisition
and storage of signals. Feature extraction of photoacoustic signals based on VDM and
MFCC algorithms is carried out using Matlab 2018b, and the classification and identification
of signals is completed by designed BP neural network algorithms.

In this paper, six types of sounds are selected as experimental test sound signals: small
helicopter, Boeing aircraft, Hummer, gale, quadrotor UAV and fixed-wing UAV. Figure 6
shows the Sagnac-based photoacoustic sensing system acquisition completed with sound
signal detection, and the photoacoustic sensing signal obtained. In the experimental test,
six different sound signals were collected. For every sound, five groups of signals were
collected, and every group contains 100 signals. Thus, the total number of response signals
were 3000. During the experiments, 90% of the signals from each group were randomly
selected as training samples and the remaining 10% were used as test samples to verify the
accuracy of the recognition algorithm. The number of samples used for training was 2700
and the number of samples used for testing was 300, and the training of the recognition
model, the accuracy of the recognition system and the testing of the recognition time were
completed, respectively.

As shown in Figure 7a, the training accuracy tended to be stable and converged around
93% after 150 rounds. The test accuracy also fluctuated up and down 93%, while the curve
fluctuation is slightly greater than training curve. These results show that the training
accuracy and test accuracy remained consistent. The loss curves are shown in Figure 7b.
The training loss curve after 150 rounds tended to be steady and converged around 0.1
and 0.2, respectively, while the test loss curve also tended to be steady after 150 rounds,
and the test loss gradually stabilized at about 0.2. The training loss and test loss were kept
consistent too.
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As shown in Table 1, the BP neural network achieved high recognition rates for
the six sounds, with 100% accuracy for the small drones in trials 1 and 2; the third trial
achieved 100% identification accuracy on Quadrotor UAV; the fourth trial achieved 100%
accuracy in the identification of fixed-wing UAVs. The lowest recognition accuracy was
the fourth recognition of Hummer with an accuracy of 90.91%, while the rest of the tests
were above 92%, with an average accuracy of 96.50% for the five experiments. As can
be seen from Table 2, the average training time of the BP neural network is 42 s, and
the average recognition time is 5.3 s, with the ability to achieve real-time monitoring of
intrusion disturbances.

Table 1. BP neural network sound signal recognition accuracy.

Number of
Experiment

Small
Helicopter

(%)

Boeing
Aircraft (%) Hummer (%) The Wind

(%)
Quadrotor
UAV (%)

Fixed-Wing
Drone (%)

Average
Accurancy

(%)

1© 100 95.74 94.64 97.06 94.87 96.97 96.40
2© 100 94.29 97.5 92.31 97.62 97.44 96.53
3© 96.33 93.10 96.55 95.45 100 97.44 96.31
4© 94.23 95.74 90.91 94.12 97.22 100 96.00
5© 95.45 97.92 96.02 92.59 97.62 97.83 97.28
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Table 2. BP neural network recognition time.

First Time/s Second Time/s Third Time/s Fourth Time/s

BP neural network
training 40 43 43 42

BP neural network
recognition 6 5 5 5.3

Specific analysis of the first set of experiments in Table 1, using 1, 2, 3, 4, 5 and 6 as
labels for small helicopters, Boeing aircraft, Hummer, the wind, quadrotor UAV and fixed-
wing drones, respectively, the 250 randomly selected test sets in the first set of experiments
contained 41 sets of categories 1, 47 sets of categories 2, 56 sets of category 3, 34 sets of
category 4, 39 sets of category 5 and 33 sets of category 6. The test sets were classified and
identified, and the results of the BP neural network recognition of the six sound signals
were analyzed as shown in Figure 8.
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As shown in Figure 8, the recognition results of the BP neural network for 250 sets of
test samples showed nine recognition errors, where the predicted sounds did not match
the actual sounds. To show the statistical results of the misclassification more intuitively,
the labels of the misclassified data and their original information were summarized.

As shown in Table 3, of the nine false identifications for this experiment, there were
three false identifications for the Hummer, two false predictions each for the Boeing and
quadcopter UAVs, and one false prediction each for the Gale and fixed-wing UAVs, for
an overall false alarm rate of less than 3.6% for the recognition system. The causes of the
recognition errors are the small sample size of the BP neural network input data and the
lack of optimization of the sound signal feature extraction algorithm.

Table 3. Statistical table of misidentifications.

Data Number Actual Label Predictive Label Data Number Actual Label Predictive Label

33 Hummer The wind 154 Boeing aircraft Hummer
42 Fixed-wing drone Small helicopter 172 Hummer Boeing aircraft
61 Hummer The wind 176 The wind Hummer
100 Quadrotor UAV The wind 249 Quadrotor UAV The wind
151 Boeing aircraft The wind
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4. Conclusions

Based on the Sagnac optical fiber acoustic sensing system, a feature extraction algo-
rithm based on the fusion of the VMD algorithm, the MFCC algorithm and a BP neural
network classification recognition network was proposed, as well as a multi-target recogni-
tion system for optical acoustic signals. Simultaneous multi-target recognition experiments
were completed for six types of sound signals including small helicopters, Boeing aircraft,
Hummer, the wind, quadrotor UAV and fixed wing drones. A total of 3000 sets of data
were tested in the experiment; 2700 sets of measurement signals were randomly selected as
training samples for training the neural network, and the remaining 300 sets were used
as test samples to verify the recognition accuracy. The experimental results show that the
accuracy of the BP neural network algorithm is better than 96.5% for the six classification
recognition of the response signals, and the recognition time of the photoacoustic signal is
less than 5.2 s. In the future, studies need to focus on increasing the number of training
samples and optimizing the feature extraction algorithm to further improve the recognition
accuracy of the system.
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