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Abstract: Optical phased arrays (OPAs) have great potential in the fields of integrated solid-state
light detection and ranging. The ranging distance of an OPA can be further enlarged by improving
the directionality of the grating antenna. A high-directionality silicon nitride grating antenna with
a distributed Bragg reflector (DBR) is proposed. The DBR consists of a stack of silicon nitride
and silicon dioxide layers, which are utilized as the bottom reflectors to further reduce downward
radiation. In a simulation, the directionality of the antenna exceeded 71.6% within the wavelength
range of 1420–1740 nm. Additionally, the directionality of the antenna can achieve 97.6% at 1550 nm.
Compared to a grating antenna without a DBR, the directionality is improved by 1.52 dB. Moreover,
the proposed silicon nitride grating antenna has a large fabrication tolerance and is compatible
with CMOS fabrication techniques, showing great potential for enhancing the performance of the
integrated optical phased array.

Keywords: grating antennas; high-directionality; silicon nitride; distributed Bragg reflector

1. Introduction

The integrated optical phased array (OPA) which uses silicon photonic technology has
attracted tremendous attention as a non-mechanical beam steering device due to its high
level of integration and compatibility with CMOS technology [1–3]. It has been widely used
in various applications that require precise beam steering and high directionality, including
light detection and ranging (LiDAR) [4,5], optical communication [6], imaging [7,8], and
biosensors [9]. The grating antenna is one of the key components of the integrated OPA
which can convert the light in the waveguide to free-propagating optical radiation and
vice versa [10]. Normally, the maximum ranging distance of an OPA is directly determined
by the output power of the grating antenna [11–13]. However, the silicon-based grating
antenna cannot sustain a very high input optical power due to its nature of two-photon
absorption and free carrier absorption [14], which limits its capability in handling high-
power signals. In contrast, silicon nitride exhibits high-power-handling capabilities with
low nonlinear absorption and low-loss-propagating properties in a broad wavelength
range [15,16], making it a promising alternative material to enhance the performance of the
grating antenna.

Moreover, the output power can be further enhanced by fully using the input optical
power, i.e., by improving the directionality of the grating antenna. The directionality is
defined as the ratio of upward light power to the total out optical power; however, there
is an unavoidable downward radiation of power to the substrate, resulting in poor direc-
tionality. To solve this problem, various approaches have been proposed. The maximum
upward directionality of the antenna can reach over 90% through the use of a dual-level
or three-layer grating antenna to suppress the bidirectional radiation, but the fabrication
complexity is significantly increased [13,17]. The other approach is to use bottom reflectors
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such as metal mirrors or bottom gratings to block the downward radiation [18,19]. How-
ever, these traditional reflectors are fragile at high temperatures, and the fabrication process
is relatively complex and incompatible with CMOS fabrication.

In this paper, a high-directionality silicon nitride grating antenna is proposed which
consists of a silicon nitride grating with a low nonlinear effect and large damage threshold
and a bottom reflector. The DBR is composed of a stack of silicon nitride, and silicon
dioxide is used as the bottom reflector to reduce the downward radiation. The upward
directionality can be improved to 97.6% at a wavelength of 1550 nm, offering a promising
means of increasing the output power of the integrated optical antenna, with great potential
for the integrated OPA.

2. Structure and Principle

A three-dimensional (3D) schematic of the silicon nitride antenna is shown in Figure 1a.
It consists of the total thickness of the silicon nitride Htotal = 400 nm and a distributed Bragg
reflector (DBR). A cross-section of the silicon nitride antenna is illustrated in Figure 1b,
where a DBR consisting of a multilayer stack is deposited on the silicon substrate, and a
shallow etched silicon nitride grating is placed on the buried oxide (BOX) layer (HBOX).
Additionally, a silicon dioxide cladding layer is deposited to protect the device.
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Figure 1. (a) Three-dimensional schematic of the Si3N4 antenna with a multiple-layer DBR; (b) cross-
sectional view of 400 nm thick Si3N4 antenna with a DBR and the distribution of power when light is
coupled to the grating; (c) xy-view schematic of the Si3N4 antenna.

Beam steering on the θ-axis can be achieved by changing the wavelength of the
input light, and the corresponding relationship can be expressed by the first-order Bragg
condition [20]:

sinθ =
Λ·ne f f − λ

Λ·nc
(1)

where nc is the refractive index of the cladding layer, λ is the wavelength of the input light,
Λ is the period of grating, neff = ff ·neff1 + (1−ff )·neff2 is the effective index of the waveguide
grating, ff is the filling factor, which is defined as the ratio of grating teeth to the period,
neff1 is the refractive index of the grating teeth (Si3N4), and neff2 is the refractive index of
the etched region.
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Beam steering on the ϕ-axis can be achieved by changing the phase difference (∆φ) of
the adjacent waveguides. If the phase difference between the adjacent waveguides is equal,
the beam steering at ϕ-axis can be calculated as [21]:

sinϕ =
λ·∆φ

2π(d + w)
(2)

where ∆φ is the uniform phase difference between adjacent channels, and d is the spacing
width between the waveguides.

The beam width of a 2D array can be estimated by [21,22]:

∆θFWHM =
0.886λ

Lcosθ
, ∆ϕFWHM =

0.886λ

Ndcosϕ
(3)

where ∆θFWHM and ∆ϕFWHM are the full widths at half-maximum (FWHM) of the main
lobes along the θ-axis and ϕ-axis, respectively, N is the number of the antennas, and L is
the length of the antenna. Equation (3) shows that the beam width is determined by the
aperture (Nd) of the optical antenna array. A narrow beam can be realized by increasing
the number of optical antennas and the spacing width; however, the beam steering range is
inversely proportional with the spacing width. Therefore, a trade-off is needed.

Figure 1b illustrates the various power distribution channels that occur when light is
coupled to a silicon nitride antenna. Pup and Pdown represent the upward and downward
power, respectively, while PT and PR denote the transmitted and reflected power. In order
to reduce Pdown, a bottom reflector incorporating a multilayer DBR is employed.

3. Simulation and Optimizing
3.1. High Directionality Design

The three-dimensional (3D) finite-difference time-domain (FDTD) method is used to
optimize antenna structures to achieve a high level of directionality. In a simulation, the
fundamental transverse electric (TE) mode was used. Monitors were added in various
directions to express the upward, downward, transmitted, and reflected power radiating
from the grating antenna.

In order to obtain an optimal etching depth, the transmission power was calculated by
varying Ht from 0 nm to 400 nm, as shown in Figure 2a, and Ht = 280 nm was chosen within
the sweep range. Figure 2b illustrates the power distribution across various transmission
directions as a function of filling factor variations. The filling factor affects the performance
of the grating antenna by altering its effective index. The results indicate that an optimal
filling factor is ff = 0.45.

A BOX layer between the grating antenna and the reflector was employed to prevent
power leakage. The constructive interference between the reflected light and the upward
radiated light can be achieved by changing the BOX thickness and therefore further re-
ducing the loss. As shown in Figure 2c, the transmission power is highly dependent on
the BOX thickness (Hbox). According to the simulation, the most optimal BOX thickness
is 1.53 µm. However, Pup varies slightly in the range of 1.53 µm ± 60 nm. As shown in
Figure 2d, although parameters such as the filling factor and etch depth were optimized,
the downward radiation (Pdown) still occupied quite a large portion of the total scattered
power loss without a DBR. Then, a DBR consisting of a high-index material, Si3N4, and
a low-index material, SiO2, was added to further reduce the downward radiation. The
maximum reflectivity can be achieved when the constructive interference occurs, and
the thicknesses of the Si3N4 and SiO2 layers are determined based on λ/4n [22], where
λ represents the center wavelength of the source and n denotes the refractive index of
materials. The thicknesses for Si3N4 and SiO2 were calculated to be 194 nm and 268 nm at
λ = 1550 nm, respectively.
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Figure 2. (a) The power with variations in the etch depth (Ht) at a wavelength of 1550 nm; (b) the
power with variations in the filling factor at a wavelength of 1550 nm; (c) after normalization, the
power with variations in the HBOX at a wavelength of 1550 nm; (d) the optimized power distribution
of various transmission spectrum directions with an etch depth of 0.28µm and a fill factor of 0.45.

As Figure 3a shows, the center wavelength was fixed at 1550 nm, the reflectivity
increased proportionally with the number of layers N, and the curve tended to be smooth
when N ≥ 6, which attained 98% at N = 8. In order to avoid the of vertically incident effect
of light on the grating antenna, an angle = 9◦ was chosen, and the corresponding period
was 1.2 µm according to Equation (1). The transmission spectrum is depicted in Figure 3b
as wavelength sweeps, and the DBR structure exhibits a strong reflection effect in a quite
large bandwidth.
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The variations in the reflectivity and the thicknesses of the Si3N4 film and the SiO2 film
were calculated and are shown in Figure 4a,b. It can be seen that our proposed structure
has quite a large fabrication tolerance.
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variation when the SiO2 film is 268 nm; (b) shows the relationship between the reflectivity spectra
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Figure 5 illustrates the upward directionality of the antenna corresponding to the dif-
ferent wavelengths. It shows that the antenna exhibits an upward directionality exceeding
71.6% within the wavelength range of 1420–1740 nm. Moreover, the upward directionality
value is 97.6% at a wavelength of 1550 nm. Compared to the grating antenna without a
DBR, the directionality is improved by 1.52 dB. From the comparison, Table 1, our pro-
posed high-directionality silicon nitride grating antenna with a DBR demonstrates quite
great performance.

Photonics 2023, 10, x FOR PEER REVIEW 6 of 8 
 

 

 
Figure 5. Upward directionality of the antenna. 

3.2. Array Sweep Characteristics 
The characteristics of the antenna array were simulated and demonstrated. Due to a 

server performance limitation, a four-channel OPA antenna with a spacing width (d) of 1 
µm between the waveguides was adopted. Consequently, the FWHM of the main lobe 
along the 𝜑 -axis (Δ𝜑 ) of antenna appeared to be large. But by increasing the antenna 
aperture, the Δ𝜑  could be significantly reduced, as indicated by Equation (3). 

The far field of the antenna at a wavelength of 1550 nm is simulated in Figure 6a, and 
a narrower beam in the = 𝜑-axis can be achieved by enlarging the spacing width. Figure 
6b demonstrates that the proposed integrated Si3N4 grating antenna with a DBR can 
effectively control the emission angle along the 𝜃-axis by adjusting the wavelength from 
1500 nm to 1600 nm. Figure 6c shows that beam steering on 𝜑-axis can be achieved by 
changing the phase difference of the adjacent waveguides. 

 
Figure 6. (a) Far-field spot; (b) beam profiles depicted as wavelength sweeps in the 𝜃 -axis by 
changing the wavelength from 1500 nm to 1600 nm; (c) beam profiles as phase difference changes 
in the 𝜑-axis by changing the phase difference from 0° to 150°. 

Figure 5. Upward directionality of the antenna.

Table 1. Comparison of the performances of the different antennas.

Ref. Method Highest
Directionality Wavelength Range

[23] Dual-layer gratings antenna 96.7% 875–1100 nm

[24] Dual-layer waveguide
grating antenna 90% 1500–1600 nm

[25] Two silicon nitride layers 93% 1550 nm
This work Distributed Bragg reflector 97.6% 1420–1740 nm

3.2. Array Sweep Characteristics

The characteristics of the antenna array were simulated and demonstrated. Due to
a server performance limitation, a four-channel OPA antenna with a spacing width (d)
of 1 µm between the waveguides was adopted. Consequently, the FWHM of the main
lobe along the ϕ-axis (∆ϕ) of antenna appeared to be large. But by increasing the antenna
aperture, the ∆ϕFWHM could be significantly reduced, as indicated by Equation (3).
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The far field of the antenna at a wavelength of 1550 nm is simulated in Figure 6a,
and a narrower beam in the = ϕ-axis can be achieved by enlarging the spacing width.
Figure 6b demonstrates that the proposed integrated Si3N4 grating antenna with a DBR
can effectively control the emission angle along the θ-axis by adjusting the wavelength
from 1500 nm to 1600 nm. Figure 6c shows that beam steering on ϕ-axis can be achieved by
changing the phase difference of the adjacent waveguides.
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4. Conclusions

In conclusion, a high-directivity Si3N4 grating antenna with a DBR is demonstrated.
The directionality of the antenna is optimized by employing a DBR composed of a stack
of silicon nitride and silicon dioxide as the bottom reflector. The results indicate that the
directionality reaches 97.6% at a wavelength of 1550 nm and exceeds 71.6% within the
wavelength range of 1420–1740 nm. The two-dimensional beam steering of our proposed
antenna array is 4.09◦ × 6.4◦ (θ × ϕ) and can be further enlarged by utilizing a larger
wavelength range and phase difference. Moreover, the optical antenna array with both
a narrow beam and large steering range can be realized by using a nonuniform spacing
width of the antenna array. This work provides a promising candidate for realizing high-
directionality grating antennas in the integrated OPA.
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