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Abstract: Station arrangement optimization of photoelectric theodolites in shooting ranges presents
a non-convex and non-linear problem, and the method required to seek the global optimal solution
remains an open question. This paper proposes an efficient traversal algorithm that could solve
this problem by utilizing discretization of regions with a finite length of mesh, in which both the
terrain of the station arrangement region and the observation airspace region are discretized through
triangulation. To enhance the computational efficiency of the traversal algorithm, two strategies are
employed to speed up the calculation: reducing the dimension of the observation airspace and using
the Euclidean distance matrix to compute the intersection angle. After the global optimal solution
with discrete finite precision was obtained through the traversal algorithm, it was then used as the
initial points for local mesh refinement and to implement gradient-based optimization in order to
further improve the precision of the solution. The proposed approach is demonstrated to be practical
through application to numerical examples used for the optimization of station arrangements that
involve two to four stations.

Keywords: traversal algorithm; photoelectric theodolite; optical measurement; station arrangement
optimization; discretization; non-linear optimization; dimension reduction

1. Introduction

Optical measurement and radar measurement systems are key components in shooting
ranges; each system has its own advantages. Optical measurement devices can achieve
passive measurement by receiving image information from the measured target, and they
have the characteristics of good concealment, presenting projected two-dimensional images
of the targets, and high positioning accuracy, etc. [1]. Photoelectric theodolite is the optical
measurement device most widely used to measure the external ballistic parameters of
the flying targets in shooting ranges, as its dynamic angular measurement accuracy can
reach arc-second level [2]. Where the dynamic angular measurement accuracy is concerned,
station arrangement optimization is one of the most critical methods used to improve
the measurement accuracy of the target. This process involves optimizing the location of
the photoelectric theodolite stations based on the ballistic range of the test target, target
characteristics, equipment performance, terrain, etc. [3].

The station arrangement optimization problem for bearing measurement and distance
measurement devices (or time-of-arrival measurement devices) is still challenging due to
its non-convexity and non-linearity. Currently, there is still no widely recognized optimiza-
tion algorithm that can efficiently and stably achieve the global optimal solution, while
local optimization is usually infeasible. To address this issue, researchers have proposed
theoretical analysis [4–9], as well as various optimization algorithms, including the genetic
algorithm [10–15], simulated annealing algorithm [16,17], and particle swarm optimization
algorithm [18,19], to optimize the station arrangement. The studies discussed in [4,8,9]
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investigated the optimization of distance-measuring devices, using the Cramer–Rao bound
and the geometric dilution of precision (GDOP) as objective functions. The papers [5–7]
optimized the station arrangement of bearing-only positioning devices using GDOP and
the minimum circular probable error as objectives. However, studies based on theoretical
analysis and mathematical calculation lack a comprehensive consideration of practical
constraints, such as the position changes in the test targets, observation conditions, geo-
graphical environment, etc. As a result, these methods have poor practical applicability.
The studies discussed in [10,11,17] used the genetic algorithm to optimize node arrange-
ment in WSNs (Wireless Sensor Networks) based on the distance range of the sensors,
though paper [17] combined this approach with the simulated annealing algorithm. The
papers in [12,14,15] established different mathematical models for optimal arrangement of
radar netting, among which distance is one of the main factors. They adopted the genetic al-
gorithm to solve the problems. Similarly, the studies discussed in [18,19] also implemented
radar placement, though they used the particle swarm optimization algorithm. The station
arrangement optimization problem of photoelectric theodolite was solved by introducing
niche technology into genetic algorithms in [13]. Ref. [16] coped with the sensor placement
problem for target location under constraints of cost limitation and distance range coverage
using the simulated annealing algorithm. But, in general, when solving non-linear station
arrangement optimization problems using heuristic optimization algorithms, the stability
is insufficient, and these algorithms usually fail to find all of the global optimal solutions.

In order to address the above challenges, this paper proposes an efficient traversal
algorithm to seek a global optimal solution to the station arrangement optimization problem
stably that ensures discrete finite precision. We adopt the method of reducing the discrete
dimension of the observation airspace and calculating the intersection angle using the
Euclidean distance matrix to improve the efficiency of the traversal algorithm. Next,
the precision of station arrangement is further enhanced using local grid refinement and
the local optimization method with the gradient information. Computational examples
demonstrate the effectiveness of the proposed method.

The structure of this paper is organized as follows: Section 2 presents the basis of
tracking the test target using the method of intersection measurement and by establishing
a mathematical optimization model to solve the station arrangement problem; Section 3
discretizes the station arrangement region and observation airspace and provides a solution
to the problem of terrain obstruction during measurement; Section 4 focuses on accelerating
the computation of the traversal algorithm and enhancing the precision of the station
arrangement; the applicability of the proposed method is demonstrated through an example
and the case of relay station arrangement in Section 5; and, finally, Section 6 concludes
the paper.

2. Optimization Model of Station Arrangement
2.1. Principle of Intersection Measurement

The photoelectric theodolite was classified as a type of angular optical measurement
device. Once the directional calibration was completed, a single photoelectric theodolite
only measured the elevation angle E and the azimuth angle A between its location and
the flying target. Taking measurements using the photoelectric theodolite also required
consideration of factors such as the curvature of the earth, measurement errors, station
elevation, etc. Processing methods used for these factors can be found in [20–24] and will
not be reiterated in this study. As depicted in Figure 1, given the distance R between two
stations, elevation angle E and azimuth angle A, as well as the direction angle α and obser-
vation distance d, could be derived by solving the measurement triangle. Subsequently, the
position of the test target was determined based on the stations’ locations.
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Figure 1. Method of intersection measurement.

2.2. Objective Function

Intersection angle θ (shown in Figure 1) was the main factor that affected measure-
ment precision when measuring with two photoelectric theodolites. According to refer-
ences [25,26], the estimated standard deviation of the test target position coordinate could
be calculated as follows:

σ = max(σx, σy, σz) (1)

where σx refers to the estimation error of the direction vector perpendicular to the measure-
ment baseline on the horizontal plane, σy is the estimation error of the target height, and
σz is the estimation error of the direction of the measurement baseline. The highest mea-
surement precision was achieved when the intersection angle was 90◦, as demonstrated in
Figure 2. To ensure high measurement precision, the main objective of station arrangement
optimization was min max|θ − 90◦|.
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2.3. Constraint Conditions

The constraints of the station arrangement optimization problem of photoelectric
theodolites were determined based on the performance parameters of the photoelectric
theodolites, observation conditions, and terrain conditions of the stations. These constraints
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include the observation distance, elevation angle, solar exclusive angle, distance between
two stations, intersection angle, and the obstruction caused by the terrain during the
measuring process. The elevation angle referred to the angle between the measurement
baseline and the horizontal plane on which the station was located. The solar exclusive
angle, which was the angle between the sun, photoelectric theodolite, and target, also needs
to be considered to prevent interference caused by sunlight. The relationship between the
measurement precision and the intersection angle, as previously discussed in Section 2.2,
was generally required to be 60–120◦. The distance between two stations could not be too
short, as shortness could result in a small intersection angle. Additionally, factors such as
observation horizon, traffic, communication, and living conditions were also considered, as
the stations should not be placed on unoccupied peaks or mountainsides.

For the station arrangement optimization problem of photoelectric theodolites, the
station arrangement region was specified based on a range of longitudes and latitudes, and
the terrain was composed of multiple continuous and non-convex triangular facets. The
measurement station could measure multiple maneuvering test targets, and its observation
range encompassed several target trajectories. Therefore, the observation airspace was
a three-dimensional domain. To facilitate calculation, a unified coordinate system was
established in the station arrangement optimization model, which converted latitude and
longitude information into coordinate information. After the optimization was completed,
the station coordinates were converted back to latitude and longitude.

As shown in Figure 3, we selected a zero-meter elevation point as the coordinate origin
and establish a Cartesian coordinate system, with the coordinate of the target point in the
airspace Ωa being X =

[
x y z

]T , the coordinate of the point in the station arrangement

region Ωg being Xi =
[
xi yi zi

]T , and the sunlight direction being the constant vector

Si =
[
xi yi zi

]T .
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We assumed that the performance parameters of the two photoelectric theodolite
stations were identical. According to the objective function and constraint conditions
outlined above, a mathematical model for station arrangement optimization could be
written as follows:

min
Xi∈Ωg

f0 = max
X∈Ωa

∣∣θ − π
2

∣∣
s.t. dimin ≤ di ≤ dimax, Eimin ≤ Ei ≤ Eimax, Si ≥ Simin, i = 1, 2

θmin ≤ θ ≤ θmax
|zi − z| ≤ C1, |∇zi| ≤ C2, i = 1, 2
lXXi ∩Ωg = ∅, Xi ∈ Ωg, X ∈ Ωa, i = 1, 2

(2)
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where
di = ‖X− Xi‖2, i = 1, 2 (3)

Ei = arcsin
z− zi

di
, i = 1, 2 (4)

Si = arccos
XS

T(X− Xi)

di‖XS‖2
, i = 1, 2 (5)

θ = arccos
(X− Xi)

T(X− Xj)

didj
, i = 1, j = 2 (6)

here, di, Ei represents the observation distance and elevation angle between the ith photo-
electric theodolite station and the target, respectively; Si represents the solar exclusive angle;
θ represents the intersection angle between the two stations and the target; z represents the
mean value of the station arrangement region; and ∇zi represents the gradient value of the
station situation. These measures represent the criteria used to judge whether a station is
located on a mountain. lXXi represents the line segment between the station and the target.
C1 and C2 are two constants, which are the height and gradient of the mountain peaks
determined by the terrain.

As derived from Equation (2), the station arrangement optimization problem con-
stituted a non-linear programming problem with a non-convex objective function and
constraint conditions, and using a local search algorithm to solve the problem was usually
not a good choice. Even if the station arrangement region and observation airspace were
divided into multiple convex polyhedrons, the non-convexity of the optimization problem
remained unchanged. Moreover, the station arrangement region and observation airspace
could also be artificially specified as discrete points, which were hard to divide into convex
sets. To ensure that the station arrangement optimization problem stably converges to
create a global optimal solution, it is currently true that the use of the traversal algorithm is
the most viable strategy.

3. Discretization of Optimization Model

The purpose of using the traversal algorithm was to discretize the station arrangement
region and the observation airspace into grid nodes. Since the terrain does not have
locally severe oscillations and the observation airspace is a continuous three-dimensional
region, while both the objective and constraint functions are continuous, the grid density
is sufficient to ensure continuity within the unit. Therefore, during computation, discrete
nodes could be used to replace the terrain of the station arrangement region and the
observation airspace.

3.1. Discretize Optimization Model

In order to obtain accurate information regarding the elevation and terrain features
of the station arrangement region and enhance the practicality and accuracy of the opti-
mization results, this paper utilized detailed digital elevation model (DEM)-based terrain
information about the region. DEM is a discrete mathematical expression of the Earth’s
surface terrain that records elevation values on a regular grid [27]; it can be expressed
as follows:

Vi = (Xi, Yi, Zi), i = 1, 2, . . . , n (7)

where (Xi, Yi) represents the coordinate of somewhere, and Zi is the corresponding ele-
vation. The DEM plays a crucial role in conducting mapping and environmental spatial
analysis in fields such as landslide, route optimization, and terrain analysis [28]. The
relevant DEM data were extracted based on the latitude and longitude range of the station
arrangement region, and the terrain could be obtained through interpolation. Due to the
large amount of data in the commonly used 90-m DEM resolution, it was difficult to traverse
so many discrete points. Therefore, the terrain of the station arrangement region needed to
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be reconstructed, with sparser discrete points used in flat areas and denser points used in
complex areas. Using a regular rectangular grid to represent complex terrain could lead to
a loss of terrain accuracy within the units; thus, a triangular mesh was more suitable for
describing the scale of variation in the terrain. As shown in Figure 4, through triangulation,
the station terrain was represented by multiple triangular planes, and discrete triangular
nodes with elevation information were obtained.
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Observation airspace was a three-dimensional domain, which was represented as a
three-dimensional entity in the geometric model. When discretizing 3D geometric entities,
tetrahedron or hexahedron subdivision was typically employed. The station arrangement
region that consisted of triangular surfaces ∆Γg after discretization is recorded as Γg, and the
number of terrain grid nodes is recorded as n. Observation airspace is Γa after discretization,
and the number of its grid node was m; thus, the original optimization problem is expressed
as follows:

min
Xi∈Γg

f0 = max
X∈Γa

∣∣θ − π
2

∣∣
s.t. dimin ≤ di ≤ dimax, Eimin ≤ Ei ≤ Eimax, Si ≥ Simin, i = 1, 2

θmin ≤ θ ≤ θmax
|zi − z| ≤ C1, |zi − zia| ≤ C2, i = 1, 2
lXXi ∩ ∆Γg = ∅, Xi ∈

{
Γg1 . . . Γgn

}
, X ∈ {Γa1 . . . Γam}, i = 1, 2

(8)

where zia is the average elevation of the station’s adjacency points.

3.2. Solution to Terrain Obstruction

Current research typically places no spatial restrictions on the station arrangement
region, meaning that the devices can be located at any position along a two-dimensional
plane. However, this method is only applicable to flat terrain characterized by small altitude
changes in the station arrangement region, as in reality, measurement stations are affected
by complex terrain when they are located on the ground. In particular, when measuring
low-altitude flying targets, there is a significant deviation between the computation results
and the actual measurement results due to elevation differences between the measurement
stations. Moreover, the observation of the station may also be obstructed by terrain, result-
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ing in unobservable areas being present when taking measurements using photoelectric
theodolites (as shown in Figure 5, where the observation airspace is denoted as Ωa).
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Therefore, the geographical environment in which the photoelectric theodolite station
is located should be taken into consideration. During the process of measuring, the
measurement baseline should not be obstructed by mountains or other obstacles; otherwise,
the target may disappear from sight. After the station arrangement region and airspace
was discretized into grid nodes, the problem of whether the optical line of the photoelectric
theodolite is obstructed by mountains was equivalent to the positional relationship between
the line segments that extended from the station to points in the observation airspace
and the faces of triangular meshes. If the line segment intersected with the faces, we
considered that the optical line of the photoelectric theodolite would be blocked when
taking measurements.

As shown in Figure 6, a triangular terrain grid is the triangle ABC, the station is the
ray source O, and the direction of station to observation airspace is D; thus, any point P
within triangle ABC satisfies

P = (1− u− v)A + uB + vC, 0 ≤ u, v ≤ 1 (9)

When the ray OD intersects the triangle ABC, it satisfies

O + tD = A + u(B− A) + v(C− A), t > 0 (10)

where u, v, t are parameters, meaning that they do not have actual meaning. Equation (10)
can be expressed using the vector form as follows:

[
−D B− A C− A

] t
u
v

 = O− A (11)

From Cramer’s rule, we know that t
u
v

 =
1∣∣−D B− A C− A

∣∣

∣∣O− A B− A C− A

∣∣∣∣−D O− A C− A
∣∣∣∣−D B− A O− A
∣∣
 (12)

If t ≥ 0, 0 ≤ u, v ≤ 1, the line OD intersects with the triangle ABC; if O is an infeasible
station site, the optical line will be obstructed by the mountain during measuring.
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4. The Fast Traversal Algorithm

Though the computational efficiency of the traversal algorithm is often criticized, it
remains a trustworthy method that can be used to solve the station arrangement optimiza-
tion problem. It has the advantage of obtaining accurate elevation information related to
the discrete traversal points and the stable convergence to the optimal solution without
relying on the objective function and constraints. With advancements in computer capacity
for processing large matrices, the station arrangement optimization problem could be
efficiently using solved the traversal algorithm. When using the algorithm to solve this
problem, it was necessary to calculate the numerical solution of each node, determine
whether it is a feasible point that satisfies all constraints, and compute the optimal solution
based on the objective function value among the feasible points.

The optimization model for station arrangement was characterized by the constraint
of the intersection angle requiring a significant number of traversals, which were typically
several orders of magnitude greater than other constraints. This high technical constraint
was required because it simultaneously affects the configurations of two stations. Assuming
that the number of discrete nodes for the station arrangement region and observation
airspace are denoted as N and M, respectively, once the intersection angle is calculated
using the traversal algorithm, it would require a maximum of N2M loop computation.
Instead of using a brute-force method, two strategies were employed in this paper to
enhance the algorithm’s running efficiency in terms of solving the station arrangement
optimization problem. The first strategy was to reduce the discrete dimension of the
observation airspace to decrease the number M, while the second strategy was to employ
the Euclidean distance matrix to reduce the number of loop computations.

4.1. Acceleration Strategy
4.1.1. Reducing the Discrete Dimension of the Airspace

The number of discrete points was a pivotal factor that affected the accuracy and
efficiency of the traversal algorithm. As the number increased, the solution became in-
creasingly precise, though it gained computational complexity. In this section, based on
the method of reducing the discrete dimension of the observation airspace, fewer discrete
points were needed without affecting the precision.

To demonstrate the feasibility of reducing the discrete dimension of the observation
airspace to solve the station arrangement optimization problem of photoelectric theodolites,
we introduced the following Corollaries.

Corollary 1. If the boundary of the observation airspace is feasible, the entire observation airspace
is also feasible.
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Proof. Taking the intersection angle constraint as an example, as shown in Figure 7,
P(x0, y0, z0) represents a point interior of the observation airspace, and X1, X2 represent
the two photoelectric theodolites. There is a ball B contained in the observation airspace
with a center P and radius ε; thus, the line through point P that is perpendicular to the
straight line X1X2 must intersect with ball B at two points P1(x1, y1, z1) and P2(x2, y2, z2).
P, P1, P2, X1, X2 are located on the same plane, where P1 > P, P2 < P and θ2 > θ, θ1 < θ.
Therefore, for any point P in the interior of the observation airspace, its intersection angle
is neither the maximum value nor the minimum value. Thus, if the boundary satisfies the
constraint θmin ≤ θ ≤ θmax, the entire observation airspace also satisfies the constraint of
intersection angle. The proofs for the remaining constraints are similar. �
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Corollary 2. The optimal point will be achieved on the boundary of the observation airspace.

Proof. As both the maximum intersection angle and the minimum intersection angle are lo-
cated on the boundary of the observation airspace, the objective function f0 = max

X∈Ωa
|θ − π/2|

was also achieved on the boundary. Therefore, for any three-dimensional observation
airspace, we offered the following proposition. �

Proposition 1. When discretizing the observation airspace, only its boundary needs to be discretized
to solve the station arrangement optimization problem.

Since the observation airspace is a three-dimensional solid region, the number of
boundary nodes is significantly lower than the number of interior nodes after discretization.
The use of a surface grid for the boundary of the observation airspace could greatly reduce
the number of discrete points M while maintaining precision.

4.1.2. Solving Intersection Angle with Euclidean Distance Matrix

The efficiency of loop computation is relatively lower than that of matrix calculation. In
order to reduce the number of computational loops and improve the efficiency of numerical
calculations, the intersection angle was computed using the angle information included
in the Euclidean distance matrix (EDM). The EDM describes the square distance between
every two points in the Euclidean space, and it is widely used in geodesy, economics,
biochemistry, engineering, and other fields [29,30]. Given the following points in a list

X =
[
x1 · · · xN

]
∈ Rn×N , {xl ∈ Rn, l = 1, . . . , N} (13)
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The EDM is defined as D = [dij], where

dij = ‖xi − xj‖2 = ‖xi‖2 + ‖xj‖2 − 2xi
Txj (14)

Since stations will not be set in the same place, any three points not located on the
same line in Euclidean space will be able to form a triangle; thus, every three elements
dij, dik, dkj in the EDM satisfy

dij = dik + dkj − 2
√

dikdkj cos θikj (15)

Therefore √
dikdkj cos θikj = ‖xk‖2 − xi

Txk − xk
Txj + xi

Txj (16)

If X =
[
x0 x1 · · · xN

]T ∈ Rn×(N+1), we set a certain point x0 in the airspace as
the first point in X, and the rest of the points represent all of the discrete points in the
station arrangement region; therefore, the rest of the points x1 . . . xN represent all of the
discrete nodes in the station arrangement region. We then set the point in the observation
airspace as subscript k, and the intersection angle between any two points in the station
arrangement region and a certain point in the airspace can be expressed as θi0j. Using the
Equation (13), we find that

Θ =
[
x1 − x0 x2 − x0 · · · xN − x0

]
(17)

If we combine Equations (14) and (16), we have

ΘTΘ =


(x1 − x0)

2 (x1 − x0)(x2 − x0) · · · (x1 − x0)(xN − x0)

(x2 − x0)(x1 − x0) (x2 − x0)
2 · · ·

...
...

...
. . .

...
(xN − x0)(x1 − x0) (xN − x0)(x2 − x0) · · · (xN − x0)

2



=


d01

√
d10d02 cos θ102 · · ·

√
d10d0N cos θ10N√

d20d01 cos θ201 d02 · · ·
√

d20d0N cos θ20N
...

...
. . .

...√
dN0d01 cos θN01

√
dN0d02 cos θN02 · · · d0N



=


√

d01 0
. . .

0
√

d0N




1 cos θ102 · · · cos θ10N
cos θ201 1 · · · cos θ20N

...
...

. . .
...

cos θN01 cos θN02 · · · 1



√

d01 0
. . .

0
√

d0N


= δ2(

√
d)
[
cos θi0j

]
δ2(
√

d), i, j = 1 · · ·N

(18)

Therefore [
cos θi0j

]
=
(

δ2(
√

d)
)−1

ΘTΘ
(

δ2(
√

d)
)−1

i, j = 1 · · ·N (19)

where δ2(
√

d) refers to a diagonal matrix with principal diagonal
√

d; thus, it is easy to

compute
(

δ2(
√

d)
)−1

.
We determine the computational efficiency of this method by running Equation (19) in

MATLAB; the CPU is AMD Ryzen R9 5900X. Our results show that the method can handle
N = 5000 points within 2.5 s via the sparse matrix algorithm.

4.2. Improve Precision of Station Arrangement via Local Optimization
4.2.1. Local Grid Refinement

After utilizing the traversal algorithm to find the optimal solution for the station
arrangement optimization problem with finite discrete precision, the solution was used
as the starting point for further refinement. Through grid subdivision, the precision of
the station arrangement could be further improved based on the continuity of the station
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arrangement region. As shown in Figure 8, when refining the local mesh, the terrain area to
be refined was selected based on the locations of the initial points found within the feasible
range of the station arrangement region, and a more detailed terrain grid was constructed.
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4.2.2. Solving by Fitting Continuous Terrain

By traversing the local grid, we could obtain a new optimal solution. The new optimal
solution was then used as the initial points, and the feasible polygonal areas adjacent to the
initial points were selected as the design domain for the station arrangement optimization
problem. We then further subdivided the grid to obtain more accurate elevation values,
which required DEM data with higher resolution. However, in the design domain, fitting
the terrain function as a quadric surface already met the precision requirement for elevation.
Since the points in the design domain already satisfied all constraints, the optimization
problem could be formulated as follows:

min
Xi

f0 = max
X

∣∣θ − π
2

∣∣
s.t. Xi ∈ Ωgi, i = 1, 2

X ∈ Ωa

(20)

where Ωgi denotes the station arrangement region approximated as a quadratic surface,
which is still a non-differentiable and non-convex optimization problem. We could solve
this problem via the interior point method. Generally, non-linear optimization methods
failed to find a global optimal solution [31], while using traversal algorithm, as previously
stated, we obtained a fine domain and initialization for non-linear solvers. When this
optimization problem converged to find a local optimal solution, we designated it as the
global optimal solution to the station arrangement optimization problem.

5. Numerical Examples
5.1. Arrangement Optimization of Two Stations

We chose a zero-meter elevation at a specific location as the coordinate origin and a
60 km × 100 km area as the station arrangement region. The SRTMDEMUTM 90-m DEM
data were adopted. Without losing generality, we selected a 1/4 annular non-convex do-
main as the observation airspace to simulate the active flight section, with the y-axis positive
direction being set in a northerly direction. The parameters of the constraint conditions
were as follows: the maximum measurement distance of the photoelectric theodolite was
70 km, while the minimum observation distance was ignored. The measurement moment
was 16:00, and the minimum solar exclusive angle was 35◦. The minimum distance be-
tween the two stations was 40 km. The ranges of the elevation angle and intersection angle
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were 5–65◦ and 60–120◦, respectively. According to the algorithm described in this paper,
we discretized 1673 nodes in the station arrangement region, along with 3209 triangular
units, to denote the terrain. The maximum distance between adjacent discrete nodes was
about 2.5 km. Using the method outlined in Section 4.1.2, the number of discrete nodes on
the boundary of the observation airspace was 326, while the discrete nodes on the whole
observation airspace was 773. The grid data are shown in Figure 9.
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In accordance with the objective function and constraint conditions, initial points
with discrete finite precision were obtained by traversing discrete nodes, utilizing the
methods outlined in Section 4.1. Additionally, by assessing whether the values at each node
satisfy the constraint conditions, we directly obtained multiple feasible locations of the
two stations, which satisfied the constraints known as feasible point pairs. Next, feasible
points and feasible regions for each station were determined according to the feasible point
pairs. As the intersection angle was the main factor that affected measurement precision,
we show different feasible regions under different intersection angle ranges in Figure 10.
Subsequently, as depicted in Figure 11, we chose rectangle regions based on the optimal
points achieved by traversing coarse girds. Next, the girds within the rectangle regions
were locally refined. By traversing these local refined nodes, we could determine the new
optimal solutions. Ultimately, as shown in Figure 12, we selected the nodes adjacent to the
optimal solutions solved via the method outlined above, and we fitted continuous terrain
while creating the rectangle design domains based on these points. Therefore, the optimal
stations were attained through gradient-based optimization via the method outlined in
Section 4.2.2. Using optimal station locations and values of objective function determined
through traversing coarse grids, local refinement and local optimization could be found, as
shown in in Table 1.
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F, and infeasible region RI , with an intersection angle of 60–120◦.
346 feasible points; (b1) The feasible region R1

F and infeasible region RI , with an intersection angle
of 60–120◦. 361 feasible points. The total number of feasible point pairs is 15,642; (a2) The feasible
region R2

F and infeasible region RI with an intersection angle of 65–115◦. 301 feasible points; (b2)
The feasible region R2

F and infeasible region RI with an intersection angle of 65–115◦. 337 feasible
points. The total number of feasible point pairs is 12,102; (a3) The feasible region R3

F and infeasible
region RI with an intersection angle of 70–110◦. 235 feasible points; (b3) The feasible region R3

F and
infeasible region RI with an intersection angle of 70–110◦. 237 feasible points. The total number of
feasible point pairs is 7828; (a4) The feasible region R4

F and infeasible region RI with an intersection
angle of 75–105◦. 169 feasible points; (b4) The feasible region R4

F and infeasible region RI with an
intersection angle of 75–105◦. 174 feasible points. The total number of feasible point pairs is 3730;
(a5) The feasible region R5

F and infeasible region RI with an intersection angle of 80–100◦. 80 feasible
points; (b5) The feasible region R5

F and infeasible region RI with an intersection angle of 80–100◦.
61 feasible points. The total number of feasible point pairs is 655; The infeasible region RI remains
unchanged, while the feasible regions are R5

F ⊂ R4
F ⊂ R3

F ⊂ R2
F ⊂ R1

F.
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Table 1. Optimal station locations and values of objective function based on traversing coarse grids,
local refinement, and local optimization.

Traverse Coarse Grids Local Refinement Local Optimization

Coordinate of station 1 (2.1680, 88.7057, 1.5034) (0, 89.5230, 1.4786) (0, 89.5249, 1.4742)
Coordinate of station 2 (27.1074, 33.0486, 1.537) (26.6280, 31.731, 1.5403) (26.6297, 31.731, 1.5394)

Intersection angle range 83.522–96.135◦ 83.994–96.023◦ 83.984–96.006◦

Value of objective function 6.478 6.023 6.016

When the optimal station locations are achieved, the optimal value of the objective
function and the distribution of the intersection angle on the boundary of the observation
airspace can also be calculated, as presented in Figure 13. By evaluating the objective
function value obtained using traversing coarse grids and local optimization, the optimal
value decreases by 7.13%. Therefore, local optimization is an effective method that can
be used to improve the measurement precision. The algorithm proposed in this paper
demonstrates efficient computation capabilities, having an ability to imply fast computing,
as the computing time in MATLAB is approximately 13 s for the whole process.
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5.2. Relay Measurement with Multiple Stations

In a shooting range, two stations are usually assigned to complete the measurement
tasks for a certain section of the flight trajectory. For long-distance targets, it is difficult
to track the target for the entire flight trajectory when using only two stations due to
the limitations in the maximum observation distance d, the elevation angle E, and the
intersection angle θ. Therefore, in order to complete the measurement tasks more effectively
and improve the measurement accuracy, it is usually necessary to use multiple stations. This
section focuses on the relay measurement techniques that utilize three or four photoelectric
theodolite stations. The basic concept remains the same, even when using more than
four stations.

The relay measurement concept can be classified into two modes. The traditional
mode involves determining the flight sections according to the target’s flight path, such as
assigning the Ωa1 section as the encounter section and the Ωa2 section as the active section.
Each measurement section needs to be measured using two stations. In this mode, we can
divide the flight sections into segments and separately compute them using the method
presented in this paper; the relay station is then set at the intersection of the feasible areas of
the two corresponding measurement sections. Subsequently, the optimal station positions
are determined based on the results of each flight section. This mode is characterized by
its simplicity and low computational requirements. However, it may not always find the
global optimal solution under the pre-defined observation subregions.

In the second relay mode, the measurement section is unknown, and only the ob-
servation airspace to be measured is given. If we assume that we have n stations, the
sub-region that can be observed using 1, 2 photoelectric theodolite stations is Ωa1 , the
sub-region that can be observed using 2, 3 stations is Ωa2 , etc., as the sub-regions have the
following relationship:

n−1
∪

i=1
Ωi = Ωa (21)

The objective function is as follows:

min
Xi

max
X

min
i
{|θi − 90◦|, i = 1, 2, . . . , n− 1} (22)

Here, θi is the intersection angle of stations i and i + 1.

5.2.1. Relay Measurement of Three Stations

The utilization of relay stations involves the implementation of all constraints within
the observation airspace for relay measurement of three stations. The constraint condi-
tions are in accordance with those outlined in Section 5.1 and the objective function in
Equation (18). The main difference lies in the expansion of the station arrangement region
and the scope of the observation airspace. Discretization of the station arrangement region
and observation airspace can be seen in Figure 14. Feasible regions and point pairs with
intersection angle ranges of 60–120◦, along with optimal station locations based on the
traditional relay and the second relay modes, are shown in Figures 15 and 16, and the
optimal intersection angle distributions on the boundary of the observation airspace and
the relay strategy of the two modes are shown in Figures 17 and 18, respectively. Local
optimization is also adopted to improve the precision of station arrangement, though we
do not show the computation details.

In this example, the optimal relay method may not be limited to relaying only once
through the traditional mode; rather, it involves additional relay measurements. The
comparison between the optimal location stations and values of the objective function of
the two modes is shown in Table 2. Compared to the traditional relay mode, the optimal
value of the objective function of the second relay mode decreases by 23.16%.
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Table 2. Locations and optimal values of the two relay modes for relay measurements taken at
three stations.

Traditional Relay Mode Second Relay Mode

Coordinate of station 1 (103.257, 95.156, 1.562) (59.051, 66.253, 2.015)
Coordinate of station 2 (42.457, 65.810, 2.098) (77.428, 8.507, 2.021)
Coordinate of station 3 (54.364, 21.794, 1.836) (19.760, 44.910, 1.498)

Intersection angle range 71.356–109.632◦ 74.952–105.007◦

Value of objective function 19.632 15.048

5.2.2. Relay Measurement of Four Stations

The relay measurement method used for four photoelectric theodolite stations is the
same as the method employed for relay measurements taken at three stations, though the
intersection angle ranges of the two modes are set at 70–110◦ and 75–105◦, respectively. The
parameters used in the provided example are consistent with those listed in Section 5.2.1.
The feasible regions of the two relay modes are shown in Figures 19 and 20, and the optimal
intersection angle distributions on the boundary of the observation airspace, and the
measurement strategies of the two relay modes are shown in Figures 21 and 22, respectively.
The comparison between the optimal location stations and the values of objective function
of the two modes is shown in Table 3. Compared to the traditional relay mode, the optimal
value of the objective function for the second relay mode decreases by 44.31%.
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Figure 21. Optimal intersection angle distributions on the boundary of the observation airspace, as
well as the relay strategy of the traditional relay mode for relay measurement of four stations from
y-axis positive direction (a) and y-axis negative direction (b), respectively. The global optimal value
of objective function is 15.735.
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Table 3. Locations and optimal values of the two relay modes for relay measurements taken at
four stations.

Traditional Relay Mode Second Relay Mode

Coordinate of station 1 (92.093, 100.00, 1.583) (91.152, 100.00, 1.583)
Coordinate of station 2 (28.163, 53.536, 1.772) (28.391, 48.014, 1.630)
Coordinate of station 3 (66.943, 0, 2.241) (77.040, 93.501, 1.452)
Coordinate of station 4 (16.934, 45.761, 1.491) (2.579, 72.823, 1.644)

Intersection angle range 75.672–105.735◦ 81.355–98.763◦

Value of objective function 15.735 8.763
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Figure 22. Optimal intersection angle distributions on the boundary of the observation airspace (a),
as well as relay strategy (b–d) of the second relay mode for relay measurement of four stations from
y-axis positive direction (1) and y-axis negative direction (2), respectively. The global optimal value
of objective function is 8.763.

6. Conclusions

This paper presents a numerical algorithm usable to find the global optimal solution
to the station arrangement optimization problem of photoelectric theodolite using traversal
algorithm. According to the problem’s specific characteristics, the computational efficiency
of the algorithm is notably enhanced by utilizing the Euclidean distance matrix to calculate
the intersection angle and reducing the dimension of the observation airspace. The station
arrangement optimization model proposed in this paper has valuable practical application,
and a couple of design constraints based on actual terrain were considered in this study.
Numerical examples demonstrate the model’s effectiveness and can perform relay mea-
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surement computation. Furthermore, the efficiency can be further augmented if parallel
computing is implemented.
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