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Abstract: It is well-known that a strong longitudinal electric field and a small spot size are observed
when radially polarized beams are tightly focused using a high numerical aperture parabolic mirror.
The longitudinal electric field component can accelerate electrons along the propagation axis at
high intensities in the focal region, which opens an application in particle acceleration. In this
paper, we present a rigorous derivation of the electric field obtained when a radially polarized,
monochromatic, flat-top beam is focused by a parabolic mirror. The formulae were deduced from
the Stratton–Chu integral known from vector diffraction theory. We examined the influence of the
focusing parameters on the distribution of both the longitudinal and radial electric field components.
In the small numerical aperture and short wavelength regimes, excellent agreement was found with
the results obtained from the Rayleigh–Sommerfeld formula. The calculation method can be adapted
for various beam types and for electromagnetic pulses as well.

Keywords: focusing; parabolic mirror; radially polarized beams; Stratton–Chu integral

1. Introduction

The paraboloid mirror can focus light nearly within a 4π solid angle [1,2]. Because of
this special characteristic, researchers have been strongly interested in parabolic mirrors
over the past several decades. The vector field nature of the light becomes essential in
accurate description of a nonparaxial beam, when a beam is tightly focused by a parabolic
mirror. The high-intensity laser community, which makes major efforts to achieve the
highest laser intensities, is strongly interested in examinations of the vector field focusing
characteristics [3]. By tightly focusing the beam in a vacuum using an off-axis parabolic
(OAP) mirror, it is possible to attain extremely high intensity, which makes this of in-
terest for laser-based particle acceleration [4]. For such a high-intensity, tightly focused
electromagnetic field, a detailed description of the focused field is necessary in order to
precisely identify the motion of charged particles [5]. Using a high numerical aperture
parabolic mirror with a radially polarized beam is ideal for achieving a small focal spot
size and strong longitudinal electric field, which opens an application possibility in particle
acceleration [6,7].

Beginning with a study by Ignatovsky in 1920, a detailed diffraction theory of focused
light from parabolic mirrors has been developed over the period of nearly a century.
Ignatowsky transformed Maxwell’s equations to the parabolic coordinate system, set the
boundary values, and then used these boundary values to solve Maxwell’s equations [8].
Richards and Wolf provided a different theoretical approach in which strongly focused
beams were precisely defined in terms of the field distribution of the collimated input
beam at the entry pupil of the focusing apparatus [9]. There are different approaches
for evaluating tightly focused beams based on the Stratton–Chu formulation of Green’s
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theorem, which incorporates both the electric and magnetic fields after substituting values
from Maxwell’s equations [10].

In 2000, Varga and Török derived a solution to the problem of a linearly polarized
electromagnetic wave focused by a parabolic mirror using the Stratton–Chu integral by
solving a boundary-value problem. They demonstrated that a segment of the paraboloid
produces an intensity distribution that is similar to that obtained from a far-field-type
approximation in the region of the focus [11]. In 2019, Xiahui Zegn and Xiya Chen proposed
a precise analytical technique for the description of the vector electromagnetic fields created
by an on- and off-axis parabolic mirror for circular and square incident beams based on the
Stratton–Chu integral [3]. In 2021, the same group demonstrated an optimization process
of OAP geometry to maximize the focused peak intensity based on precise knowledge of
the tightly focusing properties of OAPs by employing the Stratton–Chu vector diffraction
integrals and physical optics approximations and obtained the optimum configuration
scale rule, allowing for the maximum peak intensity [12]. Endale et al. in 2022 examined
focusing of radially polarized light using a Gaussian laser beam near its focal plane based
on the Richards–Wolf diffraction method at various numerical apertures and Gaussian
beam radii. They demonstrated that the longitudinal component becomes predominant
at a high numerical aperture and high radius [13]. Recently, a more detailed study of the
application of the vector field focusing properties of electromagnetic fields by a parabolic
mirror based on the Stratton–Chu integral formalism was reported [14–16].

To the best of our knowledge, there is no literature that provides a detailed theoretical
and analytical study of the vector field focusing properties of radially polarized beams by
on- and off-axis parabolic mirrors based on the Stratton–Chu integral representation. In
this paper, starting from the Stratton–Chu integral, we first derived general formulae to
be used when a radially polarized electromagnetic plane wave is focused by a parabolic
mirror. After validation, using these formulae we determined the electric field for various
focusing conditions.

2. General Formulae of the Parabolic Mirror

Consider a parabolic mirror having its focus F at the origin O of a Cartesian coordinate
system and a rotation axis that coincides with the z-axis, as shown in Figure 1. The
paraboloid equation is given by:

zs =
xs

2 + ys
2

4 f
− f , (1)

where xs, ys and zs are the coordinates of an arbitrary point S of the paraboloid and f is the
focal length of the parabolic mirror. Let ρs be the distance between point S and the focus F.
Equation (1) becomes

ρs = zs + 2 f (2)
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The unit vector pointing inward normal to the surface of the paraboloid is written as:

n(xs, ys) =
− 1

2 f
(
xsex + ysey

)
+ ez√

1 + xs2 + ys2

4 f 2

. (3)

Using the spherical coordinates, Equation (2) becomes

ρs =
2 f

1− cos θs
, (4)

and the components of the unit vector n(xs, ys) are:

nx = − sin θscos∅s
[2(1−cos θs)]

1/2 ,

ny = − sin θssin∅s
[2(1−cos θs)]

1/2 ,

nz =
(

1−cos θs
2

)1/2
,

(5)

where θs is the polar, and ∅s is the azimuthal angle as shown in Figure 1.

3. Rigorous Diffraction Theory of Radially Polarized Waves Focused by a Parabolic
Mirror

First, we consider how the electric and magnetic fields are reflected from the surface
of the parabolic mirror having perfect reflectance. Let us use Ei and Hi to represent the
incident electric and magnetic fields, respectively. Based on the electromagnetic boundary
conditions, upon reflection the tangential component of the electric field, Er,t, and the
normal component of the magnetic field, Hr,n, change sign, but the normal components
of the electric field, Er,n, and the tangential components of the magnetic field, Hr,t, remain
unchanged [11]. Hence, the reflected fields are written as:

Er,n = Ei,n = n(Ei·n),
Hr,t = Hi,t = Hi −Hi,n,

Er,t = −Ei,t = −(Ei − Ei,n),
Hr,n = −Hi,n = −n(Hi·n),

(6)

where Ei,n and Hi,n are the normal, and Ei,t and Hi,t are the tangential components of the
incident electric and magnetic fields, respectively. Therefore, the total reflected fields are
expressed as:

Er = Er,n + Er,t = 2n(Ei·n)− Ei,
Hr = Hr,n + Hr,t = Hi − 2n(Hi·n).

(7)

The total field is given as the sum of the incident and reflected fields:

E = Ei + Er = 2n(Ei·n),
H = Hi + Hr = 2Hi − 2n(Hi·n).

(8)

To derive an expression for the electric field focused by a segment of a parabolic
mirror, we suppose that the segment of the paraboloid is limited by the apex V and a plane
perpendicular to the optical axis positioned at z ≤ 0, as shown in Figure 2. The focusing
angle δ, for which π/2 ≤ δ < π, determines the segment of the paraboloid [11].
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Figure 2. Schematic diagram with notations for the study of focusing radially polarized waves by a
segment of a parabolic mirror.

We use the Stratton–Chu integral formula to derive an expression for the electric field
upon focusing by a segment of a parabolic mirror [10].

E(P) =
1

4π

∫
S[ik(n×H)G + (n× E)×∇G + (n·E)∇G]dA +

1
4πik

∮
C
∇G(H·ds), (9)

with

G(u) =
exp(iku)

u
, (10)

where k = 2π/λ is wave number, λ is the wavelength of the incident beam and u is the
distance between a point S(xs, ys, zs) on the surface of the paraboloid and the observation
point P(x, y, z). Hence,

u =
[
(xs − x)2 + (ys − y)2+(zs − z)2

]1/2
=
[
∆x2 + ∆y2+∆z2

]1/2
. (11)

The first integral in Equation (9) represents the surface term, whereas the second
integral represents the contour term, respectively.

∇G should be calculated at the points S(xs, ys, zs) of the paraboloid [11]. It can be
expressed as:

∇G(u) = ik
(

1− 1
iku

)
G(u)

u
(
∆xex + ∆yey + ∆zez

)
. (12)

The surface element of the paraboloid dA is given by:

dA =

[
1 +

(
∂zS
∂xS

)2
+

(
∂zS
∂yS

)2
]1/2

dxSdyS =
ρs

2

nz
sin θsdθsd∅s. (13)

To determine the electric field created upon focusing by a segment of the parabolic
mirror, we assume that the radially polarized incident monochromatic plane wave prop-
agates in the negative z direction. Considering the cylindrical coordinate system (ρ, ∅,
z), the radially polarized wave has an electric field in the radial direction with respect
to the propagation axis while the magnetic field is aligned in the azimuthal orientation.
There are no longitudinal components of the electric and magnetic fields. The incident
electromagnetic field can be written as:

Ei = aexp(−ikz)
[
cos∅ex + sin∅ey

]
,

Hi = aexp(−ikz)
[
sin∅ex − cos∅ey

]
.

(14)
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First, we discuss the surface integral in Equation (9). Using Equations (8) and (14), we
can write quantities in Equation (9) as:

n×H = 2anz

[
cos∅sex + sin∅sey −

(
nx
nz

cos∅s +
ny
nz

sin∅s

)
ez

]
exp(−ikzs),

n× E = 0,
n·E = 2a

(
nxcos∅s + nysin∅s

)
exp(−ikzs).

(15)

Substituting Equations (2), (10), (12), (13) and (15) into (9), we obtain the surface
integral part in Equation (9):

ES(P) = ES(ρ, z) = a exp(2ik f )
2π ik

π∫
δ

2π∫
0

dθsd∅s
exp[ik(u−ρs)]

u ρs
2sin θs

×
{[

cos∅s − cot
(

θs
2

)(
1− 1

iku

)
∆x
u

]
eρ+ cot

(
θs
2

)[
1−

(
1− 1

iku

)
∆z
u

]
ez

}
,

(16)

where ∆x = ρssin θscos∅s − ρ, ∆z = ρscos θs − z and u =
[
∆x2+∆z2

]1/2
. P was supposed

to lie on the x axis (see Figure 3). Due to the axial symmetry, ES(P) has no azimuthal
component.
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Now, we discuss the contour integral in Equation (9). According to Equation (4)
and using the geometry shown in Figures 1 and 2, the small vector line element on the
circumference of the paraboloid is given by:

ds = 2 f cot
(

δ

2

)(
−sin∅sex + cos∅sey

)
d∅s. (17)

From Equations (5), (8) and (14), the Cartesian coordinate components
(

Hx, Hy, Hz
)

of the total magnetic field can be written as:

Hx = 2asin∅sexp(−ikz(δ)),
Hy = −2acos∅sexp(−ikz(δ)),

Hz = 0.
(18)

Hence:

H·ds = −4a f cot
(

δ

2

)
exp(−ikz(δ))d∅s. (19)



Photonics 2023, 10, 848 6 of 12

Substituting Equations (10), (12) and (19) into (9), we obtain the contour integral part
in Equation (9):

EC(P) = EC(ρ, z) = − a f exp(2ik f )
π cot

(
δ
2

)∫ 2π
0

exp[ik(u−ρ(δ))]
u

×
(

1− 1
iku

)(
∆x
u eρ +

∆z
u ez

)
d∅s,

(20)

With ∆x = ρs(δ)sin δcos ∅s − ρ, ∆z = ρs(δ)cos δ− z and u =
[
∆x2+∆z2

]1/2
. Due to

the axial symmetry, EC(P) has no azimuthal component.
The total complex electric field can be given as:

E(ρ, z) = ES(ρ, z) + EC(ρ, z). (21)

We would like to call attention to the fact that in the following section, Eρ and Ez
represent the real parts of the complex field components.

4. Applications of the Theoretical Results for Different Focusing Conditions

To provide useful information for specialists who would like to apply the tightly
focused field, we present and discuss some results of calculations using the previously
introduced vector diffraction theory for various focusing geometries. Parabolic mirrors
are standard devices in optical setups and are especially used at wavelength ranges (e.g.,
terahertz = THz) where conventional lenses and spherical mirrors fail. For the sake of
generality, instead of specifying the focal length (f ), the wavelength (λ) and r0 (that can be
interpreted as the incident beam radius, see Figure 2) as absolute parameters, we introduce
the λ/f and r0/f as relative parameters. This latter relates to the δ focusing angle (see
Figure 2) as

δ = arccos

 1
4

(
r0
f

)2
− 1

1
4

(
r0
f

)2
+ 1

, (22)

and
δ = π − δ (23)

During the analysis, λ/f was kept below 0.1, since the λ/f > 0.1 case has less practical
relevance. Supposing a typical value of f = 50 mm, the λ/f < 0.1 condition holds not only
for the visible and (near-, mid-) infrared, but also for the THz frequency range (0.1–10 THz).
Even in the case of λ/f = 0.1, the corresponding frequency is only 0.06 THz, so for
λ/f > 0.1 the whole THz range is covered. The importance of the THz fields is outstanding
due to their applicability for particle acceleration [17–19] because of their advantageous
wavelength and because of the availability of pulses with extremely high pulse energies
and electric field strengths owing to the tilted-pulse-front technique [20,21].

Before applying our above introduced theory based on the Stratton–Chu formulae, we
must confirm its reliability. Therefore, as a validation, we compare its results with those of
the commonly known scalar diffraction methods by treating separately two perpendicular
(x and z) polarization components. The Eρ and Ez field components determined with scalar
diffraction methods (red, dashed curves in Figure 4) were deduced from the Rayleigh–
Sommerfeld diffraction formula [22] adapted for the case shown in Figure 3 supposing
a ‘thin’ focusing element. The amplitudes of the aperture functions belonging to the
transversal and longitudinal field components just leaving the focusing element are

EFρ = E0cos εcos ∅F = E0
f√

ρF2+ f 2
cos ∅F,

EFz = E0sin ε = E0
ρF√

ρF2+ f 2

(24)
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respectively, where E0 is the electric field just before reaching the focusing element. The
radially dependent part of the phase factor resulting from the focusing element is

exp(−iϕF) = exp
(
−ik

ρF
2

2 f

)
. (25)
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Figure 4. The transversal distribution of the radial (a,c) and longitudinal (b,d) component of the
electric field at z = 0 for λ/f = 10−3 and r0/f = 0.1 (a,b), r0/f = 1.8 (c,d) parameter values. The black
solid curves were computed using the Stratton–Chu integral for parabolic mirror, the red dashed ones
using the Rayleigh–Sommerfeld integral and the blue dotted ones using theory of Endale et al. [13]
(Richards–Wolf integral).

Hence

Eρ(ρ) ∝
r0∫
0

2π∫
0

EFρexp(−iϕF)
exp(−iku)

u2 ρFdρFd∅F,

Ez(ρ) ∝
r0∫
0

2π∫
0

EFzexp(−iϕF)
exp(−iku)

u2 ρFdρFd∅F,
(26)

with

u =
(

ρF
2 + f 2 + ρ2 − 2ρρFcos ∅F

) 1
2 . (27)

We also determine the electric field distributions by using the formula of Endale
et al. [13] for the case of a flat-top beam. This model is based on the diffraction theory
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of Richards–Wolf [9]. The curves computed this way are plotted by blue, dotted lines in
Figure 4.

For parameters of λ/f = 10−3 and r0/f = 0.1 (with corresponding δ = 5.72oangle),
the contour term in our model is negligible beside the surface term. Furthermore, the
parabolic mirror can be considered to be thin. In this paraxial regime, a particularly good
agreement can be found between the results of our (Stratton–Chu) and the other two
(Rayleigh–Sommerfeld, Richards–Wolf) models, as seen in Figure 4a,b.

For λ/f = 10−3 and for large numerical aperture (r0/f = 1.8 with corresponding
δ = 83.9oangle), the Rayleigh–Sommerfeld integral leads to a misleading result. Even
the model of Endale et al. [13] (which is not restricted to small numerical apertures) works
well only at the vicinity of the z axis, for low ρ/λ values.

These conclusions confirm the necessity of the use of our model in large numerical
aperture regimes, when the spatial extension of the parabolic mirror in the z (longitudinal)
direction becomes comparable with its transversal extension.

The contribution of the contour term is negligible in all cases examined in the following.
However, for example in the case of r0/f = 0.2 and λ/f = 0.1, the surface and the contour
terms have the same orders of magnitude, as illustrated in Figure 5. Here, the black dashed
line belongs to the surface and the red dotted line to the contour term, while the blue solid
line represents their sum, the total Ez field component. Under the focusing conditions of
Figure 5 for the case of the Eρ field component, the surface term dominates over the contour
term.
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Figure 5. The transversal distribution of the longitudinal component of the electric field at z = 0 for
λ/f = 0.1 and r0/f = 0.2 parameter values. The total field (blue solid line) consists of a surface (black
dashed line) and a contour (red dotted line) term.

In Figure 6, the normalized Eρ and Ez distributions are plotted versus the radial
coordinate normalized by the wavelength. This coordinate normalization makes it comfort-
able to plot the curves with different λ/f values on the same scale. Figure 6a,b belong to
r0/f = 0.2 (δ = 11.4◦), Figure 6c,d to r0/f = 0.6 (δ = 33.4◦) and Figure 6d,e to r0/f = 1.8
(δ = 83.9◦). All curves of Figure 6 belong to the focal plane (z = 0). All curves are normalized
to 1. However, in the graphs in brackets, one can find the field amplitude enhancement fac-
tors, h, relative to the amplitude of the incoming field, a, in order to provide information on
how the magnitude of the field components scale with the r0/f and λ/f parameters, making
it possible to compare the Eρ and Ez amplitudes in case of a given focusing geometry.
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Figure 6. The transversal distribution of the radial (a,c,e) and longitudinal (b,d,f) components of the
electric field at z = 0 for various λ/f and r0/f parameter values. The insets show the corresponding
|E|2 distribution. Please note that the vertical scale range for (a) differs from the ones of (b–f).

All the curves of Figure 6 oscillate with decaying amplitude. At the focal point, Ez
has maxima, while Eρ is zero in each case, as expected. It was found that for the fixed r0/f
value, the curves of different wavelengths could not be practically distinguished from each
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other below a threshold λ/f. These identical curves are indicated by the “≤” sign (see the
labels). The threshold λ/f value increases with increasing r0/f.

From analyzing the enhancement factors (shown in the brackets), it is obvious that at
constant r0/f the field strength increases with the decreasing wavelength. According to
detailed calculations, below the threshold it scales with λ−1. If the wavelength is taken to be
fixed, the field strength strongly increases with increasing r0/f, as expected. Comparing the
amplitudes of curves with the same λ/f in Figure pairs Figure 6a,b, Figure 6c,d, Figure 6e,f,
it is obvious that for the low value of r0/f (Figure 6a,b), the Eρ field component is larger
than Ez, while for large r0/f (Figure 6e,f) the Ez is dominant, as expected intuitively. This
analysis is especially interesting for those who plan particle acceleration applications. It is
also seen in Figure 6 that the first zero crossing value decreases with increasing r0/f for
both field components.

To more easily follow some characteristics, we plotted in the insets the absolute value
of squared field components. The first maxima for the radial component and the first
minima for both components shift to the left with increasing r0/f, although the degree of
this shift decreases for larger r0/f.

Results like the ones shown in Figure 6 are needed when a waveguide-based electron
accelerator is designed. If the aim is the efficient in-coupling into the waveguide by focusing,
one should match the width (in ρ/λ) of the Ez distribution curve to the characteristic
r1/λ value of the waveguide, where r1 is the core radius. For the optimized parameters
(r1 = 380 µm core radius, d = 32 µm dielectric thickness, 0.6 THz frequency) of a dielectric
coated metallic waveguide, r1/λ ≈ 0.7 [23]. Among the curves of Figure 6, the best
agreement can be found in Figure 6d. This means that r0/f ≈ 0.6 can be an appropriate
focusing geometry for in-coupling into the waveguide.

It is important to obtain information on the longitudinal distributions as well. As an
example, the distribution of Ez along the optical axis was computed and plotted in Figure 7
for λ/f = 0.1 and r0/f = 0.6. It is clear from the graph that the peak of the curve is shifted
from the focus towards the apex of the mirror, as already observed for the case of linear
polarization [11]. The λ/f dependence of this shifting effect can be studied more clearly on
the |Ez|2 curves (inset). Below λ/f = 10−2 this shift is negligible, while for λ/f = 10−1 the
shift of the peak of the |Ez|2 curve is ~1.2 λ. The FWHM of the |Ez|2 curve is ~4.5 λ for
λ/f = 10−1 and ~6 λ for λ/f ≤ 10−2. Examinations showed that for fixed λ/f, the shift is
larger for lower r0/f values.
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5. Conclusions

In this paper, based on the Stratton–Chu integral we derived general formulae to be
used when a radially polarized electromagnetic wave is focused by a parabolic mirror
with perfect reflectance. The theory was successfully validated within the limit of a small
numerical aperture and negligible contour term when the Rayleigh–Sommerfeld diffraction
formula served as a reliable alternative. We determined and analyzed the transversal and
the longitudinal distribution of the radial and longitudinal electric field components for
various focusing conditions. Our results can be interesting in the THz techniques, like THz
imaging, linear and nonlinear THz spectroscopy, and especially for particle acceleration
applications, where an intense longitudinal electric field is a requirement. Our work
focused on monochromatic plane waves and simply connected paraboloid segments in
on-axis geometry. But it can be further developed for the case of electromagnetic pulses,
for the case of various input beams (e.g., vector Gaussian beam) and for various types of
parabola segments (e.g., ring-like slice or off-axis geometry).
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