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Abstract: We present a gradient method for designing cascaded diffractive optical elements (DOEs)
consisting of several sequentially located phase DOEs. Using the unitarity property of the operator of
light propagation through the cascaded DOE, we obtain explicit expressions for the derivatives of the
error functional with respect to the phase functions of the cascaded DOE. We consider the application
of the gradient method to the problem of focusing different incident beams to regions with different
intensity distributions and to the problem of optical image classification. The presented description of
the gradient method treats the problems of designing cascaded DOEs for focusing laser radiation and
for image classification within a unified approach reducing the calculation of the derivatives of the
error functionals to the same formula. We present examples of the calculation of single and cascaded
DOEs for focusing different incident beams to different regions and for classifying handwritten digits,
which demonstrate the high performance of the proposed method. The presented results may find
application in the design of diffractive neural networks and systems for focusing laser radiation.

Keywords: diffractive optical element; phase function; scalar diffraction theory; gradient method;
image classification

1. Introduction

Nowadays, the design and investigation of diffractive optical elements (DOEs) are
the subjects of active research [1–7]. The main reasons for the interest in this research field
are the compactness, manufacturability, and efficiency of using DOEs for solving a wide
range of problems of transforming and focusing optical radiation. As a rule, the DOE
design is carried out within the framework of the scalar diffraction theory. The problem
of calculating a DOE belongs to the class of ill-posed inverse problems and consists in
determining the shape of the “phase” diffractive microrelief, which ensures the formation
of a light field with specified parameters (usually, with a required intensity distribution)
in a given region of space. Since the height of the DOE microrelief is proportional to the
phase function of the light field formed by the DOE, the problem of DOE design is usually
considered as the problem of calculating a phase function, which ensures the generation
of the required intensity distribution. For the calculation of the phase function, various
iterative algorithms are traditionally used including the “classical” Gerchberg–Saxton
algorithm, the error-reduction algorithm, and a wide range of their modifications [8–14].

In addition to single DOEs, the so-called cascaded DOEs are widely used, consisting
of several sequentially located phase DOEs. Such DOEs possess a wider functionality and
make it possible to solve more complex problems, e.g., the problem of focusing different in-
cident beams (in particular, with different propagation directions or different wavelengths)
into different regions [2,15,16]. For the calculation of cascaded DOEs, iterative algorithms

Photonics 2023, 10, 766. https://doi.org/10.3390/photonics10070766 https://www.mdpi.com/journal/photonics

https://doi.org/10.3390/photonics10070766
https://doi.org/10.3390/photonics10070766
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/photonics
https://www.mdpi.com
https://orcid.org/0000-0001-8649-028X
https://orcid.org/0000-0003-0326-0302
https://orcid.org/0000-0001-7496-8960
https://doi.org/10.3390/photonics10070766
https://www.mdpi.com/journal/photonics
https://www.mdpi.com/article/10.3390/photonics10070766?type=check_update&version=1


Photonics 2023, 10, 766 2 of 18

are also used, which are a generalization of the existing algorithms for designing single
DOEs. At the same time, most of these algorithms are heuristic and do not have a strict
theoretical justification. In particular, for the iterative algorithms used in [2,15,16], there
is no analysis of the error decrease property, which the Gerchberg–Saxton algorithm and
error-reduction algorithm possess. In this regard, it appears relevant to develop gradient
methods for calculating cascaded DOEs, which, at least, have a clear theoretical justification.

In addition to the utilization of cascaded DOEs in complex problems of focusing laser
radiation, in recent years, they have found wide application in solving various problems of
machine learning (in particular, the problems of image classification) [3,5,17–22], as well
as in the problems of implementing various mathematical transformations described by
linear operators [23]. In these problems, cascaded DOEs are often referred to as diffractive
neural networks (DNNs). The main method for designing DNNs is the stochastic gradient
method, as well as the “improved” first-order methods based on it [24]. In a number of
works, expressions were obtained for the gradients of the error functions with respect to
the parameters of the phase functions [2,5,20]. However, these expressions were obtained
for a discrete form of the operators of light propagation between the DOEs. As a result, the
expressions for the gradients have a complex and cumbersome form, which, in the opinion
of the present authors, complicates their understanding and implementation.

In this work, we present a gradient method for calculating cascaded DOEs. Using
the unitarity property of the operator of light propagation through a cascaded DOE, we
obtain explicit and compact expressions for the derivatives of the error functional with
respect to the phase functions of the cascaded DOE. We consider the application of the
gradient method to the problem of focusing different incident beams to regions with
different intensity distributions and to the problem of image classification. The presented
description of the gradient method “combines” the problems of designing cascaded DOEs
for focusing laser radiation and for classifying images within a single methodological
approach, in which the calculation of the derivatives of the error functionals is reduced to
the same formula. Using the proposed gradient method, single and cascaded DOEs are
calculated for solving the problem of focusing several incident beams on different regions
and the problem of classifying handwritten digits. The presented numerical simulation
results demonstrate the high performance of the proposed method.

2. Problem Statement

Let the complex amplitude of the “input” field w0(u0) be defined in the input plane
z = f0 = 0, where u0 = (u0, v0) are the Cartesian coordinates in this plane. We will assume
that the light field with the wavelength λ propagates from the plane z = 0 through a set
of n phase DOEs located in the planes z = f1, . . . , z = fn (0 < f1 < . . . < fn), and finally
comes to the output plane z = fn+1 > fn (Figure 1).

Let us denote by ϕ1(u1), . . . ,ϕn(un) the phase functions of the DOEs, where
uj =

(
uj, vj

)
are the Cartesian coordinates in the planes z = f1, . . . , z = fn. We will as-

sume that the propagation of light between the planes z = fi, i = 1, . . . , n + 1 is described by
the Fresnel–Kirchhoff integral of the scalar diffraction theory. We will describe the propagation
of light through a DOE in the thin optical element approximation as the multiplication of the
complex amplitude of the incident beam by the complex transmission function of the DOE
exp{iϕm(um)}, m = 1, . . . n.
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Figure 1. Geometry of the problem of the design of a cascaded DOE.

In this case, the propagation of light through a cascaded DOE is described by the
following expressions:

w1(u1) =
eikd1
λid1

s
w0(u0) exp

{
i πλd1

(u1 − u0)
2
}

d2u0,

wm(um) =
eikdm

λidm

s
wm−1(um−1)eiϕm−1(um−1) exp

{
i πλdm

(um − um−1)
2
}

d2um−1, m = 2, . . . , n + 1,
(1)

where wm(um), m = 1, . . . , n are the complex amplitudes of the fields incident on DOEs
located in the planes z = fm, and dm = fm − fm−1 are the distances between these planes.
According to Equation (1), the calculation of the complex amplitude of the output field
wn+1(un+1) is carried out recursively. For the following analysis, it will be convenient to
consider Equation (1) as a representation of linear operators describing the propagation of
light from the input plane z = f0 to the planes z = fm, m = 1, . . . , n + 1.

Under the inverse problem, we will understand the problem of calculating the phase
functionsϕ1(u1), . . . ,ϕn(un) from the condition of generating a light field with the required
intensity distribution I(un+1) in the output plane. Let us describe the error of generating
the required distribution using an integral criterion

ε(ϕ1, . . . ,ϕn) =
x

D[In+1(un+1), I(un+1)]d2un+1, (2)

where In+1(un+1) = |wn+1(un+1)|2 is the intensity distribution generated by a cascaded
DOE with phase functions ϕ1(u1), . . . ,ϕn(un), and D is a certain function representing the
difference between the generated and required distributions at the current point.

In what follows, we will consider the inverse problem of designing a cascaded DOE
as the problem of minimizing the functional of Equation (2), which we will refer to as the
error functional:

ε(ϕ1, . . . ,ϕn)→ min
ϕ1,...,ϕn

. (3)
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3. Gradient Method for Calculating a Cascaded DOE

For solving the problem of Equation (3), we will utilize a gradient method. Let us
consider the calculation of the derivative of the functional of Equation (3) with respect to
the function ϕm. Let us denote by

∆mε(ϕ1, . . . ,ϕn) = ε(ϕ1, . . . ,ϕm + ∆ϕm, . . . ,ϕn)− ε(ϕ1, . . . ,ϕm, . . . ,ϕn), (4)

the increment of the error functional caused by the increment ∆ϕm of the function ϕm.
According to Equation (2), this increment has the form

∆mε(ϕ1, . . . ,ϕn) =
s ∂D[In+1(un+1),I(un+1)]

∂In+1
∆m
(
wn+1(un+1)w∗n+1(un+1)

)
d2un+1

=
s ∂D[In+1(un+1),I(un+1)]

∂In+1
2Re

[
(∆mwn+1(un+1))w∗n+1(un+1)

]
d2un+1

= 2Re
[s

(∆mwn+1(un+1))F∗n+1(un+1)d2un+1
]
= 2Re〈∆mwn+1(un+1), Fn+1(un+1)〉,

(5)

where ∆m In+1(un+1) and ∆mwn+1(un+1) are the increments of the intensity and complex
amplitude caused by the phase increment ∆ϕm, the angle brackets denote the scalar product
of functions, and the function Fn+1(un+1) has the form

Fn+1(un+1) =
∂D[In+1(un+1), I(un+1)]

∂In+1
wn+1(un+1). (6)

For the following derivations, let us introduce the operator Pr fn+1→ f+m
of the “backprop-

agation” of light from the output plane z = fn+1 to the plane z = f+m located immediately
after the plane of the m-th DOE z = fm. In this plane, the complex amplitude of the field in
the case of “direct” propagation reads as wmeiϕm . Let us present formulas for calculating
this operator by starting with the field Fn+1(un+1) (see Figure 1). At m = n, the backpropa-
gation operator corresponds to the Fresnel–Kirchhoff integral, in which the propagation
distance dn+1 is taken with a negative sign:

Fn(un) = Pr fn+1→ f+n
(Fn+1) =

e−ikdn+1

−λidn+1

x
Fn+1(un+1) exp

{
−i

π

λdn+1
(un − un+1)

2
}

d2un+1. (7)

At m < n, the operator Pr fn+1→ f+m
(Fn+1) is calculated recursively using the following

expression:

Fj−1
(
uj−1

)
=

e−ikdj

−λidj

x
Fj
(
uj
)
e−iϕj(uj) exp

{
−i

π

λdj

(
uj−1 − uj

)2
}

d2uj, j = n, . . . , m + 1. (8)

One can easily show that the operators of direct propagation and backpropagation of
light through a set of phase DOEs are unitary and conserve the scalar product [18]. Due
to the scalar product conservation, the increment of the criterion of Equation (5) can be
represented as

∆mε(ϕ1, . . . ,ϕn) = 2Re〈∆mwn+1, Fn+1〉 = 2Re
〈

Pr fn+1→ f+m
(∆mwn+1), Pr fn+1→ f+m

(Fn+1)
〉

. (9)

Since Pr fn+1→ f+m
(∆mwn+1) = ∆m(wmeiϕm), where wmeiϕm is the complex amplitude

of the field immediately after the plane of the m-th DOE at direct propagation and
Pr fn+1→ f+m

(Fn+1) = Fm. Let us transform Equation (9) to the form

∆mε(ϕ1, . . . ,ϕn) = 2Re
〈

∆m(wmeiϕm), Fm

〉
= 2Re

x
wm(um)∆eiϕm(um)F∗m(um)d2um. (10)
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By substituting the increment ∆eiϕm as its Taylor series expansion up to the linear term
∆eiϕm = eiϕm+i∆ϕm − eiϕm ≈ i∆ϕmeiϕm , let us write the main (linear) part of the increment
of the functional (10) as

δmε(ϕ1, . . . ,ϕn) = −2
x

∆ϕm(um)Im[wm(um)eiϕm(um)F∗m(um)]d2um. (11)

According to Equation (11), the derivative of the functional has the form

δε(ϕ1, . . . ,ϕn)

δϕm
= −2Im[wm(um)eiϕm(um)F∗m(um)]. (12)

When solving the problem of minimizing the functional (3) using the gradient method,
the calculation of the phase functions of the DOEs is carried out iteratively. Let us describe
the calculations performed at each iteration of the method. Let ϕk

1(u1), . . . ,ϕk
n(un) be the

phase functions of the cascaded DOE obtained at the k-th iteration. Then, for the calculation
of the next approximations of the phase functions, the following steps are performed:

(1) Using Equation (1) describing the direct propagation of the field, complex ampli-
tudes of the fields wm(um)eiϕm(um) in the planes z = fm, m = 1, . . . , n and in the output
plane z = fn+1 are calculated.

(2) For the chosen optimization criterion, the function Fn+1(un+1) of Equation (6) is
calculated, and, using Equations (7) and (8) describing the backpropagation of the field, the
functions Fj

(
uj
)
, j = n, n− 1, . . . , 1 are found.

(3) Using Equation (12), the derivatives of the functional δε
δϕm

, m = 1, . . . , n are calcu-
lated.

(4) New approximations of the phases are found as

ϕk+1
m (um) = ϕk

m(um)− tk
δε

δϕm
(um), m = 1, . . . , n, (13)

where tk is the step of the gradient method.

4. Application of the Gradient Method to the Case of Several Incident Beams

The presented gradient method can be easily generalized to the problem, in which
there are defined K > 1 different input distributions w0,j(u0), j = 1, . . . , K (different incident
beams), and, for each input distribution, the cascaded DOE has to generate a corresponding
output intensity distribution Ij(un+1). In this case, the following sum of functionals can be
used as the error functional:

εset(ϕ1, . . . ,ϕn) =
K

∑
j=1
εj(ϕ1, . . . ,ϕn), (14)

where the functionals εj(ϕ1, . . . ,ϕn) describe the difference of the intensity distributions
In+1,j(un+1) generated for the input distributions w0,j(u0) from the required distributions
Ij(un+1). Without loss of generality, we can assume that these functionals are defined by
Equation (2). Since the derivatives of the sum of functionals (14) simply equal the sum of
the derivatives of these functionals

δεset(ϕ1, . . . ,ϕn)

δϕm
=

K

∑
j=1

δεj(ϕ1, . . . ,ϕn)

δϕm
, m = 1, . . . , n, (15)

the calculation of the derivatives of the functional of Equation (14) is also reduced to
Equation (12). The calculation of new approximations of the phase functions at each
iteration is carried out using a formula similar to Equation (13). The investigation of the
performance of the presented method in the problem of the design of cascaded DOEs
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generating different intensity distributions at different incident beams is presented below
in Section 6.1.

Let us note that the considered gradient method can also be easily generalized to the
problem, in which the required intensity distributions Ij(un+1) are defined in different
output planes located at different distances from the output DOE.

5. Application of the Gradient Method to the Image Classification Problem

Let us now consider the application of the developed gradient method to the design
of cascaded DOEs performing optical image classification. Let the amplitude images of
objects belonging to L different classes (for example, the images of handwritten digits) be
generated in the input plane z = 0. The generated light field then propagates through the
cascaded DOE and comes to the output plane z = fn+1. Let L spatially separate regions Gi
corresponding to the images of different classes be defined in the output plane. At each
input distribution (image), certain energy distribution Ei, i = 1, . . . , L is generated in these
regions, where Ei corresponds to the integral of the generated intensity distribution over the
region Gi. In this case, the problem of designing a cascaded DOE for classifying images can
be formulated as a problem of calculating such phase functions ϕ1(u1), . . . ,ϕn(un) of the
cascaded DOE, so that for an “input signal” corresponding to an image of a certain j-th class,
the maximum of the generated energies Ei, i = 1, . . . , L is achieved in the corresponding
region Gj [3,5].

In the problems of calculating cascaded DOEs for image classification, approaches
typical for the design of artificial neural networks are used [3,5,19–21]. In this case, for the
design (training) of the cascaded DOE, a training data set is used, which contains a number
of input distributions corresponding to the images of objects belonging to different classes.
Due to the large size of the training set, usually, for performing a training step, a smaller set
(batch) of distributions is randomly chosen from the whole set, for which the derivatives of
the error functional are calculated. One can show that the expectations of the derivatives
calculated over a batch are proportional to the derivatives calculated using the whole
training set, which enables considering this approach as a stochastic gradient method.

The training of a cascaded DOE on a particular batch corresponds to the gradient
method in the case of several incident beams. Indeed, the error functional in the case of
training on a batch can be defined in the form of Equation (14), where K is the batch size,
and the functionals εj(ϕ1, . . . ,ϕn) represent the classification errors of different classes
included in the batch. The difference of the image classification problem from the problem
of generating different intensity distributions for different incident beams consists mainly
in the form of the functionals εj(ϕ1, . . . ,ϕn). In the following subsections, we will consider
two error functionals used for the solution of the classification problem and will show
that the calculation of the derivatives of these functionals is also reduced to the general
Formula (12).

5.1. Quadratic Error Functional

Let w0,j(u0) be an input distribution corresponding to some image of the j-th class.
The energy values in the regions Gk of the output plane in this case have the form

Ek =
x

In+1(un+1)χk(un+1)d2un+1, k = 1, . . . , L., (16)

where χk(un+1) is the indicator function of the region Gk. For recognizing (i.e., correctly
classifying) the input image w0,j(u0), it is necessary for the energy Ej in the corresponding
region Gj to be “large”, with the energies in the rest of the regions being close to zero.
Accordingly, the following quadratic functional can be utilized as the error functional for
recognizing an input image of the j-th class:

εj(ϕ1, . . . ,ϕn) =
L

∑
k=1

(
Ek − Emaxδk,j

)2
, (17)
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where δk,j is the Kronecker delta and Emax is the maximum possible energy value. As
for the Emax value, one can, for example, use the total energy of the input distribution
Emax =

s ∣∣w0,j(u0)
∣∣2d2u0.

Let us demonstrate that the calculation of the derivatives of the functional εj(ϕ1, . . . ,ϕn)
is very similar to the calculation of the derivatives of the “general” functional of Equation (2)
considered in Section 3. Indeed, let ∆mε

j(ϕ1, . . . ,ϕn) be the increment of the functional of
Equation (17) caused by an increment ∆ϕm of the function ϕm. According to Equation (17),
this increment has the form

∆mε
j(ϕ1, . . . ,ϕn) = 2

L
∑

k=1

(
Ek − Emaxδk,j

)
(∆mEk)

= 2
L
∑

k=1

(
Ek − Emaxδk,j

)s
∆m
(
wn+1(un+1)w∗n+1(un+1)

)
χk(un+1)d2un+1

= 4Re
[
s

(∆mwn+1(un+1)) w∗n+1(un+1)
L
∑

k=1
χk(un+1)

(
Ek − Emaxχj(un+1)

)
d2un+1

]
= 4Re〈∆mwn+1(un+1), Fn+1(un+1)〉,

(18)

where

Fn+1(un+1) = wn+1(un+1)
L

∑
k=1

χk(un+1)
(

Ek − Emaxχj(un+1)
)

. (19)

Similarly to Equation (5), we obtained the increment of the functional ∆mε
j(ϕ1, . . . ,ϕn)

in the form of a scalar product. Thus, the derivatives of the functional εj(ϕ1, . . . ,ϕn) are
also defined by Equation (12), where the functions Fm(um) are calculated through the
backpropagation of the field of Equation (19).

5.2. Cross Entropy Functional

In the classification problems, the so-called softmax cross entropy is used as a crite-
rion [19,20]. In this case, the following error functional is used for recognizing an input
distribution belonging to the j-th class w0,j(u0):

εj(ϕ1, . . . ,ϕn) = − ln

 exp(Ej)

L
∑

k=1
exp(Ek)

, (20)

where Ek are the energies in the regions Gk defined by Equation (16). Let us note that
Equation (20) is close to zero when the energy in the required region Gj is much greater
than the energies in the other regions.

Let us consider the increment of the functional (20) caused by an increment ∆ϕm of
the function ϕm. By carrying out transformations similar to those presented above, it is
easy to obtain the increment of the functional as

∆mε
j(ϕ1, . . . ,ϕn) = 4Re

[x
(∆mwn+1(un+1))F∗n+1(un+1)d2un+1

]
= 4Re〈∆mwn+1(un+1), Fn+1(un+1)〉, (21)

where

Fn+1(un+1) = 2wn+1(un+1)

[
L

∑
k=1

exp(Ek)χk(un+1)− χj(un+1)
L

∑
k=1

exp(Ek)

](
L

∑
k=1

exp(Ek)

)−1

. (22)

As in the previous case, we obtained the increment of the functional ∆mε
j(ϕ1, . . . ,ϕn)

as a scalar product. Accordingly, the derivatives of the functional (20) are also defined by
Equation (12), where the functions Fm(um) are calculated through the backpropagation of
the field of Equation (22).



Photonics 2023, 10, 766 8 of 18

Thus, the calculation of the phase functions of the cascaded DOE in the problem of
image classification consists of the following. For the current batch, the gradient of the
functional (14) is calculated, where the calculation of the derivatives of the terms is carried
out using Equations (12) and (19) or Equations (12) and (22) depending on the chosen
criterion. After calculating the derivatives of the functional (14), the phase functions are
corrected using a formula similar to Equation (13). Then, the next batch is considered and
the process is repeated. The investigation of the performance of the proposed method in
the problem of classifying handwritten digits is presented below in Section 6.2.

6. Numerical Examples of Cascaded DOE Design

In the previous two sections, we considered the application of the proposed gradient
method to the problems of calculating cascaded DOEs for the generation of required
intensity distributions (for several incident beams) and for optical image classification. In
the present section, numerical examples illustrating the performance of the method in the
indicated problems are presented. In Section 6.1, we discuss the design of cascaded DOEs
for generating different intensity distributions at different angles of incidence of the input
beam, and Section 6.2 is dedicated to the design of DOEs for classifying handwritten digits.

6.1. Design of Cascaded DOEs for Focusing Different Incident Beams to Different Regions

Let in the input plane of the cascaded DOE, four input distributions
w0,j(u0), j = 1, 2, 3, 4 be defined, which correspond to Gaussian beams with the radius
at the 1/e2 level equal to 2σ = 2.3 mm and the wavelength λ = 532 nm, incident on this
plane from different directions. Let the vectors defining the propagation directions of the
beams w0,1(u0) and w0,2(u0) lie in the plane u0z and make angles ±θ = ±0.16◦ with the z
axis, and the corresponding vectors of the beams w0,3(u0) and w0,4(u0) lie in the plane v0z
and also make angles ±θ with the z axis. The complex amplitudes of these beams in the
plane z = 0 have the form

w0,1(u0) = exp(− u2
0

2σ2 ) exp(+i 2π
λ u0 sin θ), w0,2(u0) = exp(− u2

0
2σ2 ) exp(−i 2π

λ u0 sin θ),

w0,3(u0) = exp(− u2
0

2σ2 ) exp(−i 2π
λ v0 sin θ), w0,4(u0) = exp(− u2

0
2σ2 ) exp(+i 2π

λ v0 sin θ).
(23)

Let us consider the calculation of cascaded DOEs generating in the output plane
z = 600 mm different uniform intensity distributions Ij(un+1), j = 1, 2, 3, 4 for the incident
beams of Equation (23). The four output distributions are centered at the origin of coor-
dinates and correspond to a circle with the diameter of 2.3 mm, contour of a square with
the side of 2.3 mm, a cross consisting of two perpendicular segments with the length of
2.3 mm, and a “rotated cross” consisting of two diagonals of the square with the side of
2.3 mm (Figure 2). The thickness of the lines of the required output intensity distributions
amounts to 0.2 mm.
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Figure 2. Required intensity distributions in the output plane for the incident beams of Equation (14).

We will consider three design examples: a single DOE (located in the plane
z = f1 = 300 mm) and cascaded DOEs consisting of two DOEs (located at z = f1 = 200 mm
and z = f2 = 400 mm) and three DOEs (located at z = f1 = 150 mm, z = f2 = 300 mm,
and z = f3 = 450 mm). We will define the phase functions in the DOE planes on
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512 × 512 grids with the step of d = 18 µm (these parameters correspond to some of
the available spatial light modulators, which can be used as DOEs). In this case, the side
length of the square aperture of each DOE amounts to 9.216 mm.

Let us note that at the chosen parameters, the incident beams strongly overlap in the
planes of the DOEs. For example, after the propagation to the plane z = 300 mm, the centers
of the beams are displaced from the optical axis (the z axis) only by 300 tgθ ≈ 0.83 mm,
which is significantly smaller than the radius of the beams. This overlap of the incident
beams significantly complicates the problem of calculating the cascaded DOE.

The calculation of the phase functions of the DOE was carried out using the gradient
method described above. As the error functional, the sum of functionals (14) was used,
where the functionals εj(ϕ1, . . . ,ϕn) representing the difference between the required
distributions and the ones generated at the input fields w0,j(u0) were defined as

εj(ϕ1, . . . ,ϕn) =
x [

In+1,j(un+1)− Ij(un+1)
]2d2un+1. (24)

At each iteration, the derivatives of the error functional were calculated, which, accord-
ing to Equation (17), correspond to the sum of derivatives of the functionals εj(ϕ1, . . . ,ϕn).
The calculation of the derivatives of the functionals εj(ϕ1, . . . ,ϕn) was carried out using
Equation (12), where wm(um) = wm,j(um) is the complex amplitude of the field incident on
the m-th DOE in the case of the direct propagation of the incident beam w0,j(u0), and the
function Fm(um) = Fm,j(um) is calculated through the backpropagation of the field

Fn+1,j(un+1) = 2
[
In+1,j(un+1)− Ij(un+1)

]
wn+1,j(un+1), (25)

where wn+1,j(un+1) is the complex amplitude of the field in the output plane. In the
optimization, the calculation of the functions wm,j(um) and Fm,j(um) featured in the expres-
sions for the derivatives of the functionals was based on the numerical calculation of the
Fresnel–Kirchhoff integrals using the fast Fourier transform routine.

Figure 3 shows the calculated phase functions of one, two, and three DOEs. For the
calculation of each example, 8000 iterations with an exponentially decreasing step were
performed (such a number of iterations turned out to be sufficient for the convergence of
the method). As initial values, phases equal to zero at the whole aperture were used. The
calculation time on a standard PC (Intel Core i9 10920X CPU, 3.50 GHz) was from 30 min
for the single DOE to approximately one hour for the cascade of three DOEs.

One can see that the calculated phase functions of the single DOE and of the first
DOEs in the cascaded structures are close to zero (to the initial phase value) near the edges
of the aperture. This is caused by the fact that the amplitude of the fields generated in the
plane of the first DOE in the case of the input beams of Equation (23) is close to zero in the
peripheral regions of the aperture. Since the derivatives of the error functional are close to
zero in the regions with a small amplitude of the field, the phase functions changed only
weakly in these regions and remained close to the initial zero value.

Figure 4 shows the calculated intensity distributions generated by the calculated single
and cascaded DOEs at different incident beams of Equation (23). In order to characterize
the quality of the generated distributions, let us use the energy efficiencies E f f j and root-
mean-square errors δj. The energy efficiencies

E f f j =
1

E0,j

x

Gj

In+1,j(un+1)d2un+1 (26)

describe the fraction of the energy E0,j =
s ∣∣w0,j(u0)

∣∣2d2u0 of the j-th incident beam, which
arrives to the required region Gj =

{
un+1| Ij(un+1) 6= 0

}
. The root-mean-square errors

δj =
1

Mj

√
1
‖G‖

x

G

[In+1,j(un+1)− E f f j Ij(un+1)]
2d2un+1 (27)
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describe the root-mean-square deviation of the distribution In+1,j(un+1) generated for the
j-th incident beam from the required distribution Ij(un+1) in the region G covering all the re-
quired regions Gj and corresponding to a square with the side of 3 mm centered at the origin
of coordinates. Here, ‖G‖ is the area of the region G and Mj =

1
‖G‖

s

G
In+1,j(un+1)d2un+1 is

the average intensity in this region. The values of the energy efficiencies and root-mean-
square errors for the designed DOE examples are presented in Figure 4 above each of the
calculated intensity distributions.

Photonics 2023, 10, x FOR PEER REVIEW 12 of 20 
 

 

 
Figure 3. The calculated phase functions of the single DOE (first row) and of cascaded structures 
containing two (second row) and three (third row) DOEs. Figure 3. The calculated phase functions of the single DOE (first row) and of cascaded structures

containing two (second row) and three (third row) DOEs.



Photonics 2023, 10, 766 11 of 18

From Figure 4, it is evident that the quality of the generated distributions increases with
an increase in the number of DOEs. In particular, for the single DOE, the required distributions
are generated with extremely large root-mean-square errors (being close to or even exceeding
100%) and at relatively low energy efficiencies (less than 54%). For a cascaded structure
containing three DOEs, the root-mean-square error significantly decreases (the maximum error,
which corresponds to the distribution I1(un+1), amounts to 9.8%), and the energy efficiency
exceeds 87%.

Thus, the presented examples demonstrate the advantages of cascaded DOEs over single
ones in the problem of generating different required intensity distributions for different incident
beams and confirm the high performance of the proposed design method.

6.2. Design of Cascaded DOEs for Classifying Handwritten Digits

In this subsection, we will consider the design of DOEs for classifying handwritten digits
from the MNIST database [25]. Let us start by considering the case of a single DOE. In the
calculations, the input images of the digits were defined on a 56 × 56 grid with the step of
d = 18 µm. The phase function of the DOE was defined on a 512 × 512 grid with the same
step. Let the DOE and the output plane be located at z = f1 = 300 mm and z = f2 = 600 mm,
respectively. Let us note that at the design wavelength λ = 532 nm, the diffraction angle at a
pixel of the input distribution amounts toϕ = arcsin(λ/d) ≈ 1.7◦. In this case, the diffraction
pattern from the pixel (with respect to the first minimum) at the distance f1 = 300 mm roughly
covers the DOE aperture. In this regard, the chosen parameters ensure the “connection” of
each pixel of the input image with all the pixels (grid nodes), at which the phase function of
the DOE is defined.

In accordance with the design method, in the output plane, 10 spatially separated square
regions Gj with the side length of 0.5 mm were defined, in which maximum energies for
different input images of different digits have to be generated (see Figure 5).
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Figure 4. Calculated intensity distributions generated for each of the incident beams of Equation (23) by
the designed single DOE (first row) and cascaded structures consisting of two (second row) and three
(third row) DOEs.
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Figure 5. Regions Gj in the output plane, in which maximum energies for the input images of
different digits have to be generated.

In the calculation, a training set containing 60,000 images of digits from the MNIST
database was used. The DOE was calculated using batch training, with each batch con-
taining 60 randomly chosen digits. As the error functionals, the quadratic error (QE)
functional of Equations (14) and (17) and the softmax cross entropy (SCE) functional of
Equations (14) and (20) were used. As the initial approximation for the DOE phase func-
tion, a random phase from the range [0, 2π) was chosen. In the DOE calculation, 10 epochs
were performed, which takes approximately 7 min on a NVIDIA GTX 1070 8 Gb graphics
card. Under an epoch, we understand the training of the DOE on 1000 batches containing
all the images from the training set. The phase functions of the DOEs calculated using the
QE and SCE criteria are shown in Figure 6.
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Figure 6. Phase functions of DOEs calculated using the quadratic error criterion (a) and the softmax
cross entropy criterion (b).

After training, “blind” testing of the performance of the calculated DOEs was per-
formed using a test set consisting of 10,000 images not included in the training set. For each
image from the test set, the generated intensity distribution was simulated, the energies
(16) in the regions Gj were calculated, and then the input digit was determined using the
maximum energy value. The testing results represented as confusion matrices and energy
distribution matrices are represented in Figure 7. The element (i,j) of the confusion matrix
contains the percentage of cases, in which an input image of the digit j was recognized as
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the digit i. Accordingly, the diagonal elements of these matrices contain the percentage
of the correct classifications. Similarly, the element (i,j) of the energy distribution matrix
contains the averaged energy (in percent) in the region Gi at an input image of the digit
j. The diagonal elements of this matrix correspond to mean energies (in percent) in the
“correct” regions corresponding to each digit.

For the DOE calculated using the QE criterion (Figure 6a), the accuracy of the digit
recognition varies from 93.9% for the digit “9” to 99.2% for the digit “1”. The overall
classification accuracy (i.e., the ratio of the number of correctly recognized digits to the
total amount of digits in the test set) amounts to 97.2%. For the DOE calculated using the
SCE criterion (Figure 6b), the accuracy varies from 91.9% for the digit “8” to 99.5% for the
digit “0”, and the overall accuracy equals 96.8%. Let us note that the achieved classification
accuracy values are quite high for single DOEs. For the sake of comparison, the overall
classification accuracies in Refs. [3,5,21] achieved using cascaded structures containing
5–10 DOEs vary from 91.8% to 93.4%.
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Figure 7. Confusion matrices and energy distribution matrices for the DOEs calculated using the
quadratic error criterion (a,b) and the softmax cross entropy criterion (c,d).

As it was noted above, for the DOE calculated using the SCE criterion, the overall
classification accuracy turned out to be 0.4% lower. At the same time, the energy distribution
matrix for this DOE is better. Indeed, from the practical point of view, an important
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parameter is the contrast value, which shows, how much the energy in the required region
exceeds the energy values in the other regions. Let us define the contrast for the digit i as

γmin,i =

Ii,i −max
j 6=i

Ij,i

Ii,i + max
j 6=i

Ij,i
, (28)

where Ii,j, i, j = 0, . . . , 9 are the elements of the energy distribution matrix. For robust
determination of the “true maxima”, it is necessary for the contrast values γmin,i to exceed
0.1. According to the energy distribution matrix shown in Figure 7b and corresponding
to the DOE calculated using the QE criterion, the minimum contrast is achieved for the
digit “9” and amounts to γmin ≈ 0.11. For the energy distribution matrix of Figure 7d
corresponding to the DOE calculated using the SCE criterion, the minimum contrast is also
achieved for the digit “9” but is somewhat greater: γmin ≈ 0.17.

As an example, Figure 8 shows a typical input image of the digit “3” and the corre-
sponding energy distribution demonstrating a correct digit recognition.
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Figure 8. Input image of the digit “3” (a) and the corresponding energy distribution (b).

Then, using the QE and SCE criteria, we designed cascaded DOEs comprising two
DOEs located in the planes z = f1 = 300 mm and z = f2 = 600 mm. The output plane was
located at z = 900 mm. All the other parameters (discretization, wavelength, and aperture
sizes) coincide with the parameters of the examples considered above. The phase functions
of the cascaded DOEs calculated after 10 epochs are shown in Figure 9.

The confusion matrices and the energy distribution matrices for the designed cascaded
DOEs are presented in Figure 10. As before, the DOE performance was evaluated on
a test set containing 10,000 images not included in the training set. By comparing the
confusion matrices for single and cascaded DOEs (Figures 7a,c and 10a,c), one can see
an increase in the classification accuracy. The overall accuracy values for the cascaded
DOEs calculated using the QE and SCE criteria amount to 98.0% and 97.6%, respectively.
Thus, for the considered example, the increase in the classification accuracy achieved by
using a cascaded structure containing two DOEs equals 0.8%. The energy distribution
matrices for the cascaded DOEs (Figure 10b,d) are also improved. In particular, minimum
contrast values for the cascaded DOEs, which are also achieved for the digit “9”, amount to
0.19 and 0.31 for the QE and SCE criteria, respectively. These contrast values are more than
1.7 times greater than those for single DOEs.
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Figure 9. Phase functions of the cascaded DOEs calculated using the quadratic error criterion (a,b) and
the softmax cross entropy criterion (c,d).

Let us note that a further increase in the number of DOEs leads to only a marginal
increase in the classification accuracy but enables improving the contrast values. In particu-
lar, for a cascaded structure consisting of three DOEs calculated using the SCE criterion,
the minimum contrast amounts to 0.55, which is significantly greater than the value of
0.31 provided by the cascaded structure of two DOEs.

Another way to increase the DOE performance consists in increasing the number of
the optimized parameters, which can be achieved by decreasing the step of the grid, at
which the phase functions of the DOEs are defined. For example, a single DOE with the
step size d = 4 µm (and the rest of the parameters coinciding with those of the single DOE
examples considered above) calculated using the QE criterion provides the overall accuracy
of 97.9% and minimum contrast of 0.16, which is considerably better than in the case of a
single DOE with the larger step size of 18 µm [see Figure 7a,b]. It is worth noting that this
result is comparable with the performance of the cascaded structure of two DOEs with the
18 µm step size [see Figure 10a,b].

From the practical point of view, it is important to discuss the misalignment issues,
which will inevitably occur when implementing cascaded DOEs (DNNs). It is known
that alignment errors smaller than the neuron (DOE pixel) size show a minor influence
on the DNN performance [3,21]. When the alignment error is just bigger than the neuron
size, the classification accuracy can be drastically reduced. It should also be noted that the
longitudinal misalignment usually influences the performance of a DNN much less than
the lateral (transverse) one [21].

The cascaded DOEs studied in this work are no exception. In order to estimate
the influence of DOE misalignment, as an example, let us consider the cascaded DOE
comprising two DOEs and designed using the SCE criterion (Figure 9c,d). The simu-
lation results demonstrate that when the first DOE is laterally displaced by the vectors
∆ = (∆u1, ∆v1) = (±18, ±18) µm (in the case of a fixed position of the second DOE), the
overall classification accuracy remains greater than 95% (i.e., the decrease in the overall
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accuracy does not exceed 3%). The minimum contrast in this case also stays acceptable
and exceeds 0.12. At further increase of the lateral displacement, the accuracy and contrast
decrease more significantly: for example, at the lateral displacement ∆ = (36, 36) µm,
the overall accuracy and minimum contrast amount to 90.9% and 0.09, respectively. The
lateral displacement of the second DOE influences the performance somewhat less, e.g., at
the (36, 36) µm displacement, the overall accuracy equals 96.3%, whereas the minimum
contrast is 0.13. Similar to the results presented in [21], the longitudinal misalignment is
much less critical: for example, the displacement of each of the DOEs along the optical axis
by 200 µm leads to a decrease in the overall efficiency not exceeding 0.1% at virtually the
same contrast.
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Figure 10. Confusion matrices and energy distribution matrices for cascaded DOEs calculated using
the quadratic error criterion (a,b) and the softmax cross entropy criterion (c,d).

7. Conclusions

In this work, we presented a gradient method for calculating cascaded DOEs. Using
the unitarity property of the operator of light propagation through the cascaded DOE,
we obtained explicit expressions for the derivatives of the general error functional with
respect to the phase functions of the cascaded DOE. We considered the application of
the gradient method to the problem of focusing different incident beams to regions with
different intensity distributions and to the problem of image classification. The presented
description of the gradient method unifies the problems of designing cascaded DOEs
for focusing laser radiation and for image classification within a general methodological
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approach, in which the calculation of the derivatives of the error functionals is reduced to
the same formula.

Using the proposed gradient method, we designed single and cascaded DOEs for
solving the problem of focusing different incident beams on different regions and the
problem of classifying handwritten images. The presented numerical simulation results
demonstrate the high performance of the proposed method. In particular, it was shown that
a single DOE enables solving the classification problem with an accuracy of approximately
97%, whereas a cascaded structure containing two DOEs provides a 98% accuracy.

In the opinion of the authors, the presented gradient method can be generalized to
the case of generating required intensity distributions in the case of several incident beams
with different wavelengths. The design and investigation of such DOEs operating at several
wavelengths will be the subject of further research.
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