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Abstract: For a long time, wind speed profile measurement has been the primary task of weather
forecasting. Therefore, the detection of atmospheric wind speed is extremely important for studying
the changes in atmospheric motion. In order to solve the problems of insufficient data collection, low
resolution, and low accuracy in atmospheric wind field detection, this paper introduces the relevant
theories of wind speed detection, completes the optical design of the system according to the research
objectives, and determines the selection of optical devices. At the same time, a Doppler wind lidar
system based on a quadrichannel Mach–Zehnder interferometer is designed and built to carry out
ground-based observation experiments, collect echo signal data, and inverse the atmospheric radial
wind speed. Furthermore, the wind measurement error is analyzed. Firstly, the paper introduces
the basic principle of the wind measurement system, i.e., using the Doppler effect of light, and then
analyzes the frequency discrimination device of the system in detail, and obtains the theoretical
calculation method of atmospheric wind speed inversion. At the same time, the relevant datasets
of wind measurement system are analyzed, including backscattering ratio, aerosol, and molecular
extinction coefficient, and the emission mechanism of the large pulse laser is also studied in detail,
which provides a theoretical basis for the model construction of Doppler lidar and the research on
the enhancement of pulsed laser emission energy. Secondly, according to the research index of wind
measurement, a Doppler wind measurement lidar system based on a quadrichannel Mach–Zehnder
interferometer is designed, including the design of ab external light path transceiver system, internal
light path interferometer, software and hardware, and algorithm. The calibration of the quadrichannel
Mach–Zehnder interferometer is completed, with its maximum interference contrast reaching 0.869.
Through the self-developed optical transceiver system and data acquisition system, the echo signal
of lidar is received and detected. Lastly, the data of echo signals collected by the interferometer are
analyzed, the radial atmospheric wind speed profile is inversed, and the signal-to-noise ratio and
wind speed measurement error of the system are evaluated. The experimental results show that the
maximum signal-to-noise ratio (SNR) of the system can reach 1433 when the emission pulse energy
of the large pulse laser is adjusted to 255 mJ, and the farthest wind speed detection distance is about
8 km. The high-precision wind speed detection range can reach 2 km, the actual wind measurement
errors in this range are all within 1.593 m/s, and the minimum error is only 0.418 m/s. In addition,
the backscattering coefficient and extinction coefficient of atmospheric molecules and aerosols in
the range of 8 km and the atmospheric temperature in the range of 10 km are also measured. The
measurement accuracy of the aerosol extinction coefficient is ±0.001 m−1, and the measurement error
of atmospheric temperature within 10 km is within 2 K, achieving the expected goals.
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1. Introduction

Wind observation is the key input of weather and air quality forecasting models. How-
ever, the observation results in existing global wind networks with the greatest influence
on numerical weather prediction are limited to the ground profile (such as airborne sensors
and radiosonde profiles), the near-surface layer (such as sea surface wind), or limited
layer measurement (such as atmospheric motion vector wind and aircraft sensors over
the ocean) [1]. Vertical resolution wind profile measurement has always been listed as
one of the biggest gaps in observation data, such as the OSCAR database of the World
Meteorological Organization (WMO). This gap is particularly obvious in the ocean and
Southern Hemisphere, and alternative satellite remote sensing measurement is needed to
fill this gap.

Doppler wind lidar (DWL) can remotely measure the range-resolved wind speed pro-
jected on the instrument line of sight (LOS) by emitting laser and measuring the frequency
change of atmospheric backscattered light (i.e., Doppler frequency shift) [2]. In recent
years, due to the demand for improved and increasingly localized wind measurement and
weather forecast (e.g., in the field of renewable energy) and the availability of reliable laser
sources, electronic equipment, and optical equipment (including optical fibers and laser
optical coatings), the DWL field has developed rapidly. With the commercial ground wind
lidar system becoming more and more accessible, the use and understanding of DWLs
system and the integration of wind products are also increasing.

Through the verification of ground observation, the double-edge Fabry–Pérot inter-
ferometer can effectively derive the wind profile from the long-span vertical atmospheric
molecular scattering signal. As early as 1999, the European Space Agency (ESA) chose the
direct detection technology for the space atmospheric dynamics project (ADM-Aeolus).
ADM-Aeolus was successfully launched in 2018. Since then, the technical problems of lidar
were solved, and the first global tropospheric wind profile was obtained from space. The
simulation and real-time assimilation of horizontal wind information confirmed that the
project still has room for further improvement, verifying the concept of space single-beam
lidar. Therefore, a more potential follow-up instrument should be operated to consolidate
the achievements obtained from the ADM Aeolus mission, and the original configuration of
the instrument (single-beam ultraviolet emission lidar) should be kept as much as possible.
By replacing Fizeau and Fabry–Pérot interferometers with a unique four-channel Mach–
Zehnder (QMZ) interferometer, the concept of the receiver can be re-examined, which
may relax the operating parameters of the system, expand the observation ability, and
invert the radiation characteristics of airborne clouds. The ability to obtain wind profile
and cloud/aerosol radiation characteristics meets the requirements of meteorological fore-
casting institutions on atmospheric dynamics and radiation, which are the two highest
priorities. The vertical distribution of atmospheric aerosol and the atmospheric wind field
formed by its movement are very important for studying the Earth’s climate environment.

In the wind energy industry, the Doppler LiDAR technique provides a promising
alternative to in situ techniques in wind energy assessment, turbine wake analysis and
turbine control. Doppler LiDARs have also been applied in meteorological studies, such as
observing boundary layers and tracking tropical cyclones. These applications demonstrate
the capability of Doppler LiDARs for measuring backscatter coefficients and wind profiles.
Doppler LiDAR measurements show considerable potential for validating and improving
numerical models [3]. In addition, wind profile light detection and ranging (LiDAR) is an
important tool for observing features within the atmospheric boundary layer [4].

At present, the remote sensing technology of backscattering lidar has been used to
deduce the boundary layer and extinction of aerosol and cloud. In this case, the inversion
of cloud and aerosol optical parameters needs to clean the air or use the assumption about
backscattering and extinction ratio. As determined in the early stage of lidar development,
hyperspectral resolution lidar (HSRL) technology allows to distinguish between molecular
and particle scattering, as well as more accurately characterize the extinction and backscat-
tering coefficients of aerosols or clouds. The advantage of high-spectral-resolution lidar
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is that it does not need to separate the input of molecules and aerosol particle scattering.
Many HSRL systems have developed filtering technology to separate aerosol scattering
with narrow spectrum from molecular scattering echo with wider spectrum by using an
iodine molecular absorption cell and Michelson or Fabry–Pérot interferometer (FPI). All
these systems operate in direct detection (measuring backscattered light power), which has
the advantage of relying on particle and molecular scattering, while allowing the expansion
of range and function. Direct detection technology has been selected for space observation
of wind or aerosol and cloud using an ultraviolet Fabry–Pérot interferometer UV-FPI (ESA
EarthCare mission). However, in any case, all HSRL technologies developed so far need
to emit quasi-monochromatic light, i.e., using a single-mode laser, and usually need to
inject seeds. In addition, most systems require precise frequency locking of the transmitter
with respect to the filter. These requirements lead to complex transmitter design involving
a precise servo loop and may become a fault point in space applications. In contrast, a
four-channel Mach–Zehnder interferometer can work with a multimode laser [5]. The
optical path difference (OPD) of QMZ is matched with the free spectral range (FSR) of laser,
so that the interference states of all laser modes are exactly the same. Instead of separating
molecular and particle signals in two different channels, QMZ determines the interference
contrast given by backscattered light. Regardless of the spectral positioning of the laser
frequency relative to the transfer function of QMZ, the contrast is clearly determined by
the signals given by four detection channels with orthogonal phases. In this way, neither
the laser nor the interferometer needs frequency stability.

This paper describes the calibration of a four-channel Mach–Zehnder interferometer,
enabling wind speed inversion and error analysis of Doppler lidar in atmospheric wind
speed measurement.

2. Working Principle
2.1. QMZ Frequency Discrimination Principle

Compared with the classic Mach–Zehnder interferometer (MZI), the main notable
feature is that a quarter-wave plate (QWP) is introduced into one arm of the interferometer
to introduce extra phase difference (π/2 of one polarization direction relative to the other).
Assuming that no other polarization-dependent path differences occur, QMZ provides
four output signals with orthogonal phases. The two classical MZI output channels are
separated by a polarizer oriented along one axis of QWP and detected by four non-imaging
detectors [6–9]. In order to work with multimode laser, the optical path difference, ∆, of
QMZ must match the free spectral range FSR of the laser:

∆ =
c

FSR
(1)

where C is the speed of light in vacuum. In this case, the interference state at the QMZ
output remains unchanged regardless of the laser mode.

According to Equation (1), the intensity fraction transmitted through the polarizer is
equal, and the signal transmitted by each channel (from 1 to 4) is written as

Si =
St

4
ai[1 + Mi Ma sin(ϕ + (i− 1)

π

2
)] (2)

where St is the total signal, ai is the relative photometric sensitivity of channel I, Mi is
the instrument interference contrast of channel I, Ma is the interference contrast given
by atmospheric backscattering signal, and ϕ is the interference phase. According to
Equation (2), the complex signal Q is calculated as

Q = Q2 + iQ1 (3)
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Q1 = a3S1−a1S3
a3 M3S1+a1 M1S3

Q2 = a4S2−a2S4
a4 M4S2+a2 M2S4

(4)

The interference contrast given by atmospheric backscattering signal is the modulus
of complex signal Q:

Ma = |Q| (5)

According to Equation (1), the atmospheric backscattering spectrum is a convolution
of the emission spectrum and spectrum broadening caused by random motion of molecules
and particles. Therefore, the atmospheric contrast Ma can be expressed as

Ma =
βp

βp + βm
Mp +

βm

βp + βm
Mm (6)

where βp and βm are the backscattering coefficients of particles and molecules, respectively,
and Mp and Mm are the interference contrast given by the backscattering coefficients of
particles and molecules, respectively. The interference contrast δν given by the full width
at half maximum (FWHM) source of the spectrum is expressed as follows according to
Equation (2):

M = exp

−( πδv∆
2c
√

ln(2)

)2
 (7)

On one hand, the spectrum of particle backscattering is broadened by the spectrum of
wind turbulence in the detection volume, and most of the time it can be ignored (the radial
velocity of 1 m·s−1 corresponds to 4 MHz broadening at 532 nm). The particle scattering
spectrum, like the laser spectrum, is a comb composed of relatively narrow spectral lines.
The response of the laser-matched interferometer to this spectrum is exactly the same as that
of a typical FWHM (δν≈ 200 mHz) single line, and the interference modulation Mp is≈ 0.8.
On the other hand, due to the wide molecular velocity distribution, the spectral broadening
of molecular backscattering signal is much larger (about 1 GHz). Convolution with a typical
1 GHz FSR transmission frequency comb produces an almost constant spectrum continuum
without interference modulation (Mm ≈ 0). Therefore, the obtained contrast is equal to the
instrument contrast generated by the laser source itself, and the retrieved contrast Ma is
equal to

Ma = Rp Mp (8)

where Rp can be expressed as the backscattering ratio of particles, and βm and βp are the
backscattering coefficients of molecules and particles, respectively.

Rp =
βp

βp + βm
(9)

In addition to the comparison, the interference phase of the output signal is obtained
by the independent variable of the complex signal Q:

ϕ = arg(Q) =
2π∆
λ0

(1 +
2VLOS

c
) (10)

where λ0 is the emission wavelength, and VLOS is the wind speed. From the interference
phase information, the frequency of the backscattered signal can be inverted, and the
Doppler frequency shift can be obtained.

The calibration of QMZ is based on the measurement of two instrument parameters:
ai and Mi. These measurements can be performed internally through the reference channel,
including collecting a small amount of light from the laser source. In the process of
atmospheric measurement, complex signals are averaged in multiple laser emissions to
improve the measurement accuracy. Since the interference phase may change during this
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period, the reference signal is still recorded to perform phase compensation summation to
avoid any underestimation of contrast. For a series of N signals, we get

Rp =
βp

βp + βm
=

N
∑

i=1
|Qi/QRi|

N
(11)

Therefore, the wind speed VLOS(See Appendix A.1.) is deduced as

VLOS =
cλ0

4π∆
arg

(
N

∑
i=1

Qi/QRi

)
(12)

where QR is the reference complex signal.

2.2. Performance Evaluation of Doppler Wind Lidar

Since there are molecules and particles in the atmosphere, the power-normalized spec-
trum of the lidar atmospheric echo signal is a linear combination of the power-normalized
scattering spectrum of molecular Im and particle Ip, which can be written as

Ia =
1

Rβ
Im +

Rβ − 1
Rβ

Ip (13)

where Rβ is the backscattering ratio, and the two spectra of the scattered signal excited
by monochromatic laser have different shapes because they have gone through different
processes. However, due to the use of a pulsed laser source limited by Fourier transform, it
can be assumed that the spectrum generated by the scattering of laser light by molecules
and particles has Gaussian distribution in frequency; then,

Ix
(
σ′
)
=

1
γx
√

π
exp

[
− (δ′ − δ)2

γ2
x

]
(14)

where γx is the half width at 1/e of the distribution. In addition, according to Equation (15),
the center wave number σ of the received signal is Doppler-shifted compared with the
center wave number σ0 of the transmitted signal.

σ = σ0 ≤ (1 + 2V/c) (15)

where V is the average radial velocity of the scattering volume. In fact, the backscatter-
ing intensity spectrum Im from molecules is the convolution of the emitted laser energy
spectrum and the Gaussian Doppler spectrum generated by the molecular thermal velocity
distribution (ignoring the influence of Raman scattering and Brillouin scattering), and the
half-peak width at 1/e of the given Gaussian Doppler spectrum density is γu,mol, i.e.,

γu,mol =
2σ0

c

√
2kT
m

(16)

where k is the Boltzmann constant, T is the temperature of scattering medium (atmosphere),
m is the average mass of atmospheric molecules, and Vu,mol = (2 kT/m)1/2 is the most
probable rate of thermal motion of molecules. The half-peak width at 1/e of the maximum
Rayleigh backscattering power spectrum of atmospheric molecules is

γm =
(

γe
2 + γu,mol

2
)1/2

(17)

where γe is the line width of the transmitted pulse, and c is the speed of light.
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On the one hand, for the temperature T = 250 K, vu,mol ≈ 380 m·s−1; that is, for the
emission wavelength λ1 = 1/σ1 = 532 nm, γu,mol ≈ 4.8 × 10−2 cm−1 (1.4 GHz), and, for
λ2 = 355 nm, vu,mol ≈ 7.1 × 10−2 cm−1(2.1 GHz). On the other hand, injecting seed light
source into the Nd:YAG solid-state laser can emit a single-frequency pulse with a near
Fourier-transform limit. For a typical pulse duration of 20 ns, the Fourier-transform limited
pulse corresponds to a spectral width of about γe ≈ 1.67 × 10−3 cm−1(50 MHz). Therefore,
compared with Rayleigh broadening of atmospheric molecules, we can ignore the width of
emitted light(See Appendix A.2.) and write

γm ≈ γu,mol =
2σ

c

√
2kT
m

(18)

The backscattered signal Ip from aerosol particles is broadened by the wind turbulence
spectrum in the detected volume unit, assuming a Gaussian line shape, and the 1/e half-
width of the maximum Brownian motion power spectrum of particles is γu,part. Similarly,
the half-peak width at 1/e of the obtained aerosol particle backscattering spectrum is
written as

γp =
(

γe
2 + γu,part

2
)1/2

(19)

Considering that the velocity of aerosol particles is about several meters per second,
and that, for λ2 = 532 nm, the radial velocity of 1 m·s−1 corresponds to a Doppler frequency
shift of 1.3 × 10−4 cm−1, the particle backscattering spectrum is defined as the first ap-
proximation of the laser source spectrum. The spectral linewidth of the particle scattering
signal can be 50–100 times smaller than that of the molecular scattering signal, as shown in
Figure 1 [10–12].
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Figure 1. Normalized spectrum energy distribution diagram of atmospheric signals.

Measurements are made during the day, but noisy detectors are also taken into account,
which means that background signals are generally superimposed on lidar signals. When
the signal is processed, the level of the background signal is measured and subtracted from
the actual signal. In addition, it is assumed that the measurement of background light is
carried out through a large number of time averages; hence, compared with the error of
lidar signal, its error can be ignored. Therefore, before any data processing, the background
level can be subtracted from the recorded signal without obvious additional error. For
simplicity, the background signal is not considered in the equation below describing the
measurement principle, and the existence of background light leads to the reduction in
signal-to-noise ratio. Let NA be the average signal photon number and NB be the average
background photon number, where η is the detection efficiency. Then,

SNR =

√(
ηNA

1 + NB/NA

)
(20)
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Assuming ai = Mi = 1(i = 1~4), the variance of Q1 can be expressed as

var(Q1)

Q2
1

≈ var(S1 − S2)(
S1 − S2

)2 +
var(S1 + S2)(

S1 + S2
)2 − 2

cov(S1 − S2, S1 + S2)(
S1 − S2

)(
S1 + S2

) (21)

where x and var(x) represent the mean and variance of x, respectively, and cov(x,y) repre-
sents the covariance of x and y. The average value of Q1 is given by the following formula:

Q1 ≈
S1 − S2

S1 + S2
(22)

Furthermore, it is assumed that the noises on S1 and S2 are uncorrelated with each
other. That is, only considering the detection noise, there are

var(S1 − S2) = var(S1 + S2) = var(S1) + var(S2) (23)

cov(S1 − S2, S1 + S2) = var(S1)− var(S2) (24)

Then, it can be inferred that

var(Q1) ≈
(

1 + Q2
1

)var(S1) + var(S2)(
S1 + S2

)2 − 2Q1
var(S1)− var(S2)(

S1 + S2
)2 (25)

Next, suppose that the signal detection after adding background noise is limited by
shot noise, i.e., var(S1) + var(S2) = η(NA1 + NB1), and var(S1)-var(S2) = ηQ1NA1. Then, the
variance of Q1 is given by

var(Q1) ≈
1 + FB1Q2

1
SNR1

2 (26)

FB1 = (NB1 − NA1)/(NB1 + NA1), which is a numerical value varying between −1
and 1, and the specific numerical value depend on the number of background photons.
For the calculation of the standard deviation of Q2, the same expression can be obtained
according to the calculation steps of Equations (21)–(25).

QS is defined as the arithmetic square root of Q1 square plus Q2 square:

QS =
√

Q1
2 + Q22 (27)

Since the signals Q1 and Q2 are uncorrelated, there are

var(QS) ≈
Q2

1var(Q1) + Q2
2var(Q2)

Q2
1 + Q2

2

(28)

If approximate treatment is carried out according to Equation (26), with NA1 = NA2 =
NA/2 and NB1 = NB2 = NB/2 (i.e., the transmission of the two polarizations is equal), there
are SNR1 = SNR2 = SNR/

√
2 and FB1 = FB2 = FB. Then, the final variance of QS is given by

var(QS) ≈
2

SNR2 (1 + FB
Q4

1 + Q4
2

Q2
1 + Q2

2

) (29)

According to Equation (15), the interference phaseϕ can be written asϕ =ϕ0 + δϕ, where

ϕ0 = 2πlσ0, δϕ =
4πσ0lV

c
(30)
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According to Equation (2), Q1 = Masinϕ, Q2 = Macosϕ, and ϕ = arctan(Q1/Q2).
Derived from Equation (6), Rβ = (Mp-Mm)/(Mp-QS). Then, from Equations (4) and (26), it
is deduced that

Q2
1 + Q2

2 = M2
a

Q4
1 + Q4

2 = M4
a

[
1− 1

2 sin2(2ϕ)
] (31)

Finally, combined with the above equation, the standard deviation of Rβ is obtained
as follows:

εRβ
=

R2
β

Mp −Mm
[var(QS)]

1/2 ≈
√

2
SNR

R2
β

Mp −Mm

{
1 + FB M2

a

[
1− 1

2
sin2(2ϕ)

]}1/2
(32)

In order to calculate the error of wind speed V, the variance of RQ must be determined.
Since the noise coefficients of Q1 and Q2 are uncorrelated, the variance of RQ is

var(RQ) ≈ R2
Q

[
var(Q1)

Q2
1

+
var(Q2)

Q2
2

]
≈ Q2

1

Q2
2

(
1 + FB1Q2

1

Q2
1SNR2

1

+
1 + FB2Q2

2

Q2
2SNR2

2

)
(33)

Substituting Equations (4) and (30) into the above formula, it is concluded that

var(RQ) ≈
2

SNR2
1

M2
a cos4 ϕ

[
1 +

1
2

FB M2
a sin2(2ϕ)

]
(34)

Then, the standard deviation of εϕ is

εϕ =

[
var(RQ)

]1/2

dRQ/dϕ
=

√
2

SNRMa

[
1 +

1
2

FB M2
a sin2(2ϕ)

]1/2
(35)

If the signal-to-noise ratio is high, the reference measurement error can be ignored.
Combined with Rβ = (Mp −Mm)/(Mp − QS), the standard deviation of radial wind speed
measurement(See Appendix A.3.) can finally be obtained as follows [13–16]:

εV ≈
c

4πσ0l

√
2

SNRMa

[
1 +

1
2

FB M2
a sin2(2ϕ)

]1/2
(36)

3. Lidar Design
3.1. General Architecture

The overall arrangement of lidar based on the four-channel Mach–Zehnder interfer-
ometer is shown in Figure 2. The aperture of a Newton telescope is only 150 mm, so that
it can be installed on satellite detectors or ground stations. In order to experience small
optical path difference, the optical path difference designed inside the interferometer is
only 3 cm. Since the experimental wind speed measurement needs to compare the atmo-
spheric signal with the interference phase of the reference pulse emitted by the laser, a
small number of emitted light beams are collected and sent into the integrating sphere
through one of the beam splitters, and the optical fiber is connected to the output port
of the integrating sphere. The integrating sphere ensures that the whole emitted pulse is
collected, as well as the distribution or arrangement of possible small changes in intensity
space. The laser, beam expander, beam splitter, and integrating sphere are installed on
one side of the telescope structure. The other side is equipped with receiving optics, filter,
and a signal optical fiber connector. In order to avoid any deviation caused by mechanical
deformation, only one input port of QMZ is used in this experiment. The sampled signal
and the collected echo signal are connected to a fiber coupler (95% for outputting echo
signal and 5% for outputting sampled signal), and their outputs are connected to the QMZ
input port. Because the output fiber of the experiment is short, it cannot ensure good mode
mixing and good beam depolarization; thus, the mode scrambler can be inserted into the
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output of the fiber coupler before being injected into the interferometer. Four avalanche
photodiodes and differential amplifiers (AD8138) used to detect the interferometer output
signals ensure the detection accuracy of the signals, and the signals are collected by 16 bit,
25 MHz, and 104 mW analog-to-digital converters (LTC2271).
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Figure 2. General layout of lidar: (a) design of lidar; (b) illustration of the lidar geometry.

Figure 2b shows the optical transmission schematic diagram of the laser radar (the
figure shows an off-axis transceiver system, which is a coaxial transceiver system when the
transmitted beam is in the geometric center of the receiving telescope). In the figure, the
transmitting laser emits a Gaussian beam into the atmosphere. At time t + τ, the optical
signal is highly scattered by R2 (R2 = c(t + τ)/2), whereby ∆R = R1 − R2 =cτ/2, which is
the length of the scattered gas at this moment, and cτ/2 is called the effective pulse space
length. In order to ensure that the telescope can receive the complete backscattered echo
signal of the transmitted Gaussian beam, it is usually necessary to make the receiving field
angle of the telescope more than twice that of the laser; however, if the ratio is too large, it
will receive too much sky background light, and, if it is too small, there will be a “blind
area” where the optical signal cannot be received at low altitude. Above a certain height,
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the telescope field of view completely contains the emission field of view, which is called
the “full area”, and the transition area is between “blind area” and “full area”.

The simplest form of lidar equation is

P(R) = KG(R)β(R)T(R) (37)

where P(R) is the received optical power at R, k is the factor representing the performance
of lidar, G(R) is the geometric factor, β(R) is the backscattering coefficient at R, which is a
parameter to measure the ability of the atmosphere to scatter the emitted light in a certain
direction, and T(R) represents the attenuation of laser by atmospheric transmittance. In
Equation (37), the system factor k can be written as

K = P0
cτ

2
Aη (38)

where P0 is the average power of a single laser pulse, A is the area in the scatterer when the
telescope observes the scattered gas, and η is the optical efficiency of the system.

The geometric factor G(R) is

G(R) =
O(R)

R2 (39)

where O(R) is the overlapping function of the transmitted beam and the received field of
view. In Figure 2b, the overlapping function has a value of 0 in the blind area, 1 in the full
area, and 0–1 in the transition area.

The internal design of a large pulse laser is shown in Figure 3.
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In this figure, Nd:YVO4 is a single-chip and single-frequency seed laser source, and
its output wavelength is 1.064 µm, which is the same as that of Nd:YAG. Nd:YVO4 can
work at a single frequency because the diode pump light is strongly absorbed in an end
mirror of a monolithic cavity. The first mode that reaches the threshold in the monolithic
cavity is the mode closest to the peak of the gain curve of Nd:YVO4. When the pump
power is absorbed within a short distance from the end mirror, the first mode introduces
a population inversion density to clamp the gain to a threshold level. Because all other
modes in the cavity have a common spatial node on the end mirror, these modes obtain the
same population inversion density [17]. Other modes with smaller stimulation emission
cross-sections cannot reach the threshold. Before the second mode reaches the threshold,
the laser can usually run above the threshold. In addition, Nd:YVO4 is pumped by a single
stripe laser diode, which is set slightly off-axis to prevent feedback to the diode. Because the
output of laser diode is sensitive to temperature, its output wavelength is controlled by a
TE cooler. The temperature of single Nd:YVO4 is also controlled by a TE cooler. This makes
it possible to scan the wavelength output of single Nd:YVO4 by changing its temperature.
Figure 4 is a schematic diagram of a laser source composed of Nd:YVO4.
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Figure 4. Nd:YVO4 single-frequency laser source.

Second, in the internal design of the large pulse laser, the collimator lens is added to
ensure that the beam with small diameter and good collimation passes through the Faraday
isolator to obtain the maximum output and isolation. There are two important reasons
for adding Faraday isolator: one is to prevent any backward radiation from the host laser
from damaging the seed laser; the other is to decouple the seed laser resonator from the
host resonator to maintain the frequency stability of the seed laser. In order to maintain
the frequency stability of the seed laser, it is necessary to decouple the two resonators,
which puts strict requirements on the extinction ratio of Faraday isolator [18]. For the
high-gain laser designed by the seed laser, the extinction ratio must reach 30 dB. Adding
lens assembly is helpful to optimize the spatial mode matching between the seed laser and
the host, which prolongs the lifetime of the seed laser photons in the host resonator and
increases the power of the seed laser coupled into the host cavity.

Figure 5 is the system block diagram of the main engine of 6350 large pulse laser and
related components of PRO/Lab/GCR series laser.
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The steering mirror is added to guide the beam and keep the seed laser beam aligned
with the optical axis of the host. Two mirror surfaces are connected with the bottom plate
of the seeder, and one mirror surface is connected with the GCR series optical guide rail.
At the same time, the mirror is adjustable to keep the optical alignment of the seeder
beam [19–22]. The temperature control and power supply circuit provide temperature
control for the temperature-sensitive optical components in the large pulse laser to ensure
stable performance. Temperature-stable components include a laser diode pumping source
that keeps its output emission frequency within the absorption bandwidth of Nd:YVO4
and another that controls the output frequency of the seed laser Nd:YVO4 seed laser crystal.
In addition, the Q-switch establishes a tuning minimization circuit (signal processor), the
purpose of which is to minimize the setup time of the Q-switch and keep the optimal
frequency overlap between the seed laser and the host laser. The temperature stability
of internal cooling water in the design block diagram is provided by the combination of
the temperature sensor and proportional valve, which keeps the Nd:YAG oscillator rod at
an average temperature, thus fixing the gain curve envelope of its frequency. The device
regulates the flow of external cooling water in the heat exchanger and keeps the internal
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cooling water at a uniform temperature, while the pressure sensor ensures the existence of
external cooling water pressure. A quarter-wave plate for suppressing space hole burning
is included on each side of the Nd:YAG oscillator rod to suppress space hole burning. The
piezoelectric frequency tuning element is a movable PRO/Lab/GCR series high reflector,
which is used to keep the optimal frequency coincident with the seed laser.

In addition, the design should also include devices to eliminate all secondary plasma
effects and prevent unnecessary reflection from any optical surface. Even the reflection
on the surface of the antireflective coating directly on the shaft is enough to form a weak
plasma. Because the laser is temperature-tuned, it can identify the frequency of the seed
laser in an unknown way. Such a plasma effect can be significant enough to have a
significant impact on the implanted seeds. Table 1 shows the design parameters of 6350
large pulse laser.

Table 1. Design parameters of 6350 large pulse laser.

Design Indicators Parameters

Nominal wavelength 1064 nm
Output power 3.0 mW ± 15%

Monopulse energy 1200 mJ
Spatial model >70% Gaussian correlation coefficient (at 1 m)

Beam diameter 9 mm
Divergence angle 0.4 mrad

Pulse duration 20 ns
Energy stability between pulses ±1%

Frequency width <0.003 cm−1

Frequency modulation <±10 MHZ
Warmup time 15 min

Optimum operating temperature 22 ◦C

3.2. QMZ Design

The schematic diagram of the four-channel Mach–Zehnder interferometer (QMZ) is
shown in Figure 6.
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In the above figure, the signal collected by the external optical transceiver system is sent
to the collimator through the optical fiber, and the optical fiber collimator is pre-aligned to
collimate the light emitted from the FC/PC connector optical fiber and has the performance
of diffraction limit. The optical fiber collimator has no moving parts, which is compact in
structure and convenient to be integrated into existing devices [23]. Considering that the
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light emitted from the optical fiber has a Gaussian intensity distribution, the divergence
angle can be estimated using Equation formula (37).

θ ≈
(

D
f

)(
180
π

)
(40)

where θ is the divergence angle, d is the simulated diameter (MFD), and f is the focal length
of the collimator. This formula is suitable for a single-mode fiber, but it will underestimate
the divergence angle of a multimode fiber, because the light emitted from the fiber does not
have a Gaussian intensity distribution. For light with different wave bands, the divergence
angle curve is shown in Figure 7.
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After that, the echo of 532 nm needs to pass through the filter to eliminate the influence
of interference on other bands such as 1064 nm, before finally passing through a four-
channel Mach–Zehnder interferometer with short optical path difference, and then being
collected by the lens and sent to the detector.

For the interferometer with 532 nm band, the nonpolarized beam-splitting cube with a
beam-splitting ratio of 50:50 is used as the beam-splitting mirror in this experiment, and
the response band is between 400 and 700 nm, with a size of 1 inch [24]. Similarly, for the
interferometer using a 1064 nm band, the beam splitter is an unpolarized beam splitter cube
with a beam splitting ratio of 50:50, and the response band is between 700 and 1100 nm,
with a size of 1 inch. Their design indicators are shown in Table 2.

Table 2. Cube design indicators.

Design Index Parameter

The side length of the cube 1”(25.4 mm)
Transparent aperture >20.3 × 20.3 mm

Wave front error of transmission <λ/4
Transmitted beam deviation ≤5 arcmin

Damage threshold 0.25 J/cm2

The reflectivity and transmittance of the beam-splitting cube using 532 nm band are
shown in Figure 8.

As can be seen from the above figure, the reflectivity of the wavelength of 532 nm in
the beam splitting cube is between 40% and 50%, and the transmittance is between 50%
and 60%.

The reflectivity and transmittance of the beam-splitting cube using the 1064 nm band
are shown in Figure 9.
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As can be seen from the above figure, the reflectivity and transmittance of the wave-
length of 1064 nm in the beam splitting cube were both between 40% and 50%.

As for the polarization beam splitter, a 1 inch polarization beam splitter cube was
selected in this project, and the wavebands were 420–680 nm and 700–1300 nm. The po-
larizing beam-splitting cube reflects S light through the dielectric beam-splitting film and
transmits P light, thus separating S-polarized light from P-polarized light. Extinction ratio
(ER) is the ratio between the maximum transmittance and the minimum transmittance of
near-perfect line incident light. When the transmission axis is parallel to the incident polar-
ization direction, the transmission reaches the maximum; after the polarizer rotates 90, the
transmission reaches the minimum [25]. The extinction ratio TP:TS of the transmitted beam
of the 700~1300 nm cubic prism is greater than 1000:1. However, the average extinction
ratio of 420~680 nm cube in the wavelength range is >1000:1. Their design parameters are
shown in Table 3.

Table 3. Design parameters of polarization beam splitting cube in this experiment.

Design Index Parameter

Cube size 1” × 1” × 1”
Texture of material N-SF1
Transmission rate TP > 90%

Reflectivity RS, Avg > 95%

The transmission curve of polarization beam splitting cube is shown in Figure 10.
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where Δ represents the phase difference, n1 represents the slow axis refractive index, n2 
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Figure 10. Transmission curve of polarization beam splitting cube: (a) transmission rate curve of
532 nm band; (b) transmission rate curve of 1064 nm band.

In this experiment, an optical wave plate was also used. The optical wave plate is made
of birefringent materials, and the refractive index of birefringent materials is different in the
fast and slow orthogonal principal axes. The birefringence makes the light polarized along
the fast axis and the slow axis of the wave plate have different propagation speeds. The
refractive index of the wave plate in the fast axis direction is lower, and the light polarized
along this direction travels faster, while the refractive index of the slow axis is higher, and
the light speed in this polarization direction is slower [26]. When light passes through
the wave plate, the speed difference causes a phase difference between two orthogonal
polarization components. The actual phase difference depends on material characteristics,
wave plate thickness, and signal wavelength, which can be described as

∆Φ =
2πd(n1 − n2)

λ
(41)

where ∆Φ represents the phase difference, n1 represents the slow axis refractive index, n2
represents the orthogonal fast axis refractive index, d represents the wave plate thickness,
and λ represents the signal wavelength.

A zero-order quarter-wave plate was used in the interferometer, composed of two
multistage Shi Ying wave plates, which could produce λ/4 optical path difference. The
fast axis of one wave plate is aligned with the slow axis of the other wave plate to form
a composite retardation plate. The net retardation is the difference between the two
wave plates, and the composite zero-order wave plate is less affected by temperature and
wavelength than the multistage wave plate. The structure of the zero-order wave plate
involves an etched stainless-steel washer placed between two multistage wave plates, and
these three parts are bonded together with epoxy resin (epoxy resin is only coated outside
the light-transmitting aperture of the wave plate). Then, the wave plate is installed in
an aluminum ring which is oxidized and blackened. The shell of the aluminum ring is
engraved with thin lines indicating the direction of the fast axis of the wave plate and the
words of the zero-order λ/4 wave plate and design wavelength. When the incident light is
linearly polarized, and the polarization plane forms 45◦ with the fast axis or slow axis of
the wave plate, the outgoing light will become circularly polarized. If the angle between
the polarization plane of linearly polarized light and the main plane is not 45◦, elliptically
polarized light is output. Conversely, circularly polarized light becomes linearly polarized
light through the λ/4 wave plate. Its design is shown in Figure 11.
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Figure 11. Schematic diagram of zero-order λ/4 wave plate design: (a) schematic diagram of the
dimension design of the zero-order λ/4 wave plate; (b) zero-order λ/4 wave plate model diagram.

The reflector used in the interferometer is a 1 inch broadband dielectric film plane
reflector, and the reflection bands are 400–750 nm and 750–1100 nm. The reflectivity curves
of these two bands are shown in Figure 12.
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curve of 1064 nm band.

Lastly, the lens used in the interferometer was a 1 inch plano-convex spherical Dan
Toujing with a focal length of 30 mm. The plano-convex lens is made of N-BK7 glass,
and its Abbe number is 64.17 (Abbe number represents the dispersion). The working
wavelength of the V-shaped laser antireflection film is 532/1064 nm, which is used for
common high-power Nd:YAG lasers with pulse output as high as 10 J/cm2. N-BK7 is a
kind of optical glass commonly used in high-power optical components. It is usually used
in applications that do not need the advanced performance of ultraviolet-fused Shi Ying
(such as high transmittance and low thermal expansion coefficient in ultraviolet band).
For infinite and finite conjugate applications, their focal lengths are positive and have
approximate optimal shapes. The plano-convex lens can converge the collimated beam on
the back focus, as well as change the point light source into a collimated beam. In order to
minimize spherical aberration, the collimated beam should be incident from the curved
surface of the lens when focusing, and the beam emitted from the point light source should
be incident from the plane of the lens when collimating. The focal length of the lens can be
calculated by the simplified formula of thick lens f = R/(n − 1), where n is the refractive
index and r is the radius of curvature of the convex surface of the lens. The focal length of a
thick spherical lens can be calculated using the thick lens formula below [27], where nl is
the refractive index of the lens, R1 and R2 are the radii of curvature of surface 1 and surface
2, respectively, and D is the center thickness of the lens.

1
f
= (n1 − 1)

[
1

R1
− 1

R2
+

(n1 − 1)d
n1R1R2

]
(42)
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When the thick lens formula is used to calculate the focal length of a plano-convex
lens, R1 approaches infinity, and R2 = −R. The negative sign before R is introduced because
the sign rule of thick lens formula is deduced. Therefore, after substituting the value, the
thick lens formula becomes

1
f
= (n1 − 1)

[
1
R

]
(43)

The lens focal length directly calculated by the above simplified thick lens formula is
the distance from the second main surface (H”) to the position of the focused spot when the
collimated light is incident from the curved surface of the plano-convex lens. The position
of the main surface of the thick lens can be calculated by the following formula:

H′ =
f (n1 − 1)d

R2n1
, H′′ =

f (n1 − 1)d
R1n1

(44)

However, like the thick lens formula, h’ is simplified to 0, and h” is simplified to

H′′ =
d
n1

= f − fb (45)

When used to calculate the principal plane position of a plano-convex lens, fb is the
back focal length of the lens, which is also often called the working distance of the lens. In
the thick lens formula, the wavelength-dependent focal length of any plano-convex lens
can be approximately calculated by using the refractive index of N-BK7 at the required
wavelength [28]. The relationship between the refractive index of N-BK7 and wavelength
is shown in Figure 13.
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Figure 13. Refractive index of N-bk7.

The V-film on the lens surface is a multilayer dielectric antireflection film, which can
obtain very small reflectivity in a narrow wavelength range. The reflectivity rises rapidly
on both sides of the minimum value; thus, the reflectivity curve is V-shaped, as shown
in Figure 14. The V-film has an average reflectivity of less than 0.25% on each side at
the coating wavelength and is designed for an incident angle (AOI) between 0◦ and 20◦.
Compared with broadband antireflection film, V film can achieve lower reflectivity in a
narrower bandwidth when AOI is specified.
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4. Experiment
4.1. QMZ Calibration

Before processing the actual atmospheric signal, it is necessary to calibrate the MZI
of four channels to determine the parameters of ai and Mi in Equation (2). Therefore, the
emitted laser after energy attenuation is introduced into the interferometer before detection,
and then the integrated pulse signals on four channels are recorded for a long time. When
the laser is not seeded, the emission linewidth is about 15 GHz. More than 60 longitudinal
laser modes are emitted, separated by about 230 MHz, which is the free spectral range
(FSR) of the laser cavity [29–32]. When the spectrum does not match the FSR (1.5 GHz)
of the four-channel MZI, there will be no interference contrast. Therefore, when laser is
injected into the seed light source, the interference contrast (sensitivity is 4 µm·K−1) with
phase ϕ varying with optical path difference ∆OPD under the influence of temperature
change is obtained. The time series of four-channel pulse signals is shown in Figure 15.
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Figure 15. Signals recorded by four channels of interferometer.

Using these data as input, and fitting Equation (2) by the least square method, four
coefficients Mi are determined. In order to verify the calibration accuracy, four pulse signals
can be reconstructed using the determined parameters and the calculated interference
phase. The result of channel 1 data is shown in Figure 16.

The calibration parameters obtained from the transmission spectrum are shown in
Table 4. It can be seen that the maximum interference contrast detected by the interferometer
built in this experiment is 0.869.

The correlation coefficient between the analog signal and the recorded signal is 0.9488,
thus ensuring high accuracy and verifying Equation (2) and the parameters. The interfer-
ence phase does not necessarily change linearly as a function of time, and the rapid signal
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fluctuation is well reflected in the simulation. This shows that they correspond to laser
frequency fluctuation rather than measurement noise.
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Figure 16. Comparison between recorded and simulated reference amplitudes of Channel 1.

Table 4. Measured values of channel sensitivity and interference contrast.

Sensitivity ai Interference Contrast Mi

a1 0.203 M1 0.869
a2 0.294 M2 0.843
a3 0.276 M3 0.873
a4 0.217 M4 0.791

4.2. Acquisition of Echo Signal

The echo signal collected for the first time is shown in Figure 17. As can be seen from
the figure, before 5 µs, the output signal fluctuated greatly, indicating that, at the beginning
of the experiment, the echo signal was mixed with noise signal and astigmatism reflected
into the interferometer.

Therefore, it is necessary to filter the noise signal and stray light entering the in-
terferometer, and the filter of corresponding band can be added at the input end of the
interferometer to ensure that the interferometer is in a dark environment during the experi-
ment. After adjustment, the experimental result is shown in Figure 18.

4.3. Atmospheric Wind Speed Inversion Profile

The results of detector detection in the experiment are shown in Figure 19.
The inversion result is shown in Figure 20. It can be seen that the effective interference

contrast of the main echo signals of channels 1 and 3 and channels 2 and 4 is close to 1,
which is consistent with the theory.

The result of phase profile inversion based on echo signal data is shown in Figure 21.
The retrieved atmospheric wind speed profile in the troposphere (0–8 km) is shown in

Figure 22. The experimental dataset was detected from 7:00 to 8:00 p.m. on 17 October 2022.
The weather in Shanghai on that day was as follows: sunny, northeast wind, wind

direction angle of 17◦, wind force of 1–2, wind speed of about 5 km/h (~1.39 m/s), all-day
temperature of 12–21 ◦C, air pressure of 1025, rainfall of 0.0 mm, relative humidity of 52%,
visibility of 25 km, and ultraviolet index of 5.

In this experiment, we should pay special attention to the fact that, when the external
optical transceiver system receives the echo signal, the system is particularly sensitive to
the noise signal scattered from the atmosphere and other stray light signals entering the
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interferometer; thus, the wind speed profile within 8 km of the above inversion may not
be all true and reliable, and it is necessary to evaluate the accuracy of the measured wind
speed by combining the comprehensive indicators such as the system signal-to-noise ratio
(the result of the system SNR is given later). In fact, the farthest distance of wind speed
detection is related to the pulse energy emitted by the large pulse laser and the overall
architecture design of the system.
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4.4. Temperature Detection of Troposphere Atmosphere

The atmospheric temperature T(z) is calculated from the interference contrast Mm(λ,l,z)
of the atmospheric molecule Rayleigh backscattering spectrum of the following formula
and the spectral broadening γm of the atmospheric molecule Rayleigh backscattering at the
height z of the scattering medium. In the formula, the speed of light is c (3 × 108 m/s), the
average molecular mass is m (28.966 × 10−3/(6.022 × 1023) kg), the Boltzmann constant is
k (1.381 × 10−23 J/K), and the wavelength is λ (532 × 10−9 m).

Mm(λ, l, z) = exp
[
−(πlγm)

2
]

γm = 2σ0
c

√
2kT
m

(46)

The relationship between atmospheric temperature T(z) and interference contrast
Mm(λ,l,z) of atmospheric molecular Rayleigh backscattering spectrum is derived below. It
is calculated that T0 ≈ 2496.98 (λ = 1064 × 10−9 m), and T0 ≈ 624.24(λ = 532 × 10−9 m).

T = 2T0 ln[Mm(λ, l, z)]
T0 = c2λ2m

16π2l2k
(47)

The formula below shows that the absolute random error of temperature depends on the
relative random error of interference contrast Mm(λ,l,z) of atmospheric molecule backscattering.

var(T) = 2T0
var[Mm(λ, l, z)]

Mm(λ, l, z)
(48)

The experimental data collected by another lidar system built in the shelter laboratory
(the physical part is shown in Figure 23a,b) are analyzed and extracted, and the tropospheric
atmospheric temperature measurement results are shown in Figure 23c,d. The experimental
dataset was detected from 7:15–9:00 p.m. on 3 January 2023. The weather in Shanghai on
that day was as follows: sunny, northeast wind, wind direction angle of 66◦, wind force of
3–4, wind speed of 13 km/h (~3.61 m/s), all-day temperature of 39 ◦C, air pressure of 1031,
rainfall of 0.0 mm, relative humidity of 59%, visibility of 25 km, and ultraviolet index of 1.
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5. Experimental Error Analysis

The detector detects that the interferometer output signal includes not only effective
signal photons, but also background signal photons in the echo signal. Generally speaking,
the background signal is superimposed on the effective signal of lidar. In practice, the
measurement of background light is carried out by long-term detection and averaging; thus,
compared with the error of effective signal of lidar, its error can be ignored [33]. Therefore,
when calculating the wind speed measurement error, it can be assumed that the level of
the background signal is measured and subtracted from the actual signal. However, the
existence of background light will reduce the signal-to-noise ratio (SNR). Therefore, in
the experiment, the emission power of lidar should be improved as much as possible to
improve the accuracy of experimental measurement. Let NA be the average signal photon
number, NB be the average background photon number, and η be the photon detection
efficiency of the detector. Then, the signal-to-noise ratio of the system can be expressed as

SNR =

√
ηNA

1 + NB/NA
(49)

In the experiment, the signal-to-noise ratio profile of this detection is calculated
according to the echo signal, as shown in Figure 24. This time, 121 data points were
collected, and the transmitted pulse energy was adjusted to 255 mJ for testing. As can be
seen from the figure, the signal-to-noise ratio in the range of 2 km is high, and the maximum
signal-to-noise ratio can reach 1433; thus, the inverted wind speed is more accurate.
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Therefore, with the experimental data of lidar from 7:00–8:30 p.m. on 27 October
2022, the Klett method can be used to retrieve the backscattering coefficient and extinction
coefficient of atmospheric aerosol, and the retrieval result is shown in Figure 25. The
weather in Shanghai on that day was as follows: light rain turned cloudy, northeast wind,
wind direction angle of 68◦, wind force of 1–2, wind speed of 4 km/h (~1.11 m/s), all-day
temperature of 16–20 ◦C, air pressure of 1024, rainfall of 1.0 mm, relative humidity of 63%,
visibility of 24 km, and ultraviolet index of 1.

2πl/λ represents the phase difference ϕ, the speed of light C is 3.0 × 108 m/s, λ is the
wavelength, and the laser wavelength used in this experiment is 532 nm. L is the optical
path difference, which was designed as 0.03 m in this experiment. If the signal-to-noise
ratio SNR is 1000 and the value is substituted into the formula, we can get the functional
relationship between the standard deviation value of wind speed measurement and the
correlation coefficient FB between the photon numbers of the four detection channels when
the signal-to-noise ratio is 1000, as shown in Figure 26.
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Figure 25. Inverse atmospheric backscattering coefficient and extinction coefficient: (a) backscattering
coefficientsβp, βm and extinction coefficientsαp, αm of molecules and particles under the experiment
of 1064 nm pulsed laser; (b) backscattering coefficients βp, βm and extinction coefficients αp, αm of
molecules and particles under the experiment of 532 nm pulsed laser emission.
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Figure 26. Relationship between wind speed measurement error and correlation coefficient between
four-channel photon signals.

The coefficient Dc can be regarded as the attenuation coefficient of wind speed error.
For atmosphere with a high scattering ratio, generally, Matm ≈Mpar ≈ 1 and M0 ≈ 1; thus,
Dc = 1. In clear weather, Matm ≈Mmol ≈ 0.6, and the attenuation factor is Dc = 1.6. This is
inherent in the four-channel Mach–Zehnder interferometer, and the error will be reduced
in the case of particle scattering. The result is shown in Figure 27.

The amplification curve of wind speed measurement error results in the range of 0 to
2 km is shown in Figure 28.

It can be seen from the figure that the actual wind measurement errors within the
range of 0 to 2 km are all within 2 m/s, and the minimum error is only 0.4177 m/s,
thus achieving the high-precision wind measurement goal. The core background of these
experiments is to debug the interferometer, put the interferometer in the working state
of frequency discrimination, and accurately capture the frequency difference between the
echo signal and the transmitted signal, which is the key to the success of the experiment.
The working temperature of the instruments purchased in this project is between −10 ◦C
and 50 ◦C, which is not suitable for experiments in an extreme temperature environment.
In addition, the interferometer is also extremely sensitive to temperature changes, and
the interferometer must be kept in a dust-free and constant-temperature environment.
If the ambient temperature of the interferometer changes obviously, it is necessary to
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recalibrate the interferometer and strictly discuss the influence of temperature change on
the experiment.The experimental results are given in Table 5.

Photonics 2023, 10, x FOR PEER REVIEW 26 of 33 
 

 

coefficients αp, αm of molecules and particles under the experiment of 532 nm pulsed laser 
emission. 

2πl/λ represents the phase difference φ, the speed of light C is 3.0 × 108 m/s, λ is the 
wavelength, and the laser wavelength used in this experiment is 532 nm. L is the optical 
path difference, which was designed as 0.03 m in this experiment. If the signal-to-noise 
ratio SNR is 1000 and the value is substituted into the formula, we can get the functional 
relationship between the standard deviation value of wind speed measurement and the 
correlation coefficient FB between the photon numbers of the four detection channels when 
the signal-to-noise ratio is 1000, as shown in Figure 26. 

 
Figure 26. Relationship between wind speed measurement error and correlation coefficient between 
four-channel photon signals. 

The coefficient Dc  can be regarded as the attenuation coefficient of wind speed error. 
For atmosphere with a high scattering ratio, generally, Matm ≈ Mpar ≈ 1 and M0 ≈ 1; thus, Dc 
= 1. In clear weather, Matm ≈ Mmol ≈ 0.6, and the attenuation factor is Dc = 1.6. This is inherent 
in the four-channel Mach–Zehnder interferometer, and the error will be reduced in the 
case of particle scattering. The result is shown in Figure 27. 

  
(a) (b) 

Figure 27. Wind speed measurement error result chart: (a) diagram showing the relationship 
between wind speed measurement error and signal-to-noise ratio; (b) result chart of wind speed 
measurement error and detection range. 

The amplification curve of wind speed measurement error results in the range of 0 to 
2 km is shown in Figure 28. 

Figure 27. Wind speed measurement error result chart: (a) diagram showing the relationship between
wind speed measurement error and signal-to-noise ratio; (b) result chart of wind speed measurement
error and detection range.

Photonics 2023, 10, x FOR PEER REVIEW 27 of 33 
 

 

 

Figure 28. Local enlargement of wind speed error. 

It can be seen from the figure that the actual wind measurement errors within the 

range of 0 to 2 km are all within 2 m/s, and the minimum error is only 0.4177 m/s, thus 

achieving the high-precision wind measurement goal. The core background of these 

experiments is to debug the interferometer, put the interferometer in the working state of 

frequency discrimination, and accurately capture the frequency difference between the 

echo signal and the transmitted signal, which is the key to the success of the experiment. 

The working temperature of the instruments purchased in this project is between −10 °C 

and 50 °C, which is not suitable for experiments in an extreme temperature environment. 

In addition, the interferometer is also extremely sensitive to temperature changes, and the 

interferometer must be kept in a dust-free and constant-temperature environment. If the 

ambient temperature of the interferometer changes obviously, it is necessary to recalibrate 

the interferometer and strictly discuss the influence of temperature change on the 

experiment.The experimental results are given in Table 5. 

Table 5. Relationship among laser emission energy, SNR, and effective detection height. 

Parameter Result 

Monopulse energy 1200 mJ 

Maximum emission energy 255 mJ 

Maximum SNR 1433 (@maximum emission energy) 

Wind speed detection range 0–8 km 

Effective wind speed detection range 0–2 km 

Accuracy of wind speed measurement 1.6 m·s−1 (@H = 2 km) 

Effective measurement range of 

atmospheric molecules and aerosols 
0–8 km 

Atmospheric temperature detection range 0–8 km 

Measurement accuracy of extinction 

coefficient of aerosol 
±0.001 m−1 

Accuracy of atmospheric temperature 

measurement 
±2 K 

6. Conclusions 

Doppler wind lidar has always been the main method to solve the problems of 

atmospheric wind field detection, which can provide wind field profile data for 

meteorological dynamics research and numerical weather forecasting. The most 

important is the spectral frequency discriminator, and the accuracy of the frequency 

discriminator can directly affect the accuracy of wind speed detection. This paper 

discusses the research background of atmospheric wind field detection and introduces in 

Figure 28. Local enlargement of wind speed error.

Table 5. Relationship among laser emission energy, SNR, and effective detection height.

Parameter Result

Monopulse energy 1200 mJ
Maximum emission energy 255 mJ

Maximum SNR 1433 (@maximum emission energy)
Wind speed detection range 0–8 km

Effective wind speed detection range 0–2 km
Accuracy of wind speed measurement 1.6 m·s−1 (@H = 2 km)

Effective measurement range of atmospheric
molecules and aerosols 0–8 km

Atmospheric temperature detection range 0–8 km
Measurement accuracy of extinction coefficient

of aerosol ±0.001 m−1

Accuracy of atmospheric temperature
measurement ±2 K
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6. Conclusions

Doppler wind lidar has always been the main method to solve the problems of atmo-
spheric wind field detection, which can provide wind field profile data for meteorological
dynamics research and numerical weather forecasting. The most important is the spectral
frequency discriminator, and the accuracy of the frequency discriminator can directly affect
the accuracy of wind speed detection. This paper discusses the research background of
atmospheric wind field detection and introduces in detail the main research methods of
atmospheric wind field detection, as well as the existing research on wind lidar. Further-
more, the basic theory of Doppler wind lidar based on a four-channel Mach–Zehnder
interferometer was systematically analyzed, and the principle and performance evaluation
of this system were analyzed in detail. In addition, the emission mechanism of large
pulse laser was studied in detail. The ground-based observation experiment was carried
out using the Doppler anemometry lidar designed in this paper, the echo signal of the
atmospheric troposphere in Hongkou District was accurately obtained, and the radial
atmospheric wind speed profile was inversed according to the theoretical model. The
maximum interference contrast detected by the interferometer built in this experiment was
0.869, and the correlation coefficient between the analog signal and recorded signal was
0.9488. The experimental results showed that the maximum signal-to-noise ratio (SNR)
of the system could reach 1433 when the emission pulse energy of the large pulse laser
was adjusted to 255 mJ, and the farthest wind speed detection distance was about 8 km.
The high-precision wind speed detection range could reach 2 km, and the actual wind
measurement errors in this range were all within 1.593 m/s, while the minimum error
was only 0.418 m/s. In addition, the backscattering coefficient and extinction coefficient of
atmospheric molecules and aerosols in the range of 8 km and the atmospheric temperature
in the range of 10 km were also measured. The measurement accuracy of aerosol extinction
coefficient was ±0.001 m−1, and the measurement error of atmospheric temperature within
10 km was within 2 K, which achieving the expected goals.

With the continuous progress of Doppler lidar wind measurement technology, the
wind measurement radar system will develop toward integration and multifunctionality.
The method studied in this paper can still be improved. The atmospheric parameters and
lidar system components can be modeled to simulate the echo signals of lidar systems in
different bands under different meteorological conditions, and the influence of air pollution
and bad weather on the detection accuracy of the system can be analyzed. The design
of the wind speed inversion algorithm and data acquisition system can be optimized to
improve the denoising performance of the system. Further optimizing the actual emission
energy of the large pulse laser can increase the actual effective detection distance. The
data can be compared and analyzed in different scenes such as day, night, and polluted
weather, and the influence of temperature on interferometer frequency discrimination
can be further considered. In addition, future experiments can discuss the structural
characteristics of the high-density urban boundary layer [34], such as surface morphology,
thermal instability, and the influence of land/sea wind, detect the vertical wind profiles of
upwind, urban area, and downwind in the city, compare the vertical wind profiles of wind
tunnel, mesoscale simulation, and lidar, and estimate the benefits of Doppler wind lidar for
short-term low-level wind ensemble forecasts [35].
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Appendix A. Signal Processing and Noise-Dependent Measurement Errors

Appendix A.1. Signal Processing

In this appendix, we refer to BP03 to recall expressions of errors of atmospheric wind
speed and attenuated backscatter coefficients using a QMZ interferometer. Let us start with
the optical lidar signal Satm (in number of photons) at the QMZ input as follows:

Satm(R) = Smol(R) + Spar(R) =
EATinst

hv

∫ r=R+δR/2

r=R−δR/2

(
βmol(r) + βpar(r)

)
r2 T2

atm(r)dr (A1)

where E is the emitted energy, A is the telescope area, Tinst is the instrumental (emis-
sion and reception) transmission, hv is the emission photon energy, R is the range, and
Tatm(r) = exp

[
−
∫ r

0

(
αmol(r′) + αpar(r′)

)
dr′
]
, where the mol and par subscripts are related

to the molecular and particulate scattering, respectively.
The signal delivered by each channel of the A-CCD outputs (in photoelectrons),

for i = 1 to 4, can be written as follows:

Si =
Stot

4
ai

[
1 + Mi Matm sin

(
ϕ + (i− 1)

π

2

)]
+ Sbi (A2)

where ai is the relative photometric efficiency of channel i with ∑4
i=1 ai = 4, and Mi is the

intrinsic modulation of channel i. Sbi is the background signal due to solar detected light
and A-CCD intrinsic noise. As all the photons incident on the MZI arrive on the detectors,
we have the following:

Stot =
4

∑4
i=1 M−1

i

4

∑
i=1

(Si − Sbi)

ai Mi
= ηSatm (A3)

where η is the mean quantum efficiency of the detectors, ϕ is the interference phase, and
Matm is the atmospheric effective interference modulation given by the molecular and
particulate atmospheric backscattered signals as follows:

Matm =
Mpar(Rβ − 1) + Mmol

Rβ
(A4)

where the lidar scattering ratio Rβ is defined by the ratio of the total to the molecular
backscatter coefficients as

Rβ =
βmol + βpar

βmol

Depending on the scattering ratio, the atmospheric modulation coefficient Matm varies
between Mmol and Mpar, representing the interference modulations given by pure molecular
and particulate signals, respectively. After subtraction of the background, the four signals
are combined two-by-two in order to produce a complex signal Q (with in-phase and
quadrature components) as follows:

Q = Q2 + iQ1,
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Q = Q2 + iQ1,

Q1 =
a3(S1 − Sb1)− a1(S3 − Sb3)

a3M3(S1 − Sb1) + a1M1(S3 − Sb3)

Q2 =
a4(S2 − Sb2)− a2(S4 − Sb4)

a4M4(S2 − Sb2) + a2M2(S4 − Sb4)
(A5)

The interference phase, ϕ, is obtained by the argument of the complex signal Q as follows:

ϕ = arg(Q) (A6)

Subtracting the reference phase ϕr, obtained in the same way on a highly attenuated
pick-up of the laser emission, one can obtain the line-of-sight (LOS) particle velocity VLOS
as follows:

VLOS =
cλ

4π∆
(ϕ− ϕr) (A7)

where ∆ is the MZI optical path difference, λ is the operating wavelength, and c is the
light celerity in vacuum. Using this differential approach, VLOS can be obtained in the
whole measurement range ± cλ/(4∆) without the need for locking the emitting frequency
with the interference phase. The atmospheric modulation is obtained by the modulus of Q
divided by the modulus of the reference signal as follows:

Matm =
|Q|
|Qr|

(A8)

One can see, from Equation (A3), that, once Mmol and Mpar are determined, Matm
gives access to the scattering ratio Rβ:

Rβ =
Mpar −Mmol

Mpar −Matm
(A9)

Separated molecular and particulate signals can be obtained (with the same instrumental
constant) using the following:

Smol =
Mpar −Matm

Mpar −Mmol

Stot

η
; Spar =

Matm −Mmol
Mpar −Mmol

Stot

η
(A10)

However, this step is not necessary for the retrieval of the particulate backscatter and
extinction coefficients, which can be obtained as follows:

βpar = βmol
(

Rβ − 1
)
= βmol

Matm −Mmol
Mpar −Matm

(A11)

The total particulate optical depth over the vertical column can be derived from the
total signal and the scattering ratio as follows:

τpar =
1
2

ln
(Rββmol

r2Stot

)
− τmol (A12)

One way to determine the particulate extinction coefficient is to derive Equation (A12),
which gives the particulate optical depth with altitude z as follows:

αpar =
1
2

d
dr

(
ln
(Rββmol

r2Stot

))
− αmol (A13)

which allows us to remove the need for calibration. This method is sensitive to noise,
and other ways to derive extinction can provide better results. We, however, use this
conservative approach for the sake of simplicity.
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Appendix A.2. Preliminary Evaluation of Mpar and Mmol

Assuming Gaussian spectral profiles, the two interference modulations Mmol and
Mpar can be expressed as a function of the optical path difference ∆ and the 1/e linewidth
(expressed in wavenumber) of the related spectral functions of atmospheric scattering
convolved by the laser emitted width, as given in BP03, such that

Ms = exp
[
−(πγs∆)2

]
(A14)

where s stands for mol or par. For the particle scattering, γpar is defined as a first approxi-
mation by the laser source linewidth γlas. Assuming γlas on the order of 3 × 10−3 cm−1

(or 100 MHz, corresponding to the transform limit of a 3 ns pulse), we see that we obtain
γpar∆ ≈ 10−2 and Mpar ≈ 1 for an OPD value of 3 cm. We, thus, remain in the case of a
high contrast for the particulate signal, with some margin on the laser linewidth. For the
molecular scattering, mol is dominated by the thermal molecular velocity as follows:

γmol =
2

λc

√
2kT
m

(A15)

which is about 7 × 10−2 cm−1, implying that γmol.∆ ≈ 0.2 and Mmol ≈ 0.6 for an OPD of
3 cm.

Appendix A.3. Noise-Dependent Statistical Error

We give here the random error depending on the detected noise. Assuming, for
simplicity, that all the relative sensitivities ai are equal to 1 and that all the instrumental
modulations Mi are equal to M0, the standard deviation of VLOS is given in BP03 as follows:

σ(VLOS) =
cλ

4π∆

√
2

SNR

√
1− 1

2 FB M2
0 M2

atm sin2(2ϕ)

M0Matm
(A16)

where SNR is the signal-to-noise ratio, and FB is a correlation coefficient among the four
detection channels given by FB = (Stot − Sb)/(Stot + Sb), where Stot is the number of signal
photoelectrons, and Sb is the total number of photo-electrons of the radiative and detection
background (both summed with the weighting factors given in Equation (A3)). We also
assume here that the background can be measured over an extended range gate and
subtracted for any measurement pixel with a negligible impact on bias and SNR. This
assumes that the background noise is taken with a much higher SNR than the atmospheric
signal. For accurate measurements, the SNR needs to be high; thus, we have Stot >> Sb and
FB ≈ 1, leading to a minimum square root factor.

If, as we propose, the laser frequency is not locked to the interferometer, the phase can
take any value between 0 and 2π. Thus, for the performance assessment of the instrument,
we average the error on ϕ and obtain the following:

σ(VLOS) =
cλ

4π∆

√
2

SNR
1

M0Matm

√
1−

M2
0 M2

atm
4

(A17)

The factor Dc = 1
M0 Matm

√
1− M2

0 M2
atm

4 can be seen as a degradation factor on the
wind error due to the contrasting degradation. For high scattering ratios, we have
Matm ≈Mpar ≈ 1; assuming a perfect MZI, we have M0 ≈ 1, such that Dc = 1.0. In clear air,
for which we have Matm ≈Mmol ≈ 0.6, the degradation factor is Dc ≈ 1.6. This is intrinsic
to the QMZ technique, for which error is reduced in presence of particle scattering.

The relative standard deviation of the statistical error on Rβ is linked to the error on
modulus of Q (Equation (A8)). After averaging over ϕ, it can be expressed as follows (BP03):

σ
(

Rβ

)
Rβ

=

√
2

SNR
Rβ

M0
(

Mpar −Mmol
)√1− 3

4
FB M2

0 M2
atm (A18)
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We can then derive the error on βpar as follows:

σ
(

βpar
)
=

√
2

SNR
Rβ

(
βpar + βmol

)
M0
(

Mpar −Mmol
)√1− 3

4
FB M2

0 M2
atm (A19)

The error on the particulate extinction coefficient is given (after averaging over ϕ)
as follows:

σ
(
αpar

)
=

1√
2δr

1
SNR

√√√√1 +
2R2

β

M2
0
(

Mpar −Mmol
)2

(
1 +

3
4

FB M2
0 M2

atm

)
−

Rβ Matm

Mpar −Mmol
(1 + FB) (A20)
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