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Abstract: Since the discovery of graphene, due to its excellent optical, thermal, mechanical and electri-
cal properties, it has a broad application prospect in energy, materials, biomedicine, electromagnetism
and other fields. A great quantity of researches on the physical mechanism of graphene has been
applied to engineering in electromagnetism and optics. To study the properties of graphene, different
kinds of numerical methods such as the mixed finite element method (Mixed FEM), the mixed
spectral element method (Mixed SEM), Method of Auxiliary Sources (MAS), discontinuous Galerkin
time-domain method (DGTD) and interior penalty discontinuous Galerkin time domain (IPDG) have
been developed for simulating the electromagnetic field effects of graphene and equivalent boundary
conditions such as impedance transmission boundary condition (ITBC), surface current boundary
condition (SCBC), impedance matrix boundary condition (IMBC) and surface impedance boundary
condition (SIBC) have been employed to replace graphene in the computational domain. In this work,
the numerical methods with equivalent boundary conditions are reviewed, and some examples are
provided to illustrate their applicability.

Keywords: numerical algorithm; computational electromagnetics; graphene; equivalent boundary
conditions

1. Introduction

Graphene [1–5] is an allotropy of 3-D crystal graphite, a true two-dimensional material
composed of a single layer of carbon atoms. Due to its unique electrical, electromagnetic,
and optical characteristics, it has attracted widespread attention, leading to the design of
many new systems and equipment [6–8]. In 2010, Novoselov and Heim [1] won the Nobel
Prize for their research and observation of graphene properties. Graphene exhibits semi
metallic properties and has a strong bipolar electric field effect. And graphene has been
shown to possess electrical properties similar to semiconductors (although with a zero
band gap) [9–12]. Due to its excellent properties, many methods have been developed
to fabricate graphene, such as micromechanical cleavage technique [13], chemical vapor
deposition [14], solvent exfoliation [15,16], solvothermal method [17], etc. The development
of preparation technology has made it easy to separate high-quality graphene, triggering a
research boom in the 2-D material family. In fact, the optical properties generated by the
unique electronic band structure of graphene are considered attractive features in the design
of nanophotons and optoelectronic components [18–20]. Graphene has a strong interaction
with electromagnetic fields, and its response to light is nonlinear, manifested by plasmonic
characteristics. Graphene-based plasmonic can not only limit the electromagnetic field to a
smaller transverse propagation range, but also modulate it over a wide frequency range
through gating and chemical doping [21–24].

In the past few years, in addition to the physical research on graphene and graphene-
based devices, another important topic has been the numerical simulation of graphene.
Kubo formula puts forward the expression of graphene conductivity, which is a function
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formed by physical parameters such as wavelength, chemical potential and tempera-
ture [25–28]. A surface conductivity model is also proposed to describe graphene as an
isotropic infinitesimal sheet. Although the model provides problematic results for some
tests, the electromagnetic simulation of specific graphene devices still remains a challenge
when it comes to practical graphene problems. Fortunately, with the development of
computational electromagnetics, many efficient and accurate numerical methods have been
proposed to analyze the electromagnetic response of graphene related devices. Among
them, the most popular methods are the finite difference time domain method (FDTD),
finite element method (FEM), DGTD and spectral element method (SEM) [29–36]. The
numerical approaches of processing graphene include: (a) Taking graphene as a zero-
thickness sheet [37–39]; (b) Graphene is regarded as a thin plate with finite thickness, and
its surface conductivity is converted into a volumetric dielectric constant [40]. Due to the
easy realization of (b), some published papers and commercial software model graphene
as a thin sheet with limited thickness [41–43]. However, direct discretization of graphene
thin plates results in extremely fine grids and a large number of unknowns. Especially in
time-domain simulation, extremely small time steps are required to ensure stability, which
consumes an enormous amount of CPU time and memory costs. Therefore, equivalent
boundary conditions are preferred methods used to eliminate thin plates in the computa-
tional domain, which include impedance transmission boundary condition (ITBC) [44,45],
surface current boundary condition (SCBC) [46], impedance matrix boundary condition
(IMBC) [47] and surface impedance boundary condition (SIBC) [48,49]. These numerical
methods and equivalent boundary conditions have been proved that can greatly improve
the design and manufacturing speed.

In this review, we focus on the electromagnetic simulation of graphene, and select
several numerical cases to show their serviceability in practical engineering applications.

2. Advanced Numerical Methods

With the development of computer performance and new efficient and accurate algo-
rithms, electromagnetic numerical methods have become more applicable and efficient. In
order to analyze the electromagnetic field interaction related to graphene and the shielding
effect of graphene, several different numerical methods are used, including Mixed FEM,
Mixed SEM, MAS, DGTD and IPDG, and equivalent boundary conditions such as ITBC,
SCBC, IMBC and SIBC are introduced. Regardless of the boundaries used by these methods,
a mathematical model is required to describe the conductivity of graphene. The following
subsection depicts the mathematical model employed in this review.

2.1. Mathematical Model

The numerical methods listed above are commonly used to simulate graphene as
a thin sheet with a conductivity that is both complex and dependent on frequency. The
graphene surface conductivity is usually expressed using the Kubo formula [50–52]:

σg =
je2(ω− j2Γ)

πh̄2 [−
∫ ∞

0
ε

fd(−ε)− fd(ε)

(ω− j2Γ)2 − 4( ε
h̄ )

2 dε

+
1

(ω− j2Γ)2

∫ ∞

0
ε(

∂ fd(ε)

∂ε
− ∂ fd(−ε)

∂ε
)dε]

(1)

where ε is the electron charge, ω is the radian frequent, Γ is the phenomenological scattering
rate, h̄ is the reduced Planck constant and e is the energy state. fd = (e(ε−|µc |)/kBT + 1)−1 is
the Fermi-Dirac distribution, where µc is the chemical potential or Fermi level, T is the tem-
perature and kB is the Boltzman constant. Equations (1) contains both intraband and inter-
band contributions that is expressed as σg = σintra(ω, µc, Γ, T) + σinter(ω, µc, Γ, T), where:

σintra(ω, µc, Γ, T) =
−2je2T

h̄2π(ω− jΓ)
ln
[

2cosh(
µc
2T

)

]
(2)
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σinter(ω, µc, Γ, T) =
e2

4h̄

[
1
2
+

1
π

arctan(
h̄ω− 2µc

2T
) +

j
2π

ln

{
(h̄ω + 2µc)

2

(h̄ω− 2µc)
2 + (2T)2

}]
(3)

The interband conductivity, which is smaller than the intraband conductivity, is in
the order of magnitude of e2/h̄. The dielectric constant of graphene is determined by
ε̂ = 1− jσg/(ε0ωτ). The electrons and holes close to the band edges “blocke” interband
transitions at lower frequencies (i.e., in the THz range). Graphene exhibits the characteristics
of a conductive film, and a straight forward Drude model is used to describe its conductivity
(primarily caused by in-band contributions). The electrons and holes close to the band
edges “blocke” interband transitions at lower frequencies

2.2. Mixed Finite Element Method

With the increasing complexity of microwave and optical waveguide structures, it
is difficult to effectively conduct modal analysis of waveguide problem, which seriously
delays the subsequent adjustment of geometric and material parameters in waveguide
design. Scholars have developed different numerical methods to solve this problem, among
which the FEM is a successful representative. The mathematical theory of the FEM was
completed by Feng Kang and others scholars. Compared with the FDTD, the FEM utilizes
unstructured meshes to discretize the computational domain, which is convenient for
solving problems in complex calculation regions. However, the traditional FEM based on
scalar node basis functions inevitably generate spurious modes with non-zero eigenvalues.
The FEM based on vector basis functions is a reliable solution, where there are no non-zero
spurious solutions for solving Maxwell problems, but it generates zero spurious solutions
(also known as DC spurious modes) [53]. All modes can be suppressed by a mixed FEM
based on a new weak form.

The mixed FEM is a powerful technique that not only maintains the flexibility of
accurately modeling complex geometries shapes with finite elements, but also suppresses
all spurious modes with new weak forms [54–56]. It applies systematic and rigorous
mathematical techniques to the solution of equations and boundary conditions and uses
meshes (for example, triangle and quadrilateral elements) to discrete the computational
domain involving geometrically complex structures that have potentially heterogeneous
material properties. The medium in a waveguide structure is a two-dimensional variable
with a transverse anisotropic tensor, and its longitudinal component is constant where the
electromagnetic field is a three-dimensional function (assumed to be in the z-direction).
Thus, the electric field in an arbitrary cross section is described as e(x, y)e−jkzz. This results
in the expression of the vectorial Helmholtz equation and Gauss’ law is written as:

∇t × µ−1
rz ∇t × et + jkz ẑ×µ−1

rt ẑ×∇tez − k2
z ẑ× µ−1

rt ẑ× et − k2
0εrtet = 0

∇t × µ−1
rt (ẑ×∇tez + jkz ẑ× et) + k2

0εrtez ẑ = 0

∇t · εrtet − jkzεrzez = 0

(4)

where µr = diag(µrt, µrz) and εr = diag(εrt, εrz) are the magnetic permeability and rela-
tive dielectric permittivity tensors with the transversely anisotropic medium µrt and εrt,
respectively. k0 is the wavenumber in vacuum.

2.2.1. Impedance Transmission Boundary Condition

In the traditional FEM, due to its simplicity and feasibility, the graphene is assumed
to be a layer of finite-thickness with a specific volumetric conductivity [57]. However,
a graphene sheet having finite thicknesses results in exceedingly small meshes and a
substantial number of unknowns when it is directly discretized. Therefore, to ensure
numerical accuracy, a large amount of CPU time and memory costs are required. The
impedance boundary condition (IBC) is an useful way for eliminating thin plates from the
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computational field, such as impedance network boundary condition (INBC), impedance
transmission boundary condition (ITBC) and surface impedance boundary condition (SIBC).
By using two-port network equations to describe the field inside the conductive sheet,
INBC is effectively implemented in both FDTD and FEM. Meanwhile, Leontovich proposed
a hypothetical SIBC for thin plates that the thickness is less than or equal to the skin depth.
However, when the frequency of graphene reaches the terahertz band, the thickness of
graphene is much lower than the skin depth. Therefore, ITBC is a better fit method to
describe the interdependent tangential electromagnetic field on each side of graphene
surface [58]. In order to clearly describe the implementation of ITBC, Figure 1 uses two
triangular elements that share ITBC to illustrate.

L

Figure 1. The degree distribution of triangular elements on both sides of ITBC edge L. Reproduced
with permission of Ref. [57]. Copyright of ©2016 IEEE.

The prerequisite for employing ITBC is that the wavelength and skin depth δ are larger
than the conducting sheet’s thickness τ. As shown in Figure 2, it can be observed that using
line segments to represent thin conductive sheets with finite thickness in a 2-D waveguide
cross-section model [57]. The condition for using ITBC is that the wavelength and the skin
depth δ are greater than the conducting sheet’s thickness τ, while avoiding sharp edges
and angles. At this dot, the electromagnetic field is transmitted on either side of a sheet.
Meanwhile, considering the interdependence of electromagnetic fields above and below
the thin film, ITBC uses transmission line theory to represent the relationship between
tangential electromagnetic fields above and below the line segment L:[

n1 × h1
n2 × h2

]
=

[
Y11 Y12
Y12 Y11

][
n1 × n1 × e1
n2 × n2 × e2

]
(5)

1

2

e1 h1

e2 h2

n1

n2

1

2

e1 h1

e2 h2

n1

n2

L

Figure 2. Geometric representation of thin conductive sheets with finite thickness. Left: Treating
graphene as a single atom thick thin sheet; Right: The finite thickness graphene sheet is replaced by a
one-dimensional line. Reproduced with permission of Ref. [57]. Copyright of ©2016 IEEE.

Graphene nanoribbon sandwich waveguide [59] is considered which placed in vacuum
background, with two identical graphene ribbons on both sides and a dielectric strip with
a refractive index of nd = 1.4 in the middle as shown in Figure 3 [57]. In the model, the
graphene is an isotropic medium which thickness is 0.5 nm and Γ = 0.1 meV, µc = 0.5 eV,
and T = 300 K. The computational domain of 20 µm × 20 µm yields 11,212 elements,
including 81,011 unknowns. Figure 4 shows the calculation results |kz/k0| for the first
twelve modes. We clearly see that the solutions of mixed FEM-ITBC and FEM have good
consistency. In addition to the accuracy of the mixed FEM-ITBC, Table 1 also shows that
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the mixed FEM-ITBC incurs lower memory costs and requires less CPU time than the
traditional FEM.

W

d

nd

Figure 3. Structural schematic diagram of graphene nanostrip sandwich waveguide, where d = 2 nm,
W = 300 nm. Reproduced with permission of Ref. [57]. Copyright of ©2016 IEEE.
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Figure 4. Normalized propagation constant |kz/k0| of different modes in waveguides. Reproduced
with permission of Ref. [57]. Copyright of ©2016 IEEE.

Table 1. Calculate the DOF, CPU Time, and Memory Consumption of the First Five Eigenvalues of
Graphene Sandwich Waveguide Using Mixed FEM-ITBC and FEM, Respectively. Reproduced with
Permission of Ref. [57]. Copyright of ©2016 IEEE.

Mixed FEM-ITBC FEM with Graphene Sheet

DOF 82,215 408,035
CPU time 29.9 s 375.0 s
Memory 0.07 GB 0.18 GB

2.2.2. Surface Current Boundary Condition

The previous ITBC is only applicable to model isotropic media. The modeling thin
layers of anisotropic media requires the use of SCBC. In the right figure of Figure 2, one-
dimensional lines are used to replace thin conductive sheets with finite thickness. When
graphene thin layers are equivalent to zero thickness [39,60], fine mesh generation is
avoided. SCBC is expressed as:

n× (h2 − h1) = Js = σse (6)

where e is the electric field, σs is the surface conductivity of the nanomaterial sheet which
is anisotropic media. n = n1 = −n2 is the unit normal vector from Ω1 to region 2. h1, h2
are the magnetic fields of Ω1 and Ω2, respectively.

Figure 5 shows a graphene-coated dielectric nanowire waveguide (GNW), with an
inner layer of dielectric nanowires and an outer layer covered with graphene sheet. The
nanowire with a radius of R = 100 nm has a relative permittivity of εr1 = 3 and the external
region has a relative permittivity of εr2 = 1. The surface conductivity s of graphene σs is
calculated using Kubo’s formula with µc = 0.5 eV, T = 300 K, and τ = 200 ns. A PML
which thickness is 0.5 µm is utilized to truncate the open GNW structure. The length and
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width of the calculation area are both 5 µm. Through comparing the results calculated by
the mixed FEM-SCBC method with the analysis results [61], the field distributions of the
first three propagation modes (m0, m1, m2), propagation lengths L = 1/[2Im(kz)], and the
dispersion relations as a function of frequency is investigated. The proposed method has
been proven to be accurate, as presented in Figure 6a,b, with maximum relative errors of
0.4% and 0.15%, respectively. The field distributions of the modes (m0, m1, m2) in Figure 6c
are also in well-alignment with the field distribution of the analytical method. Furthermore,
Table 2 demonstrates that the mixed FEM-SCBC is a more valuable option to studying the
propagation characteristics of plasmonic waveguides which is based on graphene, as it
requires only 91,997 DoFs and avoids the demand for a dense mesh around the graphene. In
contrast, the traditional FEM requires 384,737 DoFs to discretize thin graphene sheets with
a thickness of 0.5 nm. In summary, this method offers both effectiveness and computational
efficiency for the analysis of graphene-based plasmonic waveguides. The results in [62]
show that the experimental results are in good agreement with the numerical results, which
proves the effectiveness of the numerical method of replacing graphene with SCBC.

Figure 5. The GNW structure. Reproduced with permission of Ref. [63]. Copyright of ©2021 IEEE.
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Figure 6. (a) Dispersion relations. (b) Propagation length. (c) Field distributions of |E| of three plasma
modes in GNW. The analytical solution in [61] is represented by a solid lines in (a,b). Reproduced
with permission of Ref. [63]. Copyright of ©2021 IEEE.

Table 2. The Required DOF and CPU Time for the First Three Modes of GNW Calculated Using
Mixed FEM-SCBC and FEM At 30 THz, Respectively. Reproduced with Permission of Ref. [63].
Copyright of ©2021 IEEE.

Mixed FEM-SCBC FEM with Graphene Sheet

DOF 91,997 384,737
CPU time 31.4 s 252.2 s
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2.3. Mixed Spectral Element Method with SCBC

The SEM which combines spectral method with FEM extended by Patera. Due to
its unique basis function construction method and node arrangement, it achieves higher
accuracy than the FEM, and consumes less memory costs and computational time. For
solving Stokes equations in fluid mechanics, Patera took the lead in introducing spectral
methods into calculations, resulting in better numerical accuracy and convergence com-
pared to traditional methods [64]. Since then, the SEM has been widely used in numerical
calculations simulation in the field of fluids. Later, pseudospectral method was proposed
by Chebyshev, and Liu incorporated the pseudospectral method into the FEM [65]. The
SEM has become a new and efficient tool for electromagnetic numerical computation.

The mixed SEM possesses both spectral accuracy and the capability to eliminate zero
spurious eigenvalues [66]. The combination of SCBC and mixed SEM is utilized to analyze
the modes of graphene based pasmonic waveguides due to their enormous potential
in eigenvalue solver. This method employs a new variational formulation to suppress
zero spurious modes by introducing Gauss’ law to the vectorial Helmholtz equation.
Additionally, an equivalent SCBC is used in the computational domain to replace the
nanoscale graphene sheets.

A tunable multilayer nanoring waveguide consisting of six layers of graphene and
seven layers of dielectric is firstly considered. The graphene and dielectric layers are
alternately distributed [67]. Figure 7 depicts the cross-section and three-dimensional
structure of the waveguide. The innermost ring radius is 140 nm, and the total ring radius
is 210 nm. The innermost and outermost layers have a thickness of 10 nm, while the rest
layers and graphene sheets are 9.5 nm and 0.5 nm thick, respectively. The dielectric layer
has a relative permittivity of 2.1. In this situation, the environment temperature is T = 300,
τ = 0.5 ps and µc = 0.5 eV. The relative dielectric constant of graphene is expressed as
εr = 2.5− jσs/(ε0ωd) [40], where d represents the thickness of graphene.

Figure 7. Structure of the tunable multilayer nanoring waveguide: cross section view (upper) and
3-D view (lower). Reproduced with permission of Ref. [68]. Copyright of ©2020 IEEE.

The multilayer nanoring open waveguide is truncated using a PML with 100 nm
thickness, and the entire computational domain size was 1.2 µm × 1.2 µm. To obtain
accurate simulation results for the graphene sheets, traditional FEM requires a dense finite
element mesh with 127,620 triangular elements, yielding 893,421 unknowns. Instead,
the mixed SEM-SCBC method substitutes SCBC for graphene sheets in the computational
domain. As a result, only 1449 quadrilateral elements are produced across the entire domain,
and only 17,528 of them are unknown. Figure 8a displays the extremely fine meshes of
graphene sheet, where at least one element is discretized in the graphene sheet, while
Figure 8b displays the quadrilateral elements that result from SCBC, which are relatively
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coarse. It is evident that using SCBC instead of graphene sheet significantly decrease on the
number of elements and degrees of freedom (DOFs) required for numerical calculations.

(a)

(b)

(a)(b)

Figure 8. (a) Divide graphene sheets with thickness to produce extremely fine grids. (b) Replacing
graphene by using SCBC. In (a), the red line depicts graphene sheets, while in (b), it represents SCBC.
Reproduced with permission of Ref. [68]. Copyright of ©2020 IEEE.

The mixed SEM-SCBC is employed to simulate the numerical dispersion relationship
of graphene waveguides. Figure 9 shows the relationship between the real part of the
effective refractive index (Real(Neff), Neff = kz/k0) and the operating frequency. When
m = 0 is a fixed, the real part of the effective refractive index varies with n, with mode
(0, 1) being the lowest among modes (0, n). The propagation lengths, represented by
Lp = λ0/4π[Im(Neff)] in Figure 10, are calculated based on the operating frequency. It
can be observed that higher order modes experience more losses compared to lower order
modes, which is in line with the characteristics of propagation modes. In this figure, the
numerical results of traditional FEM are presented by –, – –, and · lines. The proposed mixed
SEM-SCBC method has great consistency with the traditional FEM with graphene sheet,
but with significantly lower CPU time and memory costs (only 3% and 2%, respectively),
as shown in Table 3. These results demonstrate that the mixed SEM-SCBC can enhance
computing speed and save computer resources.
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f
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Figure 9. Real part of effective refractive index for different waveguide modes. The data of con-
ventional FEM are represented by the symbols -, – and ··. Reproduced with permission of Ref. [68].
Copyright of ©2020 IEEE.
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Figure 10. Propagation lengths of the different waveguide modes. The data of conventional FEM
are represented by the symbols -, – and ··. Reproduced with permission of Ref. [68]. Copyright of
©2020 IEEE.

Table 3. The DOF, CPU Time, and Memory Costs Required for Calculations Using the Mixed SEM-
SCBC and Traditional FEM, Respectively. Reproduced with Permission of Ref. [68]. Copyright of
©2020 IEEE.

Mixed SEM-SCBC FEM with Graphene Sheet

DOF 17,528 893,421
CPU time 13.8 s 434.5 s
Memory 0.06 GB 3.17 GB

2.4. The Method of Auxiliary Sources with IMBC

The electromagnetic waves are incident on a conductive layer that separates the layered
medium in a normal shielding configuration. The conductive layer can block the incident
field and act as an electromagnetic shield. The planar, cylindrical, and spherical interfaces
are the most common layered media models used to demonstrate electromagnetic shielding.
However, for the high conductivity of interior materials, the conventional MAS [69,70]
approach yields divergent results. In Figure 11, if the standard MAS described in [71,72]
is used to calculate the shielding effect, a convergent field cannot be obtained within the
highly conductive layer. Therefor, a modified version of MAS was proposed in [73] to
improve by associating the field at each point of boundary a with the electric field at the
corresponding point of boundary b. This effect can be achieved by replacing the conductive
layer with the IMBC. The shielding effectiveness of a single layer of graphene covering a
cylindrical structure can be calculated using this modified method.

Figure 11. Using MAS and 2-D IMBC in multi-layer cylindrical media containing conductive layers.
Reproduced with permission of Ref. [74]. Copyright of ©2022 IEEE.

By superposing the fields emitted by N1 and N2 filaments set on the auxiliary surfaces
C1

aux and C2
aux, it is possible to replicate the internal field in region 2 and the scattering field
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in region 1. The N1 and N2 filaments, which radiate in the dielectric-filled unbounded space
of regions 1 and 2, respectively, and carry unknown currents I1l(K1l), l = 0, . . . , N1 − 1
and I2l(K2l), l = 0, . . . , N2 − 1, respectively. The field of the l-th source produced in region
m(m = 1, 2) is expressed as:

Eml(x, y) = −ẑ
kmZm

4
Iml H

(2)
0 (kmρml) (7)

Hml(x, y) =
km

4i
Iml

x̂(yml − y) + ŷ(x− xml)

ρml
× H(2)

1 (kmρml) (8)

for the TMz case, and

Hml(x, y) = −ẑ
km

4Zm
Kml H

(2)
0 (kmρml) (9)

Eml(x, y) =
km

4i
Kml

x̂(yml − y) + ŷ(x− xml)

ρml
× H(2)

1 (kmρml) (10)

for TEz polarization, where (xml , yml) denotes filament coordinates in region m, ρml denotes
the separation between the observation point (x, y) and the l-th filament in region m, Iml
and Kml denote the current and magnetic current amplitudes of the l-th filament in region
m, km = ω

√
µm/εm and Zm =

√
µm/εm denote the wave number and impedance of region

m, respectively.
Then, the 2-D-IMBC approach is applied to M matching pairs. This is done to associate

the fields at specific points on boundary a with the fields at corresponding points on
boundary b. [

n̂a × (n̂a × Ea)
n̂b × (n̂b × Eb)

]
=

 −ZS

√
rb
ra

Ztr

−
√

ra
rb

Ztr ZS

[ n̂a × Ha
n̂b × Hb

]
(11)

where Ztr = −iZ3csc(k34) and Zs = −iZ3cot(k34) are the transfer and surface impedance,
k3 and Z3 denote the wavenumber and characteristic impedances of the conductive layer,
the curvature radii on boundaries a and bare ra and rb, respectively. The appendix of [75]
shows that n̂a = n̂ = n̂b and ra = 4+ rb for uniformly thick conductive layers.

Figure 12 studies a multi-layer cylindrical medium with a circular square cross-section.
Wherein region 3 is a graphene monolayer, region 2 is a silicon dioxide (SiO2) layer, air is
filled in both regions 1 and 4; thus, ε1 = ε4 = ε0 and ε2 = 3.9 ε0. The surface conductivity of
graphene with EF = 0.5 eV, τ = 6.582 ps, T = 300 K and4 = 0.5 nm is utilized. Boundary
b has collocation points with the following coordinates:

xb = 15 sgn(cos θ)|cos θ|
3
2

yb = 15 sgn(sin θ)|sin θ|
3
2

(12)

A TMz or TEz plane wave incident the computational domain. There are four
sets of auxiliary sources N1 = N2 = N3 = N4 = 110, each placed on coordinate
sources (xa_1, ya_1) = 0.8(xb, yb), (xa_2, ya_2) = 2(xb, yb), (xa_3, ya_3) = 0.8(xc, yc) and
(xa_4, ya_4) = 1.2(xc, yc) of C1

aux, C2
aux, C3

aux, and C4
aux. Applying the boundary condition

Equation (10) to a and b on the M = 110 matching pair. The norm of the fields in regions 1
and 4 with (xo_1, yo_1) = 2(xb, yb) and (xo_2, yo_2) = 0.6(xc, yc) are described in Figure 13. It
is also shown that the modified MAS in good agreement with the finite element calculation
results of COMSOL. The relationship between the shielding effect with EF = 0.5 and f ,
and the relationship between the shielding effect with f = 3 GHz and EF are presented
in Figure 14 and Figure 15, respectively. The modified MAS not only matches the finite
element calculation results, but also has advantages in memory usage. The shielding effect
is shown in Figure 16.
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Figure 12. Using MAS and 2-D IMBC in an rounded squared multilayered cylindrical medium
containing a graphene monolayer. Reproduced with permission of Ref. [74]. Copyright of ©2022 IEEE.

Figure 13. The norm of the fields in regions 1 and 4 in Figure 12. TM polarization is represented by
(a,b), and TE-polarization is represented by (c,d). Reproduced with permission of Ref. [74]. Copyright
of ©2022 IEEE.

Figure 14. The relationship between the shielding effectiveness of frequency f with EF = 0.5 eV in
Figure 12. Left: TM-polarization. Right: TE polarization. Reproduced with permission of Ref. [74].
Copyright of ©2022 IEEE.
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Figure 15. For f = 3 GHz, the relationship between shielding effectiveness and chemical potential EF

in Figure 12. Left: TM polarization. Right: TE polarization. Reproduced with permission of Ref. [74].
Copyright of ©2022 IEEE.

Figure 16. The norm of the magnetic field for the TM polarization in Figure 12 is expressed in V/m
with f = 3 GHz and EF = 0.5 eV. Reproduced with permission of Ref. [74]. Copyright of ©2022 IEEE.

2.5. Discontinuous Galerkin Time-Domain Method with SIBC

The DGTD method is a versatile approach for solving differential equations in nu-
merous fields such as computational science, engineering, and physics. It incorporates
the advantages of the finite volume method (FVM) [76,77] and the FEM, enabling mesh
discretization of the computational domain. The spatial DGTD operations, like FVM, are
localized, and the global mass matrix is transformed and divided into a block diagonal
mass matrix. The inversion and storage of the mass matrix block [78] are performed before
initiating time marching. This makes the solver of DGTD very compact, especially when
using explicit integration methods. These characteristics make DGTD an excellent method
for simulating multi-scale electromagnetic fields in two-dimensional materials.

Since the jumping depth of graphene is much greater than the thickness of the
graphene layer, the SIBC is utilized to replace the graphene layer, which is expressed as:

n̂× (E2 − E1) = 0

σ−1
g · [n̂× (H2 − H1)] = σ−1

g · J = E
(13)

where E1 and E2 indicate the total electric field intensity on each side of the graphene layer,
respectively. H1 and H2 represent the total magnetic field intensity on each side of the
graphene layer, respectively. n̂ indicates the unit normal vector above the graphene layer,
pointing outwards from the plane. J is the induced polarization current density in the
graphene layer and E represents the intensity of the electric field. Due to the assumption
that σg is usually independent of the spectral wavenumber, only spatially localizatied
model needs to be considered. However, when the graphene ribbon is in the nanometer



Photonics 2023, 10, 712 13 of 19

scale, the electromagnetic field is related to the field at current position and the role of
the field in surrounding environment, therefor σg is the spatially dispersive, i.e., the
nonlocal conductivity [28,79]. The nonlocal conductivity of graphene nanoribbon needs to
be considered, which is shown in [80].

A graphene nano-ribbon transmission line is simulated and the electromagnetic field
interaction on graphene nano-ribbon (GNR) located on silicon substrate is analyzed. As
is shown in Figure 17, the GNR dimension is 0.3 µm × 3 µm × 0.05 µm. Port 1 is the
current source, and both non-local and local conductivity models are simulated. Time-
voltage is recorded at ports 1 and 2 of the nanobelt transmission line in two simulation
models (see Figure 18). Figures 19 and 20 show the relationship between Z11 and Z21
with frequency. Results in the time domain differ significantly from those in the frequency
domain, especially in the high-end terahertz band which indicate the importance of the
nonlocal conductivity of graphene.

Figure 17. Schematic of the GNR transmission line placed on a substrate. Reproduced with permis-
sion of Ref. [80]. Copyright of ©2018 IEEE.

Figure 18. The voltage at the port of a transmission line over time is measured by using local or non-
local conductive models. (a) Port 1. (b) Port 2. Reproduced with permission of Ref. [80]. Copyright
of ©2018 IEEE.
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Figure 19. The calculated impedance matrix element Z11. (a) Real part of Z11. (b) Imaginary part of
Z11. Reproduced with permission of Ref. [80]. Copyright of ©2018 IEEE.

Figure 20. The calculated impedance matrix element Z21. (a) Real part of Z21. (b) Imaginary part of
Z21. Reproduced with permission of Ref. [80]. Copyright of ©2018 IEEE.

2.6. Interior Penalty Discontinuous Galerkin-Time Domain Method with ITBC

The IPDG, a DG method, is also a good method for solving electromagnetic problems,
including modeling graphene as an infinitely thin impedance surface using ITBC [81],
which minimizes memory usage and computation time.

Equation (1) expresses the surface conductivity as a frequency-domain expression,
which is difficult to solve in time domain. To overcome this, the vector-fitting technique [82]
is employed to approximate σg as the sum of partial fractions of the extreme residual pairs,
either in the form of real or complex conjugate, on the frequency band. Equation (1) is
modified as:

σg =
N

∑
l=1

σl =
N

∑
l=1

rl
jω− pl

(14)

where N is the total number of poles and pl and rl are residuals and poles, respectively.
Assuming a computational domain Grammar which has boundary Γb. The entire compu-
tational domain is discretized into multiple non-overlapping tetrahedrons, with Γinterior
representing all inner surfaces and ΓITBC representing the inner surfaces attached to the
graphene surface. The enhanced IPDG method using ITBC is reformulated as:

∫
Ω

ε
∂2Ẽ
∂t2 · N i dr +

∫
Ω

µ−1∇× Ẽ · ∇ × N i dr−
∫

ΓITBC

JS ·
{

N i

}
dS

−
∫

Γinterior

{
Ẽ∗ − Ẽ

}
·
[[

µ−1∇× N i

]]
T

dS−
∫

Γinterior

{
(µ−1∇× Ẽ)∗

}
·
[[

N i

]]
T

dS

+
∫

Γinterior

[[
Ẽ∗ − Ẽ

]]
T
·
{

µ−1∇× N i

}
dS +

∫
Γinterior

[[
(µ−1∇× Ẽ)∗

]]
T
·
{

N i

}
dS

+
∫

Γb

n× (µ−1∇× Ẽ)∗ · N i dS +
∫

Γb

n× (Ẽ∗ − Ẽ) · µ−1∇× N i dS = 0

(15)
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where n indicates the unit vector, which points towards the graphene sheet. Ẽ = ∂−1
t E

is expanded with vector basis function N i.
[[
·
]]

T represents tangential jump,
{
·
}

rep-
resents the average value on the face f of an element, and the superscript “*” represents
numerical flux.

Assuming an infinite graphene sheet, the x direction boundary is taken as PEC while
PMC is considered as the boundary in the y direction. The truncated boundary is a first-
order ABC in the z direction . The entire domain size is 10.5 µm ×2.5 µm ×2.5 µm, and a
plane wave source is created using total/scattered field boundary conditions. Unfolding
unknown fields using full two vector basis functions, with a time step size of4t is 5e−17 s.
The graphene parameter µc is estimated to be 0.15 eV. Figure 21 shows that IPDG is in good
agreement with the analytical solutions.

Figure 21. Comparison of reflection and transmission coefficients calculated by IPDG method with
analytical solutions. Reproduced with permission of Ref. [44]. Copyright of ©2019 IEEE.

3. Conclusions

In the past decade, due to its excellent optical properties, thermal, mechanical and
electrical, widespread attention has been attracted on graphene, papers on the physical
mechanisms and applications of graphene in various fields have been constantly updated.
In this work, we reviewed some of the most commonly used algorithms for simulating
graphene in the CEM field. The mixed FEM-ITBC and mixed FEM-SCBC and mixed SEM-
SCBC are employed to solve the graphene-based plasmonic waveguide problem. The
improved auxiliary source method with IMBC is used to calculate the shielding effect,
which obtains a convergence field in a high conductive layer; The DGTD method with
SIBC is also an effective method for exploring the spatial dispersion characteristics of
graphene. The IPDG-ITBC to model graphene, saving memory and usage time. All these
equivalent boundary conditions have been proposed and significantly saved computational
time and memory costs. With all of these performances and improvements, we anticipate
that equivalent boundary conditions are promising techniques to simulate electromagnetic
response of graphene.
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