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Abstract: In optical fiber communication, recent advances in multiple-input and multiple-output
(MIMO) systems using space-division multiplexing have helped achieve higher spectral efficiency and
data rates. Propagating higher-order modulation formats over MIMO systems further strengthens
the capacity of the transmission link. In the optical-MIMO system, the dispersion impairments
originating from a 1.4 km long multi-mode fiber (MMF) are mitigated using the proposed joint-
transceiver equalization technique. A numerical convex optimization algorithm is used to compute
and optimize the pre- and post-equalization (PPE) coefficients jointly restricted by cost and power
budgets. The potential of the proposed joint-PPE technique is tested on an MMF link, which is severely
degraded by dispersion compared to a single-mode fiber channel. From the experimental results, the
average optical received power gain necessary to reach 10−4 bit-error rate is improved by nearly 2.5 dB
using the joint-PPE compared to the post-equalization only based on the minimum mean-squared
error principle. When the efficiency of the conventional zero-forcing (ZF) principle-based PPE and the
joint-PPE is compared, the joint-PPE scheme outperforms the ZF-PPE by approximately 1.5 dB. The
enhancement in the transmission quality is observed with experimentally measured eye diagrams
using the joint-PPE scheme. Under the analyzed scenarios, computer simulation also confirms the
hypothesis, which establishes the effectiveness of the proposed joint-transceiver equalization over
the conventional ZF-PPE scheme. Moreover, the simulated performance benefits of the joint-PPE
are evaluated using the singular value decomposition (SVD) technique. Improvement of ≈3.86 dB
in the average optical received power gain required to reach 10−4 bit-error rate is witnessed with
the PAM-4 format. Overall, the joint-transceiver equalization technique is proven to be beneficial in
optical MIMO systems.

Keywords: optical fiber communication; multi-mode fiber; optical MIMO technique; pre- and
post-equalization; space-division multiplexing

1. Introduction

In recent years, phenomenal growth in the demand for bandwidth has been witnessed
due to the progress in cloud computing, high-definition video streaming, and the internet
of things. The surge in the increasing data requirements has inspired the expansion of
telecommunication networks by developing better modulation and coding techniques.
Optical networks have provided support to match the high-bandwidth requirements from
short-haul to the long-haul transmission links.

Single-mode fibers (SMFs) are preferred for long-distance optical systems due to
their low dispersion properties and low signal attenuation. Despite the availability of
degrees of freedom such as time, wavelength, or polarization, the capacity of an SMF
is rapidly reaching Shannon’s limit [1–3]. Furthermore, the small core diameter of an
SMF causes sub-micron alignment tolerances. Multi-mode fibers (MMFs) consist of a
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larger core (50µm or 62.5µm) and hence have higher alignment margins. Due to the
larger core diameter, the MMF core can support multiple parallel data channels using
up to 100 transverse spatial mode groups [4–6]. The orthogonality between different
mode groups is only preserved for a short distance. In an intensity modulation/direct
detection (IM/DD) system for short-reach optical links, an MMF is preferred over an SMF
due to higher spectral efficiency, cost-effectiveness and simple implementation. However,
MMFs adversely affect the available bandwidth distance product as a result of intermodal
dispersion and mode-dependent losses such as mode scrambling [6–8].

The technique for creating multiple parallel data channels using the transverse spatial
extent of an MMF is known as space-division multiplexing (SDM) [9]. Offset light-launching
conditions excite two or more parallel data streams in the SDM technique. The considerable
enhancement in the data rates and the mitigation of mode scrambling are handled by incor-
porating the multiple-input and multiple-output (MIMO) signal-processing technique [6,7].
Moreover, the spectral efficiency of the transmission link is boosted using the higher-order
modulation (HOM) formats, where the constellation size is more than two. In particular,
in an IM/DD system, the pulse-amplitude modulation (PAM) formats are preferred over
subcarrier modulation (SCM) [10], carrier-less amplitude modulation (CAP) [11], or discrete
multitone (DMT) [12,13] in terms of simple implementation and better sensitivity regarding
the received optical power. However, an MMF channel is severely impaired by intermodal
dispersion compared to an SMF link [8]. Dispersion compensation mechanisms include
physical components, such as dispersion-shifted fibers or fiber Bragg gratings, and digital
mitigation using equalization.

In an IM/DD system, when a trade-off between complexity and cost-effectiveness is
considered, digital dispersion compensation mechanisms, especially linear MIMO equal-
izers, are preferred. On the other hand, the performance of non-linear MIMO equalizers
surpasses most optimal linear MIMO equalizers based on the minimum mean-squared er-
ror (MMSE) principle [13–17]. However, a linear MMSE-based equalizer is selected because
of comprehensive implementation, simple realization and analytical traceability [3,18].
Additionally, a further boost in the system performance is evident in the presence of a
transceiver equalization compared to the equalization applied either at the transmitter
or the receiver [14,15,19]. According to the literature, the zero-forcing (ZF) principle is
commonly adapted for the design of the pre-equalizer. Moreover, a separate equalization
principle is utilized to calculate the post-equalization coefficients [16,17,20,21]. Addition-
ally, the performance evaluation of these pre- and post-equalization (PPE) schemes is
validated either on the single-input and single-output (SISO) system model or over an SMF
fiber [16,17,21,22]. Although the PPE schemes are reported in [14,15,19,23], the experimen-
tal comparison with conventional PPE schemes using a longer MMF and higher data rate
needs to be investigated. Moreover, addressing the lower convergence rate to achieve the
optimal design of PPE coefficients is crucial [19,23]. This research gap limits the feasible
use of a pre-equalizer on the transmitter side due to high complexity. In MIMO signal
processing, the singular value decomposition (SVD) technique is well established, and it has
been proven to be advantageous as the MIMO channel is transformed into several parallel
transmission layers [24–27]. The advantages of an SDM-based MIMO model deploying an
MMF channel with HOM formats have not been characterized in depth. Therefore, this
work focuses on low-cost SDM-based IM/DD systems for short-distance transmission.

Against this background, the novelty of this work is the enhancement of the transmis-
sion quality and the bit-error rate (BER) performance using the proposed transceiver–joint
equalization scheme over an optical MIMO system with an MMF transmission link. This
novel joint-PPE scheme mitigates the impairments originating from a 1.4 km long MMF
channel. The performance benefits of the joint-PPE scheme are yielded by optimally de-
signing both of the PPE coefficients simultaneously using a numerical optimization solver.
The performance analysis of the transceiver–joint equalization is also conducted with a
SVD-based MIMO system incorporating the HOM format. The analytical model-based sim-
ulations and the experimental setup verify the benefits of the provided joint-PPE scheme.
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Additionally, the supremacy of the joint-PPE scheme is established over the conventional
ZF-PPE and MMSE-based post-equalization only (PE-only).

Hereinafter, this paper is organized as follows: Section 1 describes the system model
in the electrical domain. An analytical description of the provided system model and the
quality criteria are also included in this section. Furthermore, the optimization and design
of the joint-PPE scheme are presented in the Section 3, and the solver using the interior-point
algorithm is explained in detail. In the Section 4, the simulation and experimental results
are discussed and compared with other equalization techniques. Finally, the conclusion is
outlined in the Section 5. The literature with a similar overlap in this area is reported in the
Section 6.

2. System Model

The proposed transceiver–joint equalization technique in a MIMO system is analyzed
using an electrical system model with nT = nR = 2, where nT and nR represent number of
transmitters and receivers, respectively. In Figure 1, a (nR × nT) MIMO transmission model
with nR = nT = 2 is segregated into three parts, namely the transmitter, the channel, and
the receiver. The symbols utilized in the system model are described in Table 1. The MIMO
transmitter consists of a serial-to-parallel (S/P) converter and a pre-equalizer. Using the
S/P converter, encoded serial binary data are transformed into nT parallel data streams,
where nT represents the total number of MIMO inputs. The parallel symbol streams sµ(k),
with µ = 1, 2, . . . , nT and k ∈ N are mapped on to Mµ-ary PAM constellation. The bit-to-
symbol mapping is conducted using Gray coding as it improves the system performance.
The transmit symbol space of sµ(k) ∈

{
sµ,0, sµ,1, . . . , sµ,m

}
, where m =

[
0, 1, . . . , Mµ − 1

]
,

consists of sµ,m symbols in accordance to the chosen Mµ-ary PAM constellation. It is worth
noting that the symbols in sµ(k) are independent and identically distributed. The amplitude
of the symbols is defined as

sµ,m =

(
m

Mµ − 1

)
· P(max)

s,µ , where Mµ 6= 1 . (1)
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Figure 1. (2 × 2) MIMO system model description with a frequency-selective channel incorporated
with the PPE scheme.
Figure 1. (2× 2) MIMO system model description with a frequency-selective channel incorporated
with the PPE scheme.

In (1), P(max)
s,µ is the maximum transmit power at the µ-th MIMO input. The constella-

tion diagram is modeled to provide the maximum power to the last symbol irrespective
of the selected PAM format. Consequently, the parallel symbol streams are pre-equalized
using the pre-equalizer pµ(k) at the µ-th input. Therefore, sµ(k) is converted into pre-
equalized multi-level signals bµ(k). The total number of distinct pre-equalized signal
levels Nµ at the µ-th input is defined as Nµ = 2Lp , where Lp represents the number of

pre-equalizer filter taps. The resulting pre-equalized signal bµ(k) =
[
bµ,0, bµ,1, . . . , bµ,Nµ−1

]

complies with the power constraint, which is given as

sµ,Mµ−1 = bµ,Nµ−1 = q · P(max)
s,µ , (2)
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where q is a conversion factor for converting an electrical signal into an optical signal.
Although implementing the pre-equalization, a constant peak-to-average power ratio is
also maintained in (2).

Table 1. List of symbols and their respective description.

Symbol Description

nT Number of MIMO inputs
nR Number of MIMO outputs
µ MIMO input index, µ = 1, 2, . . . , nT
ν MIMO output index, ν = 1, 2, . . . , nR
sµ(k) Input symbol sequence at µ-th MIMO input
Mµ Modulation format index at µ-th MIMO input
sµ,m Gray coded input symbols
P(max)

s,µ Maximum transmit power at µ-th MIMO input
pµ(k) Pre-equalizer filter coefficients
bµ(k) Pre-equalized symbol stream
Lp Length of the pre-equalizer filter
Nµ Number of distinct pre-equalizer levels
hνµ(k) Channel taps
wµ(k) IM/DD noise mechanisms
rν(k) Received signal
fνµ(k) Post-equalization filter
H Frequency-selective channel matrix with (nR × nT) dimensions
r Received signal matrix with (nR × 1) dimensions
b Pre-equalized transmitted signal with (nT × 1) dimensions
w IM/DD noise mechanism with (nR × 1) dimensions
P Pre-equalizer with (nT × nT) dimensions
s Input signal with (nT × 1) dimensions
F Post-equalizer with (nR × nR) dimensions
θµ Noise-weighting factor
Lf Length of the post-equalizer filter
Pn Noise power
$µ Transmission quality
UA Half-vertical eye-opening

P(µ)
BER

BER at µ-th MIMO input
erfc(·) Complimentary error operator

P(sµ,m)
BER

Symbol-specific BER
S Unitary matrix with (nR × nR) dimensions
H Conjugate transpose operator (Hermitian)
V Eigen matrix with (nR × nT) dimensions
D Unitary matrix with (nT × nT) dimensions

h(µ)m, i
Hamming distance

Subsequently, the multi-level pre-equalized signal is propagated through the MIMO
channel, which is an MMF link. The transmitted signal is deteriorated with the inter-
symbol interference (ISI) and the inter-channel interference (ICI) originating from the MMF
channel hνµ(k), where ν = 1, 2, . . . , nR and the number of MIMO outputs is denoted by
nR. The temporal pulse broadening and chirping occur due to the frequency-selective
behavior of the MMF channel hνµ(k). Moreover, the indirect components of the channel
hνµ(k), when ν 6= µ, are responsible for the crosstalk between the MIMO layers. An MMF
channel supports several guided modes and provides easier light-launching conditions
into the fiber due to the larger core diameter. Hence, the parallel data streams are generated
by offset light-launching conditions to achieve a higher spectral efficiency. This technique
is known as SDM using an MMF [6]. In the given system model, the first layer is created
by launching the light into the center of the MMF core. Similarly, the second MIMO layer
is formed by a 15µm offset launching condition into the fiber core, as shown in Figure 2.
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When traveling through the MMF channel, the transmitted signal is degraded due to ISI and
ICI, originating from the channel. Afterwards, the IM/DD noise impairments wµ(k) further
degrade the transmitted signal bµ(k) [26]. At the MIMO receiver, the post-processing of
the received signal rν(k) with ν = 1, 2, . . . , nR is conducted using a post-equalizer fνµ(k).
The residual interferences are mitigated with the help of an MMSE-based post-equalizer.
When designing the post-equalizer, the MMSE principle is preferred over the ZF principle
as the optimized coefficients of an MMSE equalizer contribute less to noise amplification.
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2.1. Analytical Description of the System Model

A frequency-selective channel-based (nT × nR) MIMO system with nR = nT = 2, as
shown in Figure 1, is analytically represented as

r = H · b + w . (3)

From (3), the pre-equalized transmitted signal is represented as b with (nT × 1) di-
mensions. The (nR × nT) channel matrix H describes the block-oriented system model, and
is defined as

H =




H1 1 · · · H1 nT
...

. . .
...

HnR 1 · · · HnR nT


 , (4)

where HnR nT is the SISO channel matrix, which characterizes the influence of the channel
over the pre-equalized transmitted signal b. The (nR × 1) noise vector w pertains to the
noise in an IM/DD system. Finally, the received signal is represented as r with (nR × 1)
dimensions. The transmitted signal b is decomposed as

r = H · P · s + w , (5)

where P is the pre-equalizer with a size of (nT × nT), and s represents the input vector of
(nT × 1). For a limited increase in the complexity, the pre-equalizer P is considered to be
a diagonal matrix. Ultimately, the post-equalization is executed to mitigate the residual
interference. The final expression of the given system model with PPE is formulated as

y =F · r ,

y = F · H · P︸ ︷︷ ︸
Term 1

·s + F ·w︸ ︷︷ ︸
Term 2

, (6)

with F denoting the post-equalizer with (nR × nR) dimensions. In (6), the first term implies
that the channel influence can be mitigated with the aid of PPE. Similarly, the noise am-
plification due to post-equalization is evident in (6). The system performance is adversely
degraded due to noise enhancement from post-equalization. Hence, a well-designed pre-
equalizer will be capable of compensating for the channel along with negligible noise
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amplification. When a trade-off between complexity and cost-effectiveness is considered,
a pre-equalizer with a few taps is preferred in conjunction to a post-equalizer.

The quantification of the noise amplification due to the post-equalization filter taps is
expressed with the noise weighting factor (NWF) θµ and is given as

θµ =
nR

∑
ν=1

Lf−1

∑
k=0
| fµν[k]|2 for µ = 1, 2, . . . , nT , (7)

where Lf is the number of post-equalization taps and fµν[k] represents the post-equalizer
taps for µ-th input and ν-th output. From (7), it is evident that the amplitude of the
post-equalization taps is responsible for the noise amplification.

2.2. Quality Criteria

The BER is considered to be the key indicator to evaluate the performance of an MMF
channel. The transmission quality $µ of the µ-th MIMO input is defined as

$µ =
U2

A,µ

P̃n,µ
, (8)

where UA,µ represents the half-vertical eye-opening of the µ-th input and the noise power
after the post-equalization is defined with P̃n,µ. From (7) and (8), the relationship between
θµ and P̃n,µ is given by

P̃n,µ = θµ · Pn . (9)

By substituting (9) into (8), the resulting transmission quality at the µ-th input is

$µ =
U2

A,µ

P̃n,µ
=

U2
A,µ

θµ · Pn
. (10)

In (10), the noise amplification factor is inversely proportional to the transmission
quality. Typically, for an SDM-based MIMO system, the BER performance P(µ)

BER of the µ-th
input is

P(µ)
BER =

1
log2(Mµ)

(
Mµ − 1

Mµ

)
erfc

(√
$µ

2

)
, (11)

with erfc(·) denoting the complimentary error function, the constellation size and the
transmission quality at the µ-th input is represented by Mµ and $µ, respectively.

By combining (10) with (11), the final BER performance is evaluated as

P(µ)
BER =

1
log2(Mµ)

(
Mµ − 1

Mµ

)
erfc




√√√√ U2
A,µ

2 · θµ · Pn


 . (12)

In (11), when an error is encountered during the transmission, it is assumed that the
error will only be limited to its neighboring symbol, i.e., only a one-bit error due to the
use of Gray coding. However, more-than-one-bit errors can occur at low received power
due to the high noise variance. Second, the noise variance of each symbol is considered
to be identical in (11). In contrast, the noise variances are different in the shot noise
dominant region. Hence, the area integration method is adapted to accurately estimate the

BER incorporating probability density function (PDF). The symbol-specific BER P
(sµ,m)
BER is

calculated as

P
(sµ,m)
BER =

1
log2(Mµ)

Mµ−1

∑
i=0

h(µ)m, i ·
∫

Ri

p(yν,m)dy , (13)
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where hm, i represents the Hamming distance between the symbols sµ,m and sµ,i at µ-th
input. The PDF of the received symbol yν,m is described as p(yν,m) and Ri is the decision
region. The overall BER is defined as

P(µ)
BER =

1
Mµ

Mµ−1

∑
m=0

P
(sµ,m)
BER . (14)

In summary, the system performance will be degraded due to the noise amplifica-
tion originating from the extensive utilization of the post-equalizer. Theoretically, this
deterioration in the system performance is shown in (12). From an analytical perspective,
it is worth investigating, in order to practically estimate the usefulness of shifting the
post-equalizer taps to the transmitter side with the given system model. The challenges of
designing the optimal PPE filter and evaluating the system performance are addressed in
the following sections.

3. Design and Optimization of Pre- and Post-Equalization

According to the literature, a few-tap pre-equalizer is preferred to compensate for the
channel influence without any noise enhancement [16,17,20,22]. The zero-forcing design
of a pre-equalizer is chosen predominantly due to the simple implementation. More-
over, the post-equalizer filter taps are separately calculated. By contrast, in the proposed
transceiver–joint equalization, the pre-equalizer and the post-equalizer are calculated and
jointly optimized to yield performance benefits. The pre-equalizer is characterized as a
finite impulse response (FIR) filter, and the role of pre-equalizer taps pi,µ is shown as

bµ(k) =
Lp

∑
i=1

pi,µ · sµ[k− (i− 1)], µ = 1, . . . , nT , (15)

where Lp is the length of the pre-equalizer at the µ-th MIMO layer. The structure of a
linear FIR pre-equalizer present on each MIMO layer is shown in Figure 3. The main goal
is to design and optimize the PPE filter taps to enhance the system performance while
maintaining power and cost budgets.
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In this work, a numerical convex optimization is applied to calculate and optimize
the PPE coefficients. The primal–dual interior-point constrained algorithm is tailored with
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respect to the analytical solution of the given system model [28]. Hence, the objective
function subjected to the constraints is stated as follows

minimize
pµ(k), fνµ(k)

θµ(hνµ(k)) , ν = 1, . . . , nR

subject to F · H · P− I = 0 ,

and sµ,Mµ−1 − q · P(max)
s,µ = 0 .

(16)

The objective function is defined to minimize the NWF on each MIMO layer in accor-
dance with the channel state information. The values of pµ(k) and fνµ(k) will converge to
their optimal value with each iteration. In (16), the first constraint determines the complete
removal of the ISI and ICI with the PPE filter. Additionally, the second constraint assures
that the symbol with the highest amplitude is limited to the maximum transmit power of
the laser source. In (16), the optimization problem is called the primal problem. In order
to solve this problem, the duality optimization is utilized, where the constraints are incor-
porated with the objective function. The modified objective function of the optimization
statement is

min
pµ(k), fνµ(k)

θµ(hνµ(k)) + max
α, β

(
(F · H · P− I) · α +

(
sµ,Mµ−1 − q · P(max)

s,µ

)
· β
)

, (17)

where α and β represent the scalar slopes of the penalty function. The purpose of the
penalty function is to penalize the objective function when the constraints are not followed.
Furthermore, the objective function is rewarded when the constraints are obeyed. The ob-
jective function (17) is termed as the primal problem, which is converted into the duality
problem, as the min and max operators are in the function simultaneously. Thus, the dual
problem can be written as

max
α, β

min
pµ(k), fνµ(k)

(
θµ(hνµ(k)) + (F · H · P− I) · α +

(
sµ,Mµ−1 − q · P(max)

s,µ

)
· β
)

. (18)

The objective function in (18) can be easily solved with the Lagrangian solver. Hence,
in order to find the optimal coefficients of the proposed joint-PPE scheme, the following
condition should be satisfied

∇
(

θµ(hνµ(k)) + (F · H · P− I) · α +
(

sµ,Mµ−1 − q · P(max)
s,µ

)
· β
)
= 0 . (19)

To hold the strong duality between the primal and dual problems, there should be zero
difference between the primal optimal solution and the dual optimal solution. The strong
duality is executed using the Karush–Kuhn–Tucker (KKT) optimality conditions, which are
given as

(F · H · P− I) · α = 0 ,
(

sµ,Mµ−1 − q · P(max)
s,µ

)
· β = 0 ,

α ≥ 0 ,

β ≥ 0 ,

F · H · P− I = 0 ,

sµ,Mµ−1 − q · P(max)
s,µ = 0 .

(20)

For solving such a problem, the KKT conditions are modified, where a variable named
t is introduced. This variable t is a positive number to control the degree of perturbation
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towards the optimal solution. The constraints, mentioned in (20), are adapted with tn where
n is the total number of constraints, and mentioned as

α =
t1

(F · H · P− I)
,

β =
t2(

sµ,Mµ−1 − q · P(max)
s,µ

) .
(21)

The characteristics of tn are that the zero-duality gap is achieved between the primal
and the dual problems when tn → 0, ∀n . By combining (19), (20) and (21), the final
optimization problem is defined as

∇
(

θµ(hνµ(k)) + t1 · log(F · H · P− I) + t2 · log
(

sµ,Mµ−1 − q · P(max)
s,µ

))
= 0 . (22)

Using the Newton solver, (22) is solved by choosing larger values for tn, which results
in discovering the analytical center of the feasible region. Afterwards, the value of tn
decreases to locate the optimal solution of the given statement.

Ultimately, the jointly designed PPE filter taps are optimized to remove the inter-
ferences, given minimal increment in the NWF. From joint-PPE, the post-equalizer will
contribute to nominal noise amplification. Therefore, the hypothesis states that the joint-
PPE is expected to yield better performance than ZF-based PPE and MMSE-based PE-only.

4. System Model Using SVD

When considering the SVD technique applied to a frequency-selective MIMO channel,
the resulting discrete-time block-oriented system is illustrated in Figure 4. The joint-PPE
and ZF-PPE schemes are analyzed over the SVD-based (2× 2) MIMO system. The advan-
tage of utilizing SVD is that the channel is converted into a diagonal matrix. It implies that
the crosstalk components, HnR nT when nR 6= nT, will be completely mitigated. The modi-
fied frequency-selective channel H is defined as

H = S · V · DH , (23)

where V contains the positive square roots of the eigenvalues of HHH matrix with (nR × nT)
and S denotes the unitary matrix of (nR × nR) dimensions. The matrix DH of (nT × nT)
dimension represents the conjugate transpose (Hermitian operation H) of the unitary
matrix D. The resulting numerical matrix after SVD is the real-valued diagonal matrix V ,
which has the following form

V =




V1 1 · · · 0
...

. . .
...

0 · · · VnR nT


 . (24)

The overall transmission of the system using SVD is described as

y = F · V · P · s + F · w̃ . (25)

The implication of incorporating SVD is distinct eye-openings, which is formulated as

UA,µ =
√

ξµ ·Us,µ , (26)
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with Us,µ denoting the half-vertical transmit amplitude at µ-the MIMO input and
√

ξµ is
the positive root of the eigenvalue of HHH. The quality of transmission is calculated as

$µ =
U2

A,µ

P̃n,µ
= ξµ

U2
s,µ

θµ · Pn
. (27)
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The advantage of incorporating SVD in the system model is transforming the channel
H into non-interfering and independent transmission layers with unequal gains. Please
note that neither the noise power nor the transmit power are enhanced. The resulting
orthogonal system model of the µ-th layer based on SVD is shown in Figure 5.
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5. Results

In this section, the performance of the proposed joint-PPE scheme is assessed using the
given system model with a 1.4 km MMF channel. Moreover, the performance comparison
is demonstrated between the ZF-based PPE and the proposed joint-PPE using Monte Carlo
simulations and the experimental setup.

5.1. Simulation Results

The discrete-time Monte Carlo simulations are incorporated with a (2× 2) MIMO
system using a 1.4 km long MMF channel. The simulations are implemented using three
sequential steps. In the first step, the MMSE-based PE-only is applied to the provided
system model while considering the pre-equalizer as a Dirac delta function. Additionally,
the channel state information is computed from the received data using the pilot-based
least-square algorithm. The second step involves the design and optimization of the PPE
coefficients with the help of the given constrained numerical optimization. In the last
step, the optimal joint-PPE coefficients are integrated in the system model, and the BER
performance is calculated. Finally, the performance of the joint-PPE, the ZF-PPE and the
PE-MMSE (also known as PE-only) are compared. Please note that the ZF-PPE incorporates
a ZF-based pre-equalizer with an MMSE-based post-equalizer [29,30].

The primary features of an IM/DD system are simple implementation and cost-
effectiveness. Therefore, limiting the complexity of the transmitter is a factor, which should
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be considered while evaluating the system performance. In order to determine the optimal
number of pre-equalizer filter taps, the relationship of the NWF with the pre-equalizer taps
is calculated. The results are illustrated in Figure 6, where the optimized pre-equalizer coef-
ficients achieve a significant reduction in the NWF on both the MIMO layers as compared
to the PE-MMSE NWF of 7 on the first layer and 58.48 on the second layer. The extent of
NWF decrement is directly related to the improvements in the system performance. Clearly,
the optimally designed pre-equalizer using the joint-PPE scheme surpasses the ZF-PPE
scheme. Hence, the joint-PPE is expected to yield better BER performance. It is noteworthy
that the maximum reduction in the NWF is observed with the joint-PPE using Lp = 4
at the first layer. However, the ZF-PPE scheme on the first MIMO layer has attained the
maximum reduction in the NWF with Lp = 30. Similarly, the maximum reduction in the
NWF on the second MIMO layer is observed at Lp = 4 and Lp = 30 with the joint-PPE and
the ZF-PPE schemes, respectively. On the basis of the reduction of the NWF and minimal
transmitter’s complexity, a pre-equalizer with at most four-taps on each layer is chosen
for further performance analysis. Evidently, the joint-PPE requires a considerably smaller
number of pre-equalizer taps. Thus, the prerequisites of the IM/DD systems are followed
by a few pre-equalizer taps in conjunction with a post-equalizer.
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Prior to the system performance evaluation, the measured channel impulse response
of a 1.4 km MMF is illustrated in Figure 7. The measured channel state information is
obtained using an SDM-based optical MIMO experimental setup with offset launching con-
ditions into an MMF. Afterwards, the estimated channel contains dispersion impairments
and mode-dependent losses in accordance with the excited mode groups. This channel
information is incorporated in the computer simulation to imitate the SDM technique. From
Figure 7, it is clear that both MIMO layers are adversely affected due to crosstalk hνµ(k),
when ν 6= µ. Additionally, a significant amount of ISI is also observed due to differential
mode group delays.

The proposed joint-transceiver equalization system performance is compared with
the conventional ZF-PPE and PE-MMSE. The BER performances using PAM-2 and PAM-4
transmissions are demonstrated in Figures 8 and 9. The enhancements in the average
received power Pr compared to the PE-MMSE are presented in Table 2 at a BER of 10−4.
The BER results prove that the joint-PPE outperforms the ZF-PPE and PE-MMSE. Ad-
ditionally, the BER performance of the joint-PPE can be advanced using the SVD-based
joint-PPE. Under the first PAM-2 transmission scenario, a Pr gain SVD-PPE of ≈3.52 dB is
observed in comparison to PE-MMSE. Similarly, the performance improvement of≈2.54 dB
is marked while solely using the joint-PPE. The joint-PPE scheme achieves an identical BER
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performance with only half of the optimized pre-equalizer taps compared to the ZF-PPE. It
is evident by the overlapping BER performances of the joint-PPE with Lp = 2 and ZF-PPE
with Lp = 4. Considering the PAM-4 transmission on both MIMO inputs under the second
scenario, a slight improvement is noted in comparison to the first scenario. The joint-PPE
in conjunction with SVD yields the best system performance, surpassing PE-MMSE by
≈3.86 dB. The joint-PPE single-handedly achieves a Pr gain of ≈2.73 dB compared to PE-
MMSE. An improvement in Pr of ≈1.13 dB indicates that the proposed joint-PPE enhances
the system performance to a higher extent than the conventionally deployed ZF-PPE.
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Figure 8. BER dependent on simulated received power Pr for PAM-2 and PAM-4 transmissions.
The BER values associated with Lp = 2 and Lp = 4 are represented with the square and the circle
markers, respectively.

Table 2. Overall simulated Pr gains of the (2 × 2) optical MIMO system at 10−4 BER using a 1.4 km
long MMF channel at fT = 5 GHz.

Scenario Modulation format Equalization Lp Lf
Pr (in dBm)

at a BER of 10−4
Pr gain
(in dB)

First PAM-2 PE-only - 30 -21.37 -
scenario ZF-PPE 4 26 -22.19 0.82

Joint-PPE 4 26 -23.91 2.54
SVD-PPE 4 26 -24.89 3.52

Second PAM-4 PE-only - 30 -16.23 -
scenario ZF-PPE 4 26 -17.27 1.04

Joint-PPE 4 26 -18.96 2.73
SVD-PPE 4 26 -20.09 3.86
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the conventional ZF-PPE and PE-MMSE. The BER performances using PAM-2 and PAM-4 321

transmissions are demonstrated in Figures 8 and 9. The enhancements in the average re- 322

ceived power Pr compared to the PE-MMSE are presented in Table 2 at a BER of 10−4. The 323

BER results prove that the joint-PPE outperforms the ZF-PPE and PE-MMSE. Additionally, 324

the BER performance of the joint-PPE can be advanced using the SVD-based joint-PPE. Un- 325

der the first PAM-2 transmission scenario, a Pr gain SVD-PPE of ≈ 3.52 dB is observed in 326

comparison to PE-MMSE. Similarly, the performance improvement of ≈ 2.54 dB is marked 327

while solely using the joint-PPE. The joint-PPE scheme achieves an identical BER perfor- 328

mance with only half of the optimized pre-equalizer taps compared to the ZF-PPE. It is 329

evident by the overlapping BER performances of the joint-PPE with Lp = 2 and ZF-PPE 330

with Lp = 4. Considering the PAM-4 transmission on both MIMO inputs under the second 331

scenario, a slight improvement is noted in comparison to the first scenario The joint-PPE 332

in conjunction with SVD yields the best system performance, surpassing PE-MMSE by 333

≈ 3.86 dB. The joint-PPE single-handedly achieves a Pr gain of ≈ 2.73 dB compared to PE- 334

MMSE. An improvement in Pr of ≈ 1.13 dB indicates that the proposed joint-PPE enhances 335

the system performance to a higher extent than the conventionally deployed ZF-PPE. 336

Figure 8. BER dependent on simulated received power Pr for PAM-2 and PAM-4 transmissions.
The BER values associated with Lp = 2 and Lp = 4 are represented with the square and the circle
markers, respectively.
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Table 2. Overall simulated Pr gains of the (2× 2) optical MIMO system at 10−4 BER using a 1.4 km
long MMF channel at fT = 5 GHz.

Scenario Modulation Format Equalization Lp Lf
Pr (in dBm)

at a BER of 10−4
Pr Gain
(in dB)

First PAM-2 PE-only - 30 −21.37 -
scenario ZF-PPE 4 26 −22.19 0.82

Joint-PPE 4 26 −23.91 2.54
SVD-PPE 4 26 −24.89 3.52

Second PAM-4 PE-only - 30 −16.23 −
scenario ZF-PPE 4 26 −17.27 1.04

Joint-PPE 4 26 −18.96 2.73
SVD-PPE 4 26 −20.09 3.86

In summary, the simulated BER performances and the Pr gains testify to the advantages
of using the jointly designed and optimized PPE filter with PAM-2 and PAM-4 formats.
Moreover, the hypothesis is established with the analytical proof that, by shifting the
post-equalization taps to the transmitter side, the system performance is boosted due to the
limited amplification of the noise.

5.2. Experimental Results

A (2× 2) optical MIMO experimental setup is developed, which is shown in
Figures 10 and 11. Similar to the provided system model, this measurement setup is
also divided into three parts: MIMO transmitter, MMF channel and MIMO receiver.

Starting from the transmitter side, a S/P converter is applied to convert a serial data
stream into two pseudo-random binary sequences (PRBSs). Afterward, these sequences
are mapped on the Gray coded symbols in accordance with the chosen PAM-2 or PAM-4
modulation formats. Additionally, the pilot symbols are also appended to the data sym-
bols for the purpose of channel estimation. By using the above-mentioned optimization
statement, the optimal pre-equalizer coefficients are computed using channel information.
Consequently, multi-level signals are enabled by applying pre-equalization to the input
data streams. In case no channel state information is available, the pre-equalizer acts as a
Dirac delta function, and the results for the PE-only are obtained. The signal-generation
process is concluded by generating the electrical signals from the input symbols using
an arbitrary waveform generator (AWG). The channels of the AWG are operated on the
symbol rate of 5 GBaud per MIMO layer. The electrical signals are converted into the optical
signals using chirp-free external Mach-Zehnder modulators (MZMs). A lithium-niobate
(LiNbO3) substrate is used in the optical circuit of the MZM. The bias of the MZM is
manually adjusted, and the quadrature points are stabilized using a temperature controller.
The carrier laser sources work on the operating wavelength λ = 1550 nm. Using variable
optical attenuators (VOAs), the overall BER performance is calculated over a distinct range
of the average received optical power (Pr). Thereafter, the MMF splice boxes are utilized



Photonics 2023, 10, 696 14 of 19

for the excitation of the selective mode groups by launching the light with a certain offset.
In this provided experimental setup, the SDM scheme is enabled by utilizing centric and
eccentric launching conditions into a 1.4 km long MMF with the offsets of 0µm and 15µm,
respectively. The offset light-launching conditions are demonstrated in Figures 2 and 10.
Centric launching of the light into the MMF results in the excitation of the fundamental
mode group or lower-order mode (LOM) group. Similarly, the high-order mode (HOM)
groups are excited with the 15µm offset launching condition. The last part of the transmitter
includes an optical fusion coupler, which is useful in multiplexing the mode groups. In this
setup, custom-made fusion couplers are utilized with a slight asymmetric power split ratio
as these are well suited for mode multiplexing (MUX) applications [31,32]. The function
of a mode MUX is to combine the LOM groups with HOM groups using an x-shaped
structure. The LOM groups travel from the center of the fiber core. Thus, these groups
are more likely to travel in a transverse direction. However, the HOM groups couple with
LOM groups because of their wider electric field distribution. The mode MUX and mode
demultiplexer (DMUX) have 45% power-splitting ratio with ≈3 dB insertion loss.

The optical signal, containing the LOM groups and HOM groups, is propagated
through the OM4 MMF channel with a length of 1.4 km. The transmitted signal suffers from
degradation due to ISI and ICI due to a greater amount of interference present in an MMF
compared to an SMF. The measured channel impulse response is demonstrated in Figure 7.
The channel state information is obtained by estimating the influence on the appended
pilot symbols in the data streams. A least-square pilot estimator algorithm is developed
to measure the channel. The significant amount of interference is evident from Figure 7.
The challenge of recovering the transmitted data is dealt with by the MIMO receiver.
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Figure 10. Experimental setup for the joint-PPE scheme using an optical MIMO system with a 1.4 km
long MMF channel.
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After propagating through the MMF channel, the degraded signal is received by
the PIN photo-detector on each layer. These diodes act as optical-to-electrical converters.
An inherent increment in capacitance is observed due to the presence of a large detection
area. Consequently, the sensitivity of the receiver suffers from this property. An inter-
nal trans-impedance amplifier is present, which amplifies the received electrical signals.
A digital storage oscilloscope (DSO) is utilized to capture the electrical signals using a
resolution of 40 GSa/s at a bandwidth of 13.6 GHz. The stored signals undergo an offline
signal-processing chain with one sample per symbol. The first step includes receive filter-
ing, where a rectangular filter similar to the transmit filter response is applied. Afterward,
the symbol clock is recovered from the down-sampled filter signal. The next step involves
the estimation of the frequency-selective channel. Most importantly, a post-equalizer is
used to mitigate all the interference due to the channel. In the end, hard decision decoding
is employed to retrieve the original data and subsequently, the performance is evaluated
in terms of the BER performance. To obtain reliable and repetitive results, 74 frames are
calculated on each MIMO layer for every instance, which adds up to five million bits ap-
proximately. The symbol clock recovery is conducted using an open loop timing recovery
method for estimating the exact sampling time. Additionally, the beginning of the data
frame is computed using the fine-timing acquisition algorithm. In this acquisition process,
the cross-correlation between a segment of the received signal and the pilot sequence
provides an aid to determine the exact starting of the data frame. Moreover, the forward
error correcting decoding is not deployed at the receiver.

Using the experimental setup of a (2× 2) MIMO system with a 1.4 km long MMF
channel, the average optical received power Pr dependent on the overall BER system
is illustrated in Figure 12 and in Table 3. The performance comparison is conducted
between the PE-MMSE, the ZF-PPE and the joint-PPE schemes. Moreover, the results are
also obtained for two different scenarios, which includes the use of PAM-2 and PAM-4
formats. From the BER performances shown in Figure 12, the proposed joint-PPE clearly
outperforms the ZF-PPE and the PE-MMSE schemes. When PAM-2 is utilized on both
MIMO layers, the joint-PPE scheme achieves the maximum Pr gain of ≈2.58 dB. Moreover,
an improvement of≈1.74 dB in Pr gain is observed by the joint-PPE compared to the ZF-PPE.
Similarly, the highest performance improvements of≈2.68 dB are indicated by the joint-PPE
using the PAM-4 format. The Pr gain ≈1.73 dB of the joint-PPE over the conventional ZF-
PPE scheme proves the effectiveness of the proposed joint-PPE. The transmission qualities
of all three equalization schemes are demonstrated in Figures 13 and 14. The wider eye-
opening of the PPE schemes compared to the PE-only verifies that the transmission quality
is boosted using a few-tap pre-equalizer. When the transmission qualities of the ZF-PPE
and the joint-PPE are measured, better eye-opening is exhibited by the joint-PPE scheme.
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Table 3. Measured average optical received power Pr gain of the (2× 2) optical MIMO system at
10−4 BER using a 1.4 km long MMF channel at fT = 5 GHz.

Scenario Modulation Format Equalization Lp Lf
Pr (in dBm)

at BER of 10−4
Pr Gain
(in dB)

First PAM-2 PE-only - 30 −7.58 -
scenario ZF-PPE 4 26 −8.42 0.84

Joint-PPE 4 26 −10.16 2.58
Second PAM-4 PE-only - 30 −2.13 -
scenario ZF-PPE 4 26 −3.08 0.95

Joint-PPE 4 26 −4.81 2.68
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Figure 12. Overall BER performance comparison between the PE-MMSE, ZF-PPE and Joint-PPE
with PAM-2 and PAM-4 formats, where four-tap pre-equalizers are utilized in both PPE schemes.

Table 3. Measured average optical received power Pr gain of the (2 × 2) optical MIMO system at
10−4 BER using a 1.4 km long MMF channel at fT = 5 GHz.

Scenario Modulation format Equalization Lp Lf
Pr (in dBm)

at BER of 10−4
Pr gain
(in dB)

First PAM-2 PE-only - 30 -7.58 -
scenario ZF-PPE 4 26 -8.42 0.84

Joint-PPE 4 26 -10.16 2.58
Second PAM-4 PE-only - 30 -2.13 -
scenario ZF-PPE 4 26 -3.08 0.95

Joint-PPE 4 26 -4.81 2.68
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Figure 13. Eye diagrams of the joint-PPE, ZF-PPE and MMSE PE-only using PAM-2 transmission.
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6. Discussion

In this work, the effectiveness of the proposed transceiver–joint equalization filter is
evaluated and compared with the conventional PPE and the PE-only schemes. The perfor-
mance evaluation is conducted using the HOM formats over a (2× 2) SDM-based optical
MIMO system with a 1.4 km MMF transmission link. The average optical received power Pr
required to reach a BER of 10−4 using the PAM-4 formats is improved by≈2.68 dB with just
a four-tap optimally designed pre-equalizer with post-equalization. Similarly, an enhance-
ment of ≈2.58 dB in the Pr gain is achieved by the joint-PPE using PAM-2 format. Despite
using a longer MMF channel with twice the bit-rate compared to [19], the improvement
of ≈0.65 dB and ≈0.84 dB in the Pr gains at 10−4 BER is still accomplished. Additionally,
with the improved numerical optimization of the PPE taps, an enhancement of nearly
two folds in the required Pr gain at 10−4 BER is attained using PAM-2 constellation com-
pared to [23]. In contrary to the existing joint PPE schemes, the efficiency of the proposed
transceiver–joint equalization is verified on a critical dispersion-impaired channel with
the MIMO configuration. Further research should focus on the channel robustness in a
dynamic environment.

7. Conclusions

In conclusion of this work, the performance of a short-reach (2× 2) optical MIMO
system with PAM-2 and PAM-4 constellations is demonstrated. This work aims to compute
the effectiveness of the jointly computed pre- and post-equalizer within the power and cost
constraints. The experimental results from this study reveal that the system performance
is improved by ≈2.5 dB while utilizing the proposed joint-PPE with PAM-2 and PAM-4
over PE-only. Additionally, when a performance evaluation between the conventional PPE
scheme and the joint-PPE is conducted, a significant (≈1.5 times) improvement is observed
with a constant number of PPE coefficients in both PPE schemes. These results support the
hypothesis that the optimally designed PPE coefficients can improve the BER performance
of an MMF-based optical system. The findings have implications for increasing the spectral
efficiency of critical dispersion-impaired transmission links, and emphasize the need for
cost-effectiveness and simple implementation. Future research should focus on optimizing
the PPE coefficients with channel robustness. Additionally, the potential of PPE schemes
with an MMF link should be explored in the area of quantum communication utilizing
quantum key distribution mechanisms [33–35]. In summary, this work adds valuable
insight into the optimization and utilization of the joint-PPE with the HOM formats in an
optical MIMO system consisting of an MMF link.
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