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Abstract: This paper presents the development and signal analysis of surface plasmon resonance
(SPR)-based sensors in D-shaped polymer optical fibers (POFs). A gold-palladium (Au-Pd) coating
was applied to the D-shaped region to obtain the SPR signal in the transmitted spectrum of the POFs,
where different samples were fabricated using the same methods and parameters. In this case, the
transmitted spectra of three sets of samples were compared, which indicated variations in the SPR
signature that can influence the sensors’ application and reproducibility. Then, the intensity of and
wavelength shift in the SPR signals were analyzed as a function of the refractive index variation,
where it was possible to observe differences in the sensors’ sensitivities and the linearity of the
different samples. In this regard, additional features, namely the area below the curve and the
peak amplitude of the fast Fourier transform (FFT) applied to the transmitted spectra, were used
to enhance the sensors’ accuracy and precision. To verify the use of such additional features in the
sensor analysis, an unsupervised approach based on k-means clustering was used considering a
single dataset with the results of all the sensors. The results showed clustering with the number of
different refractive indices tested, which motivated the use of these features (intensity, wavelength,
area and FFT amplitude) in the refractive index assessment. In this context, random forest was
the supervised algorithm with the smallest root mean squared error (RMSE) among the algorithms
tested, where an RMSE of 0.0057 was obtained considering all the datasets. For the analysis of each
sensor (considering the three sets of sensor samples), the mean RMSE using random forest applied to
the multifeature approach returned relative errors below 9%, considering the entire tested range of
refractive index variation.

Keywords: optical fiber sensors; surface plasmon resonance; machine learning

1. Introduction

Optical fiber sensors are increasingly applied in different areas, from physical/mechanical
sensing to immunosensing and chemical sensing approaches [1]. Considering the latter
approaches, optical fiber sensors present important advantages in hormone detection [2],
biomarker assessment [3], determination of chemical compound concentrations [4], bacterial
detection [5] and even disease detection [6]. In this context, their advantages, such as their
compactness, electromagnetic immunity, multiplexing capabilities and integration between
the sensor element and data transmission, are key features in such sensor approaches, di-
rectly related to the widespread use of optical fiber sensor technologies [7]. It is also worth
mentioning that the possibility of remote sensing and galvanic isolation enables their use in
environmental sensing applications [8].

Sensor applications in the medical field are always a current demand in the biomedical
field, where the use of such devices is becoming increasingly important due to major
advances in sensor technology and assistive devices [9]. Despite the myriad of applica-
tions in the biomechanical field (as discussed in [10]), the use of such sensors in medical
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condition assessment [11], hormone detection and general immunosensing [12] is also
highly desirable, not only for early diagnosis, but also for the treatment of diseases. In
similar developments, the demands related to the detection of general chemical compounds
and biological components have sharply increased due to the progress in environmental
pollution mitigation and the development of sustainable technologies [13]. Furthermore,
the widespread use of the Internet of Things, in conjunction with the digitalization in
agriculture, aquaculture and general food production, has also led to the development of
sensors for biological and chemical compound detection.

Despite the different approaches to optical fiber sensing thoroughly discussed and
proposed over the years, surface plasmon resonance (SPR)-based sensors are one of the
main optical fiber sensing technologies for biochemical sensor development [14]. These
sensors rely on the interaction between photons and the electrons of a metal layer, leading
to a group oscillation of these surface plasmons [15]. Thus, there is a propagation of surface
waves in the intersection between the metal (thin metal film) and the dielectric medium
(optical fiber). The use of optical fibers for SPR sensor development provides significant
advantages, including compactness and easy integration of the fiber into different structures
and geometries [16].

The general classification of biosensors includes catalytic and affinity sensors. The
differences between both sensor types are related to the operation principle of the sensors,
where the former sensor type is related to the use of a biocatalyst for the achievement of a
steady-state concentration of a transducer-detectable species. In addition, affinity sensors
are based on a receptor molecule that irreversibly binds to the desired analyte [17], which
can be, for example, antibodies (for immunosensors) and aptamers (for aptasensors) [18].
If biosensors are integrated into optical fibers in the SPR approach, the principle of optical
signal variation is based on the refractive index variations in the intersection between the
metallic film and the optical fiber [17]. Therefore, regardless of the approach to molecular
detection or the employed bioreceptor, SPR-based biosensors are essentially refractometers
in optical fibers, used to monitor the external refractive index, where the binding molecules
or analytes lead to refractive index variations in the coating layer, which can be selectively
tuned through fiber functionalization to increase the selectivity [19]. Moreover, the changes
in the external refractive index lead to a shift in the transmitted spectrum of the sensor
device [20].

SPR sensors in optical fibers have been thoroughly investigated with different geome-
tries and assembly options. In this regard, long-period gratings (LPGs) and tilted fiber
Bragg gratings (TFBGs) are used as grating devices in conjunction with the SPR signal to
obtain highly sensitive sensors [21,22]. In addition, different geometries are also related to
the region where the metallic film is applied, where there is the possibility of applying the
metallic film at the tip of the optical fiber [4] or in the lateral section of the fiber [3]. In the
latter approach, the metallic film is applied in a region with a structural modification of the
fiber to enable the light interaction with the metallic film. However, aiming at an easier
fabrication, in conjunction with the possibility of obtaining lower-cost sensors, D-shaped
optical fibers are proposed for SPR sensing approaches [23]. Due to their larger dimensions,
polymer optical fibers (POFs) are an attractive option for D-shaped SPR sensors since the
D-shape fabrication and light coupling are easier to carry out due to the large diameters of
the POFs [2].

Signal analysis of an SPR-based optical fiber sensor is carried out following differ-
ent approaches, where the spectral feature variations are analyzed as a function of the
refractive index variation. For this reason, the intensity variation in the peaks/dips of
the spectrum can also be related to the refractive index (or analyte) variations [24]. It is
also worth mentioning that the intensity variations are generally sensitive to fluctuations
in the light source optical power. Thus, wavelength shift analysis of SPR signatures is
conventionally employed as it provides a more reliable response due to the insensitivity
to optical power fluctuations. In addition, different signal processing methods, such as
filtering curve envelopes and nonlinear transformations, can increase the reliability and
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general performance of SPR sensors [2]. Multiple parameters can be used in the sensor
performance analysis, including sensitivity, selectivity, limit of detection (LOD), accuracy,
signal-to-noise ratio (SNR), repeatability and reproducibility, where these parameters can
be analyzed as a function of the figure of merit (FoM), generally employed in SPR sensor
analysis and comparison.

A current trend in optical fiber sensor development is the use of machine learning
approaches for the extension of sensors’ capabilities and overall performance [25]. In this
regard, supervised approaches are commonly employed for the assessment of different
parameters in distributed approaches [26], as well as in soft sensor development using one
measured parameter to estimate another [27]. In addition, the use of neural networks, in
conjunction with the distributed optical fiber developments, increases the sensor capability
in multiparameter sensing, and spatial resolution [28]. In unsupervised approaches, the
data are not labeled, and clustering is performed to extract the important features in the
sensors’ responses that can be used in the signal processing [29].

This paper presents the development, analysis and application of SPR-based sensors in
POFs. In this case, D-shaped POF samples were coated with a gold-palladium (Au-Pd) film,
where the variability in the SPR signal was analyzed. Then, the sensors were subjected to
refractive index variations, and the responses were compared and analyzed as a function of
different spectral features and parameters. The experimental analysis enabled the applica-
tion of machine learning approaches for the enhancement of the sensors’ performance using
combinations of different features of the SPR spectra. In addition, the machine learning
algorithms also resulted in different models of spectral feature responses as a function of
the refractive index. Therefore, the contributions of this work are not only spectral feature
modeling and multifeature analysis of SPR-based sensors, but also a general approach and
model for SPR sensor responses with enhanced accuracy and overall sensing performance.

2. Materials and Methods

In this study, the POF employed in the SPR sensor development was a polymethyl
methacrylate (PMMA) fiber with a 980 µm diameter and 10 µm cladding thickness. The
optical fiber also had a polyethylene jacket for mechanical protection, which was stripped
prior to the sensor application. In addition, all samples were D-shaped for the cladding
removal, which also resulted in the removal of a small region of the POF’s core. In this
regard, the D-shape fabrication was carried out by positioning the optical fiber in a V-groove
support with a controlled length and depth, where the dimensions of the V-groove limited
material removal using the micromachining approach. In this case, the D-shaped length
and depth were 30 mm and 300 µm, respectively. The lateral section was produced using a
rotary tool with sandpaper with a controlled grit size, resulting in a lateral section with a
controlled surface roughness.

For the metallic film deposition, the sputtering technique was employed, where the
POFs were cleaned in deionized water prior to the film application. The E5000 SEM coating
unit was used in the metallic film deposition, which also used a sputter target composed
of 99.99% Au. Considering this assembly, the POFs were positioned inside the sputtering
chamber with the lateral section facing the region where the gold layer was deposited. The
deposition time was controlled to ensure a controlled thickness of the Au layer, where the
deposition time of 1 min was employed to obtain a metallic film thickness of 50 nm for
all samples. It is important to mention that the Au-Pd layer was chosen due to its higher
stability compared with a silver layer that presents higher oxidation, which can harm the
sensor reproducibility, especially for practical applications [30]. After the deposition of the
gold layer in all three POF samples, the coated fibers were placed inside a climatic chamber
for annealing at around 50 ◦C. This thermal treatment not only resulted in a reduction in
the internal stress of the POFs, but also strengthened the adhesion of the Au film. It is
worth noting that a 50 nm film thickness was chosen due to the possibility of achieving the
optimal sensitivity with such a thickness, as thoroughly investigated in the literature [31].
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Figure 1 shows a schematic representation of the steps in the SPR sensor fabrication as
well as the experimental setup for the SPR sensor analysis as a function of the refractive
index variation. As previously mentioned (and presented in Figure 1), the first step involved
generating the D-shape of the POFs, followed by the metallic film deposition and, finally,
the annealing treatment. For the experimental analysis, the SPR POF sensor was positioned
inside a nylon container with a 300 µL volume (see Figure 1). Then, the container was
filled with different RI solutions, where the samples were based on glucose solutions with
different refractive indices (RIs). The solutions were produced through the combination
of glucose and deionized water in different concentrations, i.e., 5%, 10%, 20%, 30%, 40%
and 50%. The RI of each sample was measured with a benchtop Refractometer Easy R40
(Mettler Toledo), where the RIs of the samples were around 1.3398, 1.3462, 1.3579, 1.3681,
1.3779 and 1.3863 for the 5%, 10%, 20%, 30%, 40% and 50% concentrations, respectively. In
this case, a DH-2000-S-DUV-TTL halogen lamp (Ocean Optics, USA) was used as the light
source, and the transmitted spectra were acquired using a FLAME-T-UV–vis spectrometer
(Ocean Optics) with a detection range from 190 nm to 890 nm. The optical fiber sensor
and components (light source and spectrometer) were connected using removable SMA
connectors. For the experiments, the sensors were subjected to aqueous solutions with
different RIs for 5 min. Then, the RI samples were cleaned sequentially using deionized
water, where the deionized water was applied on the sensor and subsequently removed
using a micropipette.
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Figure 1. Schematic representation of the SPR sensor fabrication steps and the sensor positioning
in the container for the experiments using the liquid samples. (a) Side view of the polymer optical
fiber. (b) Au-Pd layer deposition setup. (c) Schematic representation of the thermal treatment for the
optical fiber sensor samples. (d) Sensor positioning for the experiments.

For the data analysis, the transmitted spectra obtained in air and for the optical source
were subtracted from those of the SPR sensors in deionized water, presented as a function
of the amplitude unit (a.u.), where such a unit shows negative values when there is a valley
in the transmitted spectra related to the SPR signature. Then, the resulting spectra were
analyzed as a function of different parameters, namely conventional parameters such as
the wavelength shift and intensity of the SPR signature. Such parameters as well as the SPR
signature are shown in Figure 2. In addition, the area between the transmitted spectra and
the x-axis was analyzed as a function of the refractive index of the solution. It is also worth
mentioning that the fast Fourier transform (FFT) was applied to each spectrum to obtain the
peak amplitude, which also indicated a high correlation with the refractive index variation.
The parameters used in the signal processing are schematically presented in the transmitted
spectrum shown in Figure 2. It is also worth mentioning that three measurement cycles
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were performed for each RI sample for all the manufactured sensors, which resulted in
54 spectrum samples for the statistical analyses. In addition, all analyses were performed
in Python using the Jupyter Notebook.
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Figure 2. Schematic representation of the analyzed features of the SPR spectrum. The red and black
lines represent the intensity and wavelength of the SPR signature, respectively. The blue region is the
area between the curve and the x-axis.

The differences in the spectra in water and air were analyzed and compared. There-
after, the transmitted spectra of three samples of SPR sensors were compared. In this case,
it is important to mention that all the sensors were fabricated using the same parameters
and procedures indicated above. However, there is inherent variability in the process and,
due to the high sensitivity of the SPR signal to the metallic coating, minor variations in
the coating can lead to major variations in the sensor spectra. Furthermore, we analyzed
the responses of each sensor as a function of the refractive index with the different param-
eters presented in Figure 2, namely the wavelength shift, intensity of the SPR signature,
area below the curve and FFT amplitude. Using an unsupervised approach with the
k-means algorithm and principal component analysis (PCA), the response features of the
sensors were analyzed through clustering under different refractive index conditions, where
2 principal components, as a linear combination of all features, were used to reduce the
data dimensionality. The results indicated the possibility of using a supervised approach
for the general characterization of the SPR sensors with different signal-to-noise ratios and
performance conditions.

3. Results and Discussion

Figure 3 presents the transmitted spectra for two different conditions, i.e., the SPR
sensor in air and the sensor in deionized water, for Sensor 1. The results indicated higher
variation in the wavelength region around 620 nm, which was related to the SPR signature.
Thus, the difference between both spectra resulted in the SPR signal of the proposed sensor.
In order to compare the different samples, Figure 4 shows the spectra of all three produced
sensors, namely Sensors 1, 2 and 3. The comparison between the different samples indicated
variability in the transmitted spectrum, which may be related to minor variations in the
fabrication and coating. It is also important to mention that such high variations in the
SPR sensor spectra can harm the sensor’s reproducibility considering real applications in
which large-scale production of sensors is required. The different shapes of the curves
are related to minor differences in the thin-film distribution in the sensing region that
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can influence the transmitted spectrum in the SPR region, especially considering the dip
amplitude. Accordingly, Sensor 3 had a higher amplitude than Sensor 1, resulting in a
smoother spectrum when the y-axis scale was adjusted, as shown in Figure 4. Moreover,
the necessity of producing a higher number of sensors to obtain sensors with the desired
properties can harm the claims relating to the low cost of SPR sensors in POFs. It is possible
to verify the imperfections of the coating as well as the differences in its thickness using
specialized equipment such as a scanning electron microscope (SEM). However, such an
analysis is expensive due to the cost of the equipment and requirement for specialized
professionals. In addition, SEM is a time-consuming technique that can harm the demands
for fast fabrication in practical applications.
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Generally, the wavelength shift and intensity variation are used in sensor analysis,
where these parameters are related to the refractive index variations (in this case). In
addition, the wavelength shift and optical power variations as a function of the refractive
index are presented in Figure 5 for all three sets of sensors. It is worth noting that Sensors
1, 2 and 3 presented a sensitivity of 294.11 nm/RIU, 736.05 nm/RIU and 286.76 nm/RIU
to the wavelength shift, respectively. However, the sensors did not present a high linear
correlation between the wavelength shift and the refractive index, where the maximum
determination coefficient (R2) was around 0.99 for Sensor 2. Similarly, the sensitivities
of Sensors 1, 2 and 3 to the intensity variation as a function of the refractive index were
765.43 a.u./RIU, 1240.10 a.u./RIU and 991.26 a.u./RIU, respectively.
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The results in Figure 5 also indicate major differences in the sensor responses of the
different samples. The comparison between the different sensors showed a maximum
variation of 34.22 nm in the wavelength shift with a standard deviation of around 2.21 nm.
Similar results were obtained in the analysis of the intensity variation, in which a standard
deviation of around 4.99 a.u. was obtained. However, even when a single sample was
analyzed, it was possible to observe variability between the different tests performed,
where Sensor 1 showed the highest variation (standard deviation of 9.11 nm and 6.74 a.u.
for the wavelength shift and intensity variation, respectively). Such intrasample variations
indicated the necessity of using additional features to enhance the sensor performance,
since such features can lead to higher precision and accuracy considering all sets of samples.
The responses of Sensors 1, 2 and 3 were compared as a function of the full width at half
maximum (FWHM), limit of detection (LOD) and figure of merit (FOM), where the FOM
is defined as the ratio between the sensitivity and FWHM [30]. The comparison of the
different parameters of all the developed sensors indicated an FWHM of 90.5 nm, 77.7 nm
and 81.2 nm for Sensors 1, 2 and 3, respectively. Moreover, the LOD was around 0.102 RIU,
0.003 RIU and 0.015 RIU for Sensors 1, 2 and 3. Finally, the FOM was obtained considering
the sensitivities of each sensor, resulting in 3.25 for Sensor 1, 9.47 for Sensor 2 and 3.53
for Sensor 3. In order to provide a comparison between the proposed sensors and those
previously presented in the literature, Table 1 shows a comparison between the proposed
sensors (especially Sensor 2) and some of the sensors presented in the literature.

Table 1. Comparison between the sensitivity, LOD, FOM and Detection Range of different optical
fiber sensors approaches.

Sensitivity LOD FOM Detection Range

This paper 736.05 nm/RIU 0.003 RIU 9.47 1.33−1.38
[32] 67.6 nm/RIU Not reported Not reported 1.0−1.5
[33] 387 nm/RIU 0.003 RIU 8.60 (estimated) 1.33−1.40
[34] 765 nm/RIU 0.0007 RIU 17 (estimated) 1.33−1.365

In this case, to verify the possibility of using additional features for the assessment
of the refractive index variation, the dataset of each sensor was combined with additional
features, namely the area under the curve (AUC) and FFT amplitude of the wavelength.
Thus, the dataset of each sample comprised the wavelength shift, intensity of the SPR
signature, AUC and FFT amplitude. In addition, the datasets of each set of samples were
merged to obtain a single dataset in which all three sensors were combined, considering
all the experiments performed on the sensors. Figure 6 presents the data clustering using
the k-means approach. In order to evaluate the number of features for the analysis, we
investigated the inertia of the clustering with the variation in the number of clusters
between 1 and 20, as shown in Figure 6a. The variation in the inertia as a function of the
number of clusters indicates the optimal number of clusters, which is obtained when the
inertia reduction is small, i.e., in the “elbow” region of the curve, as indicated in Figure 6a.
Following the PCA for the dimensionality reduction, two principal components, as a linear
combination of all features, were used, as shown in Figure 6b.
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The definition of the number of clusters indicates the clustering options that can be
used in the regression of the refractive index estimation. The results in Figure 6a indicate
that the optimal number of clusters was 6, which is related to the number of refractive
indices tested. Figure 6b presents the clustering of the data, where the black dots indicate
the centroid of each defined cluster. In this scenario, all four features were used in the
regression of the sensor responses. For this reason, the supervised approaches for the
evaluation of the refractive index as a function of the spectral feature variations in the SPR
sensors included all four features. The supervised approaches included linear regression,
support vector machine (SVM) and random forest, which were compared in terms of
accuracy considering a dataset with the responses of all the sensors for each refractive
index condition.
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Figure 7a presents a comparison between the refractive index estimations considering
all analyzed approaches, where the results were applied to a new dataset, but with Sensors
1, 2 and 3, i.e., the same sensors used in the characterization and signal variation analysis.
The parameters of each algorithm were obtained using an iterative approach in which
optimization was achieved through a recursive method with a randomized analysis of
different combinations of parameters to guarantee an optimized algorithm for all analyzed
samples. The objective of the optimization was to minimize the root mean squared error
(RMSE), where a k-fold cross-validation was applied in all approaches. In this cross-
validation approach, the dataset was subdivided into k sets of samples, in which each
set of samples was used to train and validate the other as a function of the RMSE, where
the number of sets of samples (i.e., value of k) was 8. The comparison of the RMSE for
each algorithm indicated that random forest presented the smallest RMSE (around 0.0057),
whereas the linear regression approach presented the highest RMSE, which was around
0.0160. Furthermore, a comparison between the different sets of sensors is presented in
Figure 7b, where the random forest algorithm was used for all sensors, since it provided
the smallest RMSE among the algorithms tested. It is also important to mention that, in
the results presented in Figure 7b, the dataset was separated as a function of each sensor.
Thus, there were three datasets, one for each sensor, which were individually trained and
tested considering the optimization carried out to obtain the smallest RMSE. The results
indicated that all samples presented small relative errors, with RMSEs of 0.0094, 0.0014 and
0.0067 for Sensors 1, 2 and 3, respectively. Although the smallest RMSE was obtained by
Sensor 2, all sets of sensors presented relative errors below 3.0%, considering the entire test
range. Therefore, it is possible to infer that all the sensors showed feasibility and suitable
performance in the assessment of the refractive index under different conditions, even
when there was a weak SPR signature, as shown for Sensor 1 in Figure 4a. Such results
indicate the possibility of obtaining an accurate sensor system for large-scale production,
even when there is no optimal metallic coating deposition.
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4. Conclusions

This paper presented the development, analysis, comparison and machine learning
application of SPR sensors based on D-shaped POFs with Au-PD coatings. The sensors
were used in the assessment of different refractive indices, where it was possible to ob-
serve large differences in their transmitted spectra, even when similar approaches and
parameters were applied, due to inherent (minor) variations that can lead to significant
variations in the spectra. The refractive index characterization of all three sets of sensors
indicated variations in the wavelength shift and intensity of the SPR signature as a func-
tion of the refractive index, where it was possible to observe that Sensor 2 presented the
highest sensitivity as a function of the wavelength shift and intensity variation (around
736.05 nm/RIU and 1240.10 a.u./RIU, respectively). However, the inter- and intrasample
variability, characterized by a relatively high standard deviation (around 10% considering
the entire range of variation), indicated the necessity of using additional features to increase
the sensor accuracy. In this context, the AUC and FFT amplitude were used in conjunction
with wavelength shift and intensity variation to obtain a higher correlation as a function
of the refractive index. To verify this assumption, an unsupervised approach based on
the k-means algorithm was used to obtain clusters in the dataset with different refractive
indices. Such an analysis indicated the number of clusters corresponding to the different
refractive indices tested. Thus, among the supervised approaches, namely the linear re-
gression, SVM and random forest algorithms, all three sets of sensors indicated a smaller
RMSE for the random forest algorithm, which was used in the refractive index assessment
using each sensor, individually. The results showed an RMSE of 0.0094, 0.0014 and 0.0067
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for Sensors 1, 2 and 3, respectively. Moreover, the results presented a relative error of
10.0% and 3.0% for Sensors 1 and 2, which were the highest and lowest results (among
the tested sensors), respectively. Therefore, the proposed approach represents a significant
step towards practical, large-scale applications of SPR sensors in POFs, where minor im-
perfections in the sensor design and metallic coating deposition can be corrected using
machine learning algorithms to obtain reliable sensors in almost all fabrication conditions.
Future work includes the development of online calibration approaches for SPR sensors
during their long-term applications, as well as the evaluation of such an approach in the
infrared wavelength region by changing the parameters in the metallic layer deposition of
the optical fiber.
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