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Abstract: We propose an adaptive algorithm that is a Variational Mode Decomposition (VMD)
optimized by the particle swarm optimization (PSO) algorithm, named PSO-VMD. The method
selects the envelope entropy of the last intrinsic mode function (IMF) in the VMD as the fitness
function of the PSO and 1/10 of the maximum value of the correlation coefficient between the IMFs
and the standard signal as the threshold of the correlation coefficient. In the processing of simulated
and experimental second harmonic signals, a series of standards, including the same correlation
coefficient threshold and standard signal, are used to adaptively achieve noise reduction processing.
After processing a simulated signal using PSO-VMD, the signal-to-noise ratio (SNR) was improved
by 4.03877 dB and the correlation coefficient (R2) between the gas concentration and the second
harmonic maximum was improved from 0.97743 to 0.99782. In the processing of an experimental
signal, the correlation coefficient (R2) was 0.99733. The mean value and standard deviation of the
second harmonic signal of multiple cycles processed by PSO-VMD were improved compared to the
unprocessed experimental signal. This demonstrated that the method has the advantage of being
reliable and stable.

Keywords: TDLAS; VMD; PSO; adaptive

1. Introduction

Tunable diode laser absorption spectroscopy (TDLAS) is widely used in gas detection
because of its high sensitivity, high accuracy, and rapid response time [1–3]. However,
during the detection process of TDLAS, it is unavoidably affected by environmental,
optical, and electronic noise, as well as other types of noise, thereby affecting the detection
sensitivity and the signal-to-noise ratio (SNR) of the signal of the TDLAS system. There are
two general ways to improve the sensitivity and SNR of a signal in a TDLAS system: one is
to enhance the signal, and the other is to reduce the noise [4]. However, the methods of
signal enhancement usually change the system’s structure, which leads to an increase in
cost [5]. The way to reduce noise in TDLAS systems usually uses software filtering [6,7],
which only needs partial computational resources and does not require additional electronic
and optical devices [8–11].

At present, Savitzky–Golay (SG) filtering is a common method for signal time domain
analysis and is usually combined with the minimum-squares method [12] for signal process-
ing, but SG filtering usually depends on a given window size and polynomial fitting steps.
The wavelet transform is non-adaptive in processing different signals and needs to choose
different wavelet basis functions, decomposition layers, and thresholds depending on the
signal [13]. Compared with the SG filter and wavelet transform, Empirical Mode Decompo-
sition (EMD) does not need to select the basis function and is an adaptive signal processing
method [14], but the EMD method has the phenomena of modal aliasing and the endpoint
effect. The Ensemble Empirical Mode Decomposition (EEMD) method can eliminate the
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phenomena of modal aliasing and the endpoint effect in EMD by adding different white
noise to the signal based on EMD [15], but white noise is mixed into the signal, resulting in
a poor noise reduction effect. In addition, Variational Mode Decomposition (VMD) converts
the decomposition process of the signal into the framework of the variational problem,
which decomposes the signal into a series of intrinsic mode functions with different center
frequencies with finite bandwidth [16], thus effectively solving the corresponding modal
mixing, endpoint effect, and mixing white noise phenomena in EMD and EEMD. However,
the K and α parameters in VMD significantly affect the decomposition results, and they
are usually set up based on empirical values or an artificial search for the optimal K and
α parameter values, which requires a lot of time and ignores the influence between the
two parameters.

Therefore, in order to find the optimal values of K and α more precisely and quickly,
this paper provides a method to optimize K and α using the particle swarm optimization
algorithm (PSO). The envelope entropy value of the last intrinsic mode function (IMF)
component after VMD processing is used as the fitness function in the PSO algorithm.
The particles are continuously searched until the minimum value of the fitness function
in the solution space is found, along with the corresponding values of K and α, which are
the optimal solutions in that space. Then, the correlation coefficients between each of the
IMF components and the given standard sample are calculated and compared with the
magnitudes of the given correlation coefficient thresholds to determine the IMFs needed
for the last reorganization of the signal and eventually complete the signal noise reduction
process. In a simulated signal noise reduction process, compared with the SG filter and
wavelet transform, our algorithm had the best results in terms of SNR and linearity. In the
noise reduction processing of an experimental signal, the same standard signal, correlation
coefficient threshold, and series of conditions were used as for the simulated signal, and a
good noise reduction effect in terms of stability and linearity was obtained, proving that
the PSO-VMD algorithm is an effective adaptive noise reduction method.

2. Wavelength Modulation Spectroscopy

The laser output’s optical frequency and optical power after the scanning signal and
modulation signal are injected into the laser can be expressed as [5]

ν(t) = ν0(t) + ∆ν cos(ωt), (1)

I(t) = I0(t) + ∆I cos(ωt + ∆ϕ), (2)

where ν0 is the center frequency of the laser output, ∆ν is the modulation frequency, ω is
the modulation angular frequency, I0 is the light intensity at the center frequency of the
laser output, ∆I is the modulation amplitude of the light intensity, and ∆ϕ is the phase
difference between the light intensity and the frequency.

In weak absorption conditions, according to the Taylor series expansion, the Beer–
Lambert law can be expressed as

It(ν) = I(ν)[1− α(ν)CL], (3)

where It is the transmitted light intensity, C is the concentration of the gas to be measured,
L is the length of the light-absorbing path, and α(ν) is the absorption coefficient of the gas
and is a periodic even function about ωt. α(ν) can be expressed according to the Fourier
series expansion as

α(ν) =
∞

∑
n=0

An · cos(nωt), (4)
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where An (n = 0, 1, 2, . . . ) is the Fourier expansion coefficient, which can be expressed as

A0 = 1
2π

∫ +π
−π [S(T)ϕ(ν)P] · dθ

An = 1
π

∫ +π
−π [S(T)ϕ(ν)P] · cos nθ · dθ, n = 1, 2, 3 . . .

(5)

where T is the temperature, S(T) is the intensity of the absorption line at temperature T, P
is the pressure, and ϕ(ν) is a line function.

Assuming that the circuit and optical path gain is ε and that the same frequency and
phase reference signal given by the lock-in amplifier is Bcos(2ωt), then after demodulation,
the second harmonic signal can be expressed as

X2 f = −
1
2

εA2BCLI0(t). (6)

According to Equation (6), the measured gas concentration is proportional to the
second harmonic value.

3. Variational Mode Decomposition

In 2014, Dragomiretskiy et al. proposed a non-recursive, completely adaptive signal
decomposition method, which converts the signal decomposition problem into a variational
problem by finding the optimal solution of the constrained variational problem model to
achieve the adaptive decomposition of the signal [17], which decomposes the signal into
the form of multiple intrinsic mode functions (IMFs) with finite bandwidth and different
center frequencies. An IMF is defined as amplitude–frequency modulation (AM-FM) and
is expressed as

IMF(t) = Ak(t) cos(φk(t))
ωk(t) = φk

′(t)
(7)

where t is time; φ(t) is the phase, which is a non-decreasing function; Ak(t) is the envelope
amplitude of the IMF component, which is a non-negative number; ωk(t) is the instan-
taneous frequency; and the instantaneous frequency and amplitude change at a slower
rate than the phase. According to Carson’s rule, the band of the IMF component can be
expressed as

BWAM−FM = 2(∆ f + fFM + fAM), (8)

where ∆f is the maximum offset of the instantaneous frequency, fFM is the instantaneous
frequency offset rate, and fAM is the highest frequency of the envelope Ak(t).

The constrained variational problem model for solving the IMF component bandwidth
can be expressed as [17]

min
{IMFk},{ωk}

{
∑
k
‖∂t

[(
δ(t) + j

πt

)
∗ IMFk(t)

]
e−jωkt‖

2

2

}
,

s.t.∑
k

IMFk = X(t)
(9)

where IMFk and ωk are the IMF components and their corresponding center frequencies,
respectively; X(t) is the original input signal; ∂t is the partial derivative for t; δt is the
impulse function; ∗ is the convolution sign; ‖‖2 is the norm of L; and s.t. represents the
constraint. In order to obtain the constrained variational model of the IMF component
bandwidth of Equation (8), a quadratic penalty factor (α) and a Lagrange multiplier oper-
ator (λ) are introduced, thus converting the constrained variational problem model into
an unconstrained variational problem model. The quadratic penalty factor ensures the
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accuracy of the reconstructed signal under noisy conditions, and the Lagrange multiplier
operator ensures stricter constraints. They are brought into Equation (9) to obtain

L({IMFk}, {ωk}, λ) = α∑
k
‖∂t

[
(δ(t) + j

πt ) ∗ IMFk(t)
]
e−jwt‖

2

2

+‖X(t)−∑
k

IMFk(t)‖2

2
+

〈
λ(t), X(t)−∑

k
IMFk(t)

〉 (10)

where 〈, 〉 denotes the functional relationship between λ(t) and X(t) − ∑
k

IMFk(t). The

problem of finding the optimal solution of Equation (9) is transformed into the problem
of finding the saddle point of Equation (10), and the saddle point can be solved using the
cross-directional multiplier method.

4. Particle Swarm Optimization

Two parameters in the VMD-decomposed signal, the number of IMF components
(K) and the penalty factor (α), have a strong influence on the decomposition results [18].
Therefore, the appropriate values of the two parameters become the core of the VMD
algorithm, and the common method is to set the parameter values manually based on
experience. Artificially finding the best values of the K and α parameters takes a lot of
time, is not feasible, and ignores the influence between the two parameters. In order
to find the values of the K and α parameters more quickly and reflect the performance
of the VMD algorithm, an intelligent optimization algorithm can be used to find the
two parameters. After comprehensive consideration, this paper used the particle swarm
optimization algorithm to find the two parameters of K and α.

In 1995, the particle swarm optimization algorithm (PSO) was first proposed by
Kennedy and Eberhart [19]. If there is a population of N particles in the target space and
the population is updated by K iterations, then the i-th particle can be represented as the
k-dimensional vector Xi = (x1

i ,x2
i , . . . ,xk

i ), i = 1,2, . . . L; the velocity of the i-th particle is
Vi = (v1

i ,v2
i , . . . ,vk

i ), i = 1,2, . . . L; the i-th particle so far in the search for the individual
optimal solution is Pbest = (p1

i ,p2
i , . . . ,pk

i ), i = 1,2, . . . L; and the global optimal solution
searched by the whole particle swarm so far is gbest = (p1

g,p2
g, . . . ,pk

i ), i = 1,2, . . . L. When the
individual optimal solution and the global optimal solution are found, the particle updates
the individual’s position and velocity according to Equations (11) and (12):

xk+1
i = xk

i + vk
i , (11)

vk+1
i = w× vk

i + c1r1(pk
i − xk

i ) + c2r2(pk
g − xk

i ), (12)

where c1 and c2 are learning factors; r1 and r2 are random numbers in the range [0, 1]; ω ×
νk

i is the particle’s own inertia, indicating that the particle keeps its own velocity; c1r1(pk
i −

xk
i ) is the tendency to learn from its own experience and make approximations to its own

historical optimum; and c2r2(pk
g − xk

g) is the tendency of the particle to learn the historical
optimum in the population and to make an approximation to the optimal position of the
population. The transformation of the particle in the solution space is shown in Figure 1.



Photonics 2023, 10, 674 5 of 13Photonics 2023, 10, x FOR PEER REVIEW 5 of 13 
 

 

 
Figure 1. The way the particles transform in the solution space. 

The fitness function in the particle swarm optimization algorithm is a qualification of 
the optimization parameters, and in this paper we chose the envelope entropy value of 
the last IMF component as the fitness function. The smaller the envelope entropy, which 
indicates the single frequency component, the more concentrated the instantaneous enve-
lope value of the signal and the better the signal. The envelope entropy can be expressed 
as 

1

( )
( )

i N

t

A tp
A t

=

=


, (13) 

1
log

N

i i
i

E p p
=

= − ∗ . (14) 

where A(t) is the envelope signal of the last IMF, which contains components altered by 
the Hilbert transform; pj is the normalized form of the envelope signal, A(t), of the last IMF 
component; N is the length of the last IMF component; and i is the i-th point of the last 
IMF component sequence. 

5. Signal Reconstruction 
Through the PSO algorithm’s iterative optimization search, it is necessary to select 

the appropriate IMF components for the reconstructed signal after noise reduction. In this 
paper, the correlation coefficient, standard signal, and correlation coefficient threshold are 
introduced to complete the reconstructed signal. 

The correlation coefficient [20] is a common statistical indicator in statistics and is 
used to study the degree of linear correlation between two variables. The VMD decompo-
sition of K and α is calculated based on the results of the fitness function and decomposed 
into K IMF components. The correlation coefficient of each IMF component with the stand-
ard signal is calculated separately. Coefficients of correlation are used to distinguish 
whether each IMF component prefers the signal or the noise. A larger correlation coeffi-
cient indicates that the IMF prefers the signal, and the correlation coefficient can be ex-
pressed as 

[ ]( ) ( ) [ ( )] [ ( )]
[ ( )] [ ( )]

k k

k

E IMF t X t E IMF t E X t
R

D IMF t D X t
−

= . (15)

where X(t) is the standard signal, IMFk(t) is the IMF component after VMD decomposition, 
E is the mathematical expectation, and D is the mathematical variance. The standard sig-
nal is a noise-free simulated second harmonic signal of 100 ppm. The correlation coeffi-
cient threshold was chosen as 1/10 of the maximum correlation coefficient. 

The PSO-VMD algorithm performs the noise reduction steps on the signal as follows: 

Figure 1. The way the particles transform in the solution space.

The fitness function in the particle swarm optimization algorithm is a qualification
of the optimization parameters, and in this paper we chose the envelope entropy value
of the last IMF component as the fitness function. The smaller the envelope entropy,
which indicates the single frequency component, the more concentrated the instantaneous
envelope value of the signal and the better the signal. The envelope entropy can be
expressed as

pi =
A(t)

∑N
t=1 A(t)

, (13)

E = −
N

∑
i=1

pi ∗ log pi. (14)

where A(t) is the envelope signal of the last IMF, which contains components altered by the
Hilbert transform; pj is the normalized form of the envelope signal, A(t), of the last IMF
component; N is the length of the last IMF component; and i is the i-th point of the last IMF
component sequence.

5. Signal Reconstruction

Through the PSO algorithm’s iterative optimization search, it is necessary to select
the appropriate IMF components for the reconstructed signal after noise reduction. In this
paper, the correlation coefficient, standard signal, and correlation coefficient threshold are
introduced to complete the reconstructed signal.

The correlation coefficient [20] is a common statistical indicator in statistics and is used
to study the degree of linear correlation between two variables. The VMD decomposition of
K and α is calculated based on the results of the fitness function and decomposed into K IMF
components. The correlation coefficient of each IMF component with the standard signal is
calculated separately. Coefficients of correlation are used to distinguish whether each IMF
component prefers the signal or the noise. A larger correlation coefficient indicates that the
IMF prefers the signal, and the correlation coefficient can be expressed as

R =
E[IMFk(t)X(t)]− E[IMFk(t)]E[X(t)]√

D[IMFk(t)]
√

D[X(t)]
. (15)

where X(t) is the standard signal, IMFk(t) is the IMF component after VMD decomposition,
E is the mathematical expectation, and D is the mathematical variance. The standard signal
is a noise-free simulated second harmonic signal of 100 ppm. The correlation coefficient
threshold was chosen as 1/10 of the maximum correlation coefficient.

The PSO-VMD algorithm performs the noise reduction steps on the signal as follows:

1. Initialize the PSO and VMD parameters and set the envelope entropy as the fitness
function;
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2. Given the randomly generated particle position (that is, random K and α) and the
finding range of the particle, determine the initial velocity of the particle;

3. According to the different particle positions, calculate the value of the adaptation
function corresponding to the VMD decomposition (that is, the envelope entropy
value of the last IMF component);

4. Comparing the different fitness function values, the smallest fitness function value
is used to update the individual optimal value and the global optimal value and to
update the velocity and position of the particle;

5. Repeat steps (3) to (5) until the given number of iterations is reached and the optimal
solution of the particle is output;

6. According to the optimal solution (K and α) obtained in step (5), use VMD to decom-
pose, obtain K IMF components, and calculate each IMF component with the standard
signal correlation coefficient;

7. According to the given threshold value of the correlation coefficient, choose the IMF
components to reconstruct the signal and add the selected IMF components to obtain
the restructured signal after the noise is reduced.

A flow chart of the PSO-VMD algorithm for signal noise reduction is shown in Figure 2.
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6. Simulation Results and Analysis

In this paper, MATLAB software was used to write a program to simulate the second
harmonic signal. The CH4 absorption spectral line at 6046.96 cm−1 was used for the
simulation, and the data about the CH4 absorption spectral line at 296 K were obtained
from the HITRAN database, as shown in Table 1.

Table 1. Spectroscopic parameters of the selected CH4 transition near 6046.96 cm−1 (296 K).

ν (cm−1) S (cm−1/(molecule·cm−2)) γair (cm−1 atm−1) γself (cm−1 atm−1) E′′ (cm−1)

6046.943 7.877 × 10−22 0.0651 0.079 62.8758
6046.952 9.277 × 10−22 0.0774 0.079 62.8768
6046.964 1.455 × 10−21 0.0578 0.079 62.8782

ν is the wave number, S is the absorption line intensity, γair is the air-broadening coefficient, γself is the self-
broadening coefficient, and E′ ′ is the energy at the lower level.
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6.1. Threshold of Correlation Coefficient

There are no specific criteria for the value of the correlation coefficient with the degree
of correlation, and the selection of the correlation coefficient threshold value affects the
number of IMFs in the reconstructed signal and the accuracy of the reconstructed signal
with noise reduction. In order to find the correlation coefficient threshold value, the noisy
second harmonic signals of the 200 ppm and 1000 ppm concentrations were selected for
PSO-VMD, processed, and discussed. The correlation coefficient threshold values were set
to 0.5, 1/2 of the maximum correlation coefficient, and 1/10 of the maximum correlation
coefficient, and the IMFs that satisfied the correlation coefficient threshold conditions
were added in all three cases to obtain the reconstructed second harmonic signals. In
TDLAS gas detection systems, the maximum value of the second harmonic signal is usually
used to invert the concentration of the gas. Therefore, the residual of the reconstructed
second harmonic signal with the peak value of the non-noisy second harmonic signal was
calculated under different correlation coefficient threshold conditions, as shown in Table 2.

Table 2. Residuals of the maximum value of the reconstructed signal and the noiseless second
harmonic signal under different correlation coefficient thresholds.

Concentration (ppm) 0.5 1/2 of the Maximum
Correlation Coefficient

1/10 of the Maximum
Correlation Coefficient

200 4.17 × 10−3 4.17 × 10−3 −5.92917 × 10−4

1000 1.793 × 10−2 −2.76 × 10−3 −8.1379 × 10−5

From Table 2, it can be seen that the second harmonic peak recovery was best when the
correlation coefficient threshold value was 1/10 of the maximum value in the correlation
coefficient.

At conditions of 296 K, 1 atm, and a 300 cm optical absorption path, the second
harmonic signal of CH4 gas was simulated with a trapezoidal wave as the scanning signal
and a sine wave as the modulation signal at concentrations from 100 ppm to 1000 ppm,
and random noise, including white noise and interference noise, was added at different
concentrations.

The parameters in the PSO-VMD algorithm were set as follows: the range of K was
3–20, the range of α was 2000–5000, the number of iterations was 60, the number of particles
was 30, the learning factors were c1 = 2 and c2 = 2, the maximum value of the particle
velocity was 1, the minimum value was−1, and the inertia weight was 0.5. In order to show
the effectiveness and feasibility of the PSO-VMD algorithm, the filtering performances of
wavelet filtering, SG filtering, and the PSO-VMD algorithm were compared in terms of
SNR and linearity. After continuous sampling, the wavelet filtering algorithm with the best
filtering effect was finally selected with the wavelet basis function “db4”, and the number
of decomposition layers was 7. The polynomial of SG filtering had a fitting order of 3 and a
window length of 5.

6.2. SNR Comparison

The three methods of wavelet filtering, SG filtering, and PSO-VMD were used to
denoise the second harmonic signals of 10 sets of concentrations. Taking the second
harmonic signal with the 500 ppm concentration as an example, the three algorithms of SG
filtering, wavelet filtering, and PSO-VMD were used to process the second harmonic signal
with noise, as shown in Figure 3.
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It can be seen from Figure 3 that the SG denoising effect was not significantly improved.
Wavelet filtering had the maximum offset phenomenon, and PSO-VMD had the best result,
where the second harmonic signal was basically coincident with the pure second harmonic
signal after the denoising, which could indicate that the PSO-VMD algorithm has a good
denoising effect. In order to reflect the recovery effects of different algorithms on the
second harmonic peaks more intuitively, the residuals between the maximum values of
the noisy second harmonic signal, the wavelet-denoised signal, the SG-denoised signal,
the PSO-VMD-denoised signal, and the maximum value of pure second harmonic signal
were calculated as 0.00608, −0.00393, 0.0533, and −0.00082, respectively. Considering
the fluctuation of the two wings of the second harmonic and the overall fluctuation of
the noise, the residuals between the standard deviations of the noisy second harmonic
signal, wavelet-denoised signal, SG-denoised signal, and PSO-VMD-denoised signal and
the standard deviation of the pure second harmonic signal were calculated as 0.01186,
0.01175, 0.00995, and 0.01069, respectively. Considering the second harmonic peak recovery,
the noise fluctuation of both wings, and the overall noise reduction, it can be seen that the
PSO-VMD algorithm had a good noise reduction effect.

The SNR enhancement effects of the three methods of wavelet filtering, SG filtering,
and PSO-VMD on 10 sets of noisy second harmonic signals of different concentrations are
shown in Table 3.

Table 3. SNR values of three algorithms for noise signals of different concentrations.

Concentration (ppm) Original Signal (dB) PSO-VMD (dB) SG (dB) Wavelet (dB)

100 −2.38962 1.64915 −1.89101 1.52418
200 0.65962 4.07643 1.11542 3.69764
300 2.81747 5.79828 3.20817 5.01898
400 3.59861 6.70118 3.9552 5.80353
500 4.83354 8.57604 5.32585 7.75379
600 5.60625 7.75962 6.02992 7.18978
700 6.08892 8.51311 6.53482 8.01657
800 6.45367 8.66172 6.99472 6.60428
900 6.52896 8.57667 6.89811 7.86203

1000 7.00384 9.33913 7.39223 9.17129

From Table 3, it can be seen that in different concentrations of noisy second harmonic
signals, the PSO-VMD adaptive algorithm had the best SNR improvement compared with
SG and wavelet filtering. At low concentrations, the SNR was improved by 4.03877 dB
compared to the noisy second harmonic signal. At high concentrations of 800 ppm and
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900 ppm, the SG and wavelet filtering showed fluctuations in the SNR, but the PSO-VMD
algorithm was still stable.

6.3. Linearity Comparison

Linearity can be a measurement of the stability of a system, as can the offset of each
concentration point and the degree of linearity of the predicted values. The maximum
value of the second harmonic in harmonic detection can reflect the gas concentration, so
the maximum values of the noisy second harmonic signal, wavelet-denoised signal, SG-
denoised signal, and PSO-VMD-denoised signal were linearly fitted to the corresponding
gas concentrations, and the results are shown in Figure 4.
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Figure 4. Linear analysis of noisy signal and noise reduction using three methods. (a) The linear
fitting relationship between the second harmonic maximum and the concentration of the original
data; (b) The linear fitting relationship between the second harmonic maximum and the concentration
processed by wavelet transform; (c) The linear fitting relationship between the second harmonic
maximum and the concentration processed by PSO-VMD; (d) The linear fitting relationship between
the second harmonic maximum and the concentration processed by SG.

Figure 4 corresponds to the linear fitting relationship equation and the correlation
coefficient (R2), as shown in Table 4.

Table 4. Linear fitting and R2 values of three methods.

Signal Linear Fitting R2

Original signal y = 8.71042 × 10−5x + 0.00655 0.97743
Wavelet y = 8.3589 × 10−5x + 0.00129 0.97698

PSO-VMD y = 8.71866 × 10−5x + 0.00151 0.99782
SG y = 8.69668 × 10−5x + 0.00581 0.98296

From Table 4, it can be seen that the correlation coefficient (R2) was improved from
0.97743 to 0.99798 after noise reduction by the PSO-VMD algorithm, which had the highest
linearity compared to the other methods. The intercept of the linear fitting equation
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represents the original background noise, which was reduced from 0.00665 to 0.00151
after the processing of the noisy signal by the PSO-VMD algorithm, which also indicated
a further reduction in noise. In addition, the linearity of the original data processed by
the PSO-VMD and SG algorithms showed a similar relationship due to the influence of
the background noise, while the linearity of the wavelet transform was slightly different
because the peak of the second harmonic was shifted after the algorithm was processed.

7. Experimental Results and Analysis

In the experiment, methane was used as the target gas to be measured, and the
absorption spectrum of 1653.7 nm was selected. The laser was a DFB laser with its output
centered around 1653 nm, and an LDC501 laser controller was used to drive the DFB
laser, which scanned the center wavelength of the absorption spectrum. The modulation
signal of the laser was generated by two signal generators that separately produced a
4 kHz sine wave signal and a 0.9 Hz trapezoidal wave signal. Using an RCS2000 automatic
gas distribution system, 10,000 ppm methane and high-purity nitrogen were mixed and
configured into different concentrations of methane gas, and the gas was injected into the
gas absorption cell. The PD photodetector, made of InGaAs, received the transmitted beam
and converted the light signal into a current signal, which was further converted into a
voltage signal by a transimpedance amplifier. Then, the signal was transmitted to a lock-in
amplifier for demodulation. The reference signal of the lock-in amplifier was a sine wave
of 8 kHz that was generated synchronously by the signal generator generating the 4 kHz
sine wave signal, and finally the second harmonic signal was gathered by a computer and
filtered. A structure diagram of the TDLAS system is shown in Figure 5.
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Figure 5. TDLAS experimental setup.

The same parameters were set as in the simulation analysis. PSO-VMD was used to pro-
cess the experimental second harmonic signal for the concentration range of 200–1000 ppm.

7.1. Linearity Analysis

A linear fitting between the experimental concentrations and their corresponding
second harmonic maximums was obtained, as shown in Figure 6.

The linear relationship was fitted to a line with max(2f) = 7.59569 × 10−5 C + 0.00994
and a correlation coefficient of R2 = 0.99733. The good denoising performance and the
stability of the peak recovery of the PSO-VMD algorithm were proven.
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Figure 6. Linear fitting of concentrations and second harmonic signal maximums processed by
PSO-VMD.

7.2. Stability Evaluation

In order to verify the stability of the PSO-VMD algorithm, the second harmonic signals
of gases with 500 ppm concentrations were collected continuously over several hundred
cycles. The second harmonic signal maximum processed by the PSO-VMD algorithm
and the original experimental signal were analyzed separately, and the concentration was
inverted by the linear relationship between the respective concentration and the second
harmonic maximum. The original data, processed by the PSO-VMD algorithm for the
stability of the concentration, and their correlation with a Gaussian distribution are shown
in Figure 7.
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The standard deviation and mean values of the original experimental data and the
data processed by the PSO-VMD algorithm are shown in Table 5.
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Table 5. Standard deviation (SD) and mean values of original data and data processed by PSO-VMD.

Signal SD (ppm) Average (ppm)

Original signal 13.50605 514.83586
PSO-VMD 10.65325 510.02011

It can be seen that after the PSO-VMD algorithm processing, the prediction accuracy
and stability were significantly improved, with a good Gaussian distribution characteristic.
In addition, the mean value of the original signal was raised due to the background
interference introduced by the modulated signal compared with the PSO-VMD algorithm.
The background noise was effectively reduced by 4.82 ppm, and the standard deviation
was also reduced, which also proved that the PSO-VMD algorithm improved the stability
and detection accuracy of the TDLAS system.

8. Conclusions

In this paper, a PSO-VMD adaptive algorithm was proposed. Using the same standard,
which was the same standard signal and correlation coefficient threshold, we achieved the
suppression of noise in both simulated and experimental second harmonic signals, which
reflected the adaptiveness of the algorithm in TDLAS. For the simulated data, we compared
the noise reduction results of SG filtering, wavelet filtering, and PSO-VMD in two aspects:
linearity and SNR. The SNR improvement results were the best, and the linear fitting
correlation coefficient was also the highest. The SNR could be improved by 4.03877 dB,
and the correlation coefficient (R2) of linearity was improved from 0.97743 to 0.99798. For
the experimental data, a good linear fit was obtained after PSO-VMD processing, with a
correlation coefficient of R2 = 0.99733, and the background noise interference was effectively
reduced, which improved the stability and detection accuracy of the TDLAS system. In
conclusion, the PSO-VMD adaptive algorithm provides a new method for TDLAS signal
noise reduction and has good results compared with SG and wavelet filtering.
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