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Abstract: In the last three decades, light’s orbital angular momentum (OAM) has been of great interest
because it has unique characteristics that make it sought after in many research fields, especially in
optical communications. To address the exponentially increasing demands for higher data rates and
capacity in optical communication systems, OAM has emerged as an additional degree of freedom for
multiplexing and transmitting multiple independent data streams within a single spatial mode using
the spatial division multiplexing (SDM) technology. Innumerable research findings have proven to
scale up the channel capacity of communication links by a very high order of magnitude, allowing it
to circumvent the reaching of optical fiber’s non-linear Shannon limit. This review paper provides a
background and overview of OAM beams, covering the fundamental concepts, the various OAM
generators, and the recent experimental and commercial applications of the OAM-SDM multiplexing
technique in optical communications.
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1. Introduction

The technological boom over the past few decades has resulted in the exponential
growth of global internet users to over five billion as of the second quarter of the year
2022 [1]. This number has already matched Cisco’s projection for 2023 [2]. This surge
has inherently caused the need for better ways to improve the channel capacity of the
various communication links used by the devices of internet users such as the usage of
high-bandwidth applications [3], high-definition video conferencing contributed by remote
working, an increasing number of heavily used social media apps, distributed computing
systems, sensor networks, and cloud-based services to name a few. This has unabatedly
resulted in the quest to find a solution to the exponential traffic growth on communication
networks which is generally believed, based on information theory [4] to be approaching the
non-linear Shannon limit [5,6]. Charles Kao’s [7] 2009 physics Nobel-prize-winning research
published that single-mode silica-based optical fibers are the future of communications;
however, over the years, its scalability is fast running out—this is commonly called a
“capacity crunch”, indicating that the capacity limits of the transmission channels are
approaching. The implication is that when the current communication channels reach their
maximum capacity, more optical cables will be required to be installed to cope with the
increasing demand [8]. However, this may not be the best option because upgraded fiber
will not even be able to address system capacity scaling issues [9]. Hence, additional ways
to multiplex with the existing techniques for a higher channel capacity are required. In
the optical communications research community, this problem opened the need to adopt
multiplexing techniques such as orbital angular momentum (OAM) and space division
multiplexing (SDM) which allows information to be carried simultaneously in multiple
modes, theoretically infinite, and which can also be easily adapted with the currently
existing technologies.
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Recently, Allen et al. [10] discovered that a Laguerre Gaussian (LG) laser mode has
twisted phase fronts with a well-defined orbital angular momentum (OAM) of ±l h̄ per
photon where ±l is the azimuthal mode index also known as OAM mode ranging from
±1 to infinity, acting as the integral multiple of the reduced Planck’s constant h̄. The
helical shape and orthogonality of OAM beams are major differentiating characteristics
that make it applicable in many unique ways such as in optical tweezers [11,12], atomic
manipulation [13–15], nanoscale microscopy [16–19], wireless communication [20], infor-
mation encoding [21], quantum information processing [22], data storage [23–25], and
optical communication, which is the main interest of this review.

The bandwidth/capacity of a communication system is determined by the number of
orthogonal modes that are available for information to be encoded. This makes orthogonal
beams such as OAM beams the best bet as they can be encoded with information and
multiplexed with existing multiplexing techniques for an additional degree of freedom to
boost the data capacity of transmission channels. Orbital angular momentum multiplexing
is a subset of space division multiplexing (SDM), which sees how separately distinguished
modes such as OAM modes can be used as alternatives to other multiplexing techniques.
Winzer’s report [26] in Figure 1 also shows that SDM technology will be adopted for the
desired systems capacities in the next decades. Interestingly, OAM multiplexing has been
named as one of the promising technologies for the multi-terabyte per second (Tb/s) and
6G networks [27] and is expected to provide superior performance to the 5G ecosystem.
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The ever-increasing demands for higher data capacities and additional degrees of
freedom in optical communications have driven the evolution of communication chan-
nels across various modulation and multiplexing technologies over the years [28–30].
Multiplexing allows the simultaneous transmission of combined signals through a sin-
gle channel with the aim of increasing the capacity of the communication system. In
optical communication systems, information is encoded in light signals and transmitted
through optical fiber or free space. Light signals have several physical dimensions
which can be modulated and multiplexed. The dimensions are time, amplitude/phase,
wavelength/frequency, polarization, and spatial dimension. Since the origin of multi-
plexing [31,32], these dimensions have been explored in several multiplexing techniques
(shown in Figure 2) to improve the bandwidth of communication channels, including
the following: the amplitude/phase dimension for quadrature amplitude modulation
QAM [33,34], which transmits information by combining the phase and amplitude of
a carrier wave; time for time-division multiplexing TDM, which is one of the earliest
multiplexing techniques used in optical communications [35,36] where several inde-
pendent signals are transmitted through a channel of different timeslots; polarization
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for polarization-division multiplexing PDM [37], a multiplexing method which com-
bines two linear and orthogonally polarized signals over the same carrier frequency and
doubling the system capacity; the wavelength/frequency for wavelength/frequency-
division multiplexing WDM/FDM [38,39] where multiple signals of different wave-
length/frequency are transmitted over a single channel; and spatial multiplexing (SM)
also known as space-division multiplexing (SDM), termed the next frontier in optical
communication [40,41], which uses the multiplicity of spatially separated/unique or-
thogonal modes (such as OAM modes) to transmit multiple optical data. In multiplexing,
the orthogonality of the transmitted signals in the various dimensions is paramount [42].
It ensures that the uniquely separated signals can be multiplexed, transmitted, and
demultiplexed without impacting the performance of the transmitted information on
each signal.
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This review is a valuable resource for individuals new to the OAM field and seeking
a concise overview and accessible summary of the vast existing literature. It makes the
complex concepts of OAM more understandable to a broader audience and offers an
extensive awareness of the potential of OAM as a crucial technology for achieving greater
channel capacity in future communication networks.

Roadmap of the Review

This review addresses readers who want to have general knowledge about orbital
angular momentum and its role in scaling channel capacity and meeting the escalating
capacity demands of future communication systems. First, the background of OAM is intro-
duced along with its physical characteristics and connection to the helical phase structure
of light, emphasizing their special qualities and potential to boost communication capacity.

Next, the various approaches used to generate OAM modes are addressed. These
methods consist of the spatial-generating method and the fiber-generating methods. We
also look at their comparisons, advantages, and disadvantages. Furthermore, we discuss
how the generated OAM can be detected and how they propagate. The experimental
breakthroughs and demonstrations of OAM multiplexing in SDM with other multiplexing
techniques such as PDM and WDM are reported. Moreover, a highlight is given about
the foundational elements of SDM, such as multicore fibers, and few-mode fibers, and
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how they enhance channel capacity, spectral efficiency, and increase data rates. Lastly,
the necessity for OAM-compatible devices and the recently commercialized OAM-SDM
products and devices are mentioned.

2. Background of OAM

According to Maxwell [44], the fundamental property of an electromagnetic wave is
energy and momentum. It has a linear momentum p = mv and an angular momentum
L = r× p when the particle moves at a position r from the origin. The difference between
angular momentum and linear momentum is that angular momentum, a vector quantity, has
a rotation or spin about an axis and a clear direction in which it acts. For an electromagnetic
wave, angular momentum in the z direction requires a component of linear momentum in
the x, y plane, a light beam with a transverse momentum component. The linear momentum
density ρ = ε0E×B is related to the angular momentum density j through j = r× ρ where
ε0 is the medium dielectric permittivity, and E and B are the electric and magnetic fields,
respectively. Hence, it follows that the angular momentum of an EM wave propagating in
the z-direction requires a component of the electric and/or magnetic field also moving in the
z-direction.

By 1936, Beth demonstrated [45] Poynting’s theory [46] of the rotation of circularly
polarized light beams transmitted through a half-wave plate. He noticed that the wave plate
reversed the handiness of the transmitted polarized light, hence also reversing the angular
momentum of the light beam. The change in the light’s angular momentum resulted in
a torque τ, a change in angular momentum with respect to time, which caused the wave
plate to rotate. In modern physics where momentum per photon is considered, this change
in handedness or spin in the left and right directions is known as spin angular momentum
(SAM) with the value ±h̄, where ± is the handedness of the circular polarization and
h̄ is the Planck’s constant, a conserved quantity. Beth believed that a photon should be
able to carry a more complex angular momentum which would result in a much greater
momentum transfer of h̄ as in the case of circularly polarized light.

2.1. OAM in High-Order Transmission

During the high-order transmission experiment, Charles G. Darwin [47] considered a
light emitted at a short radius from the atomic orbit and found that the linear momentum
of the emitted photon resulted in an extra torque τ on the atomic orbit. This torque is now
called the orbital angular momentum (OAM). Orbital angular momentum arises when
beams move in a non-perpendicular direction to the propagation axis. In geometric optics
approximation, the light which makes up the OAM beams is skewed. Skewed rays are rays
that travel through an optical fiber without passing through the axis of the optical fiber.
OAM has ±lh̄ independent states per photon, l being an integer. The signs indicate the
handedness with respect to the beam direction where − signifies the clockwise direction
and + signifies the anticlockwise direction.

When a particle rotates about position r it is said to have angular momentum; hence, a
particle at a position r revolving/spinning around the orbit of an atom is said to possess
an orbital angular momentum mvr = n(h/2π) where m is the mass of the particle, v is the
velocity, r is the radius of the orbital, (h/2π) is the unit of the energy quanta, and n is an
integer. Bohr proposed that as an electron absorbs more energy n, it gains more orbital
angular momentum [48]. The same has been said of a photon, according to Poynting, that
must be accompanied by an angular momentum as it transforms from linear polarization
to a circularly polarized light.

2.2. The Total Angular Momentum of a Photon with OAM

For over 200 years, the spin angular momentum (SAM) property of light which is
associated with circular polarization has been extensively investigated. Initial reasoning
from Cohen-Tannoudji et al. [49] and Nishijima in 1965 [50] was that it was meaningless
to separate the angular momentum of a photon into the spin and orbital parts and [51]
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also pointed out that not all light waves can possess orbital and spin angular momentum.
In 1992, 30 years ago, four researchers working in a quantum optics lab debunked this
when they theoretically identified these two distinct properties in a photon. It was shown
in [52] that the spin angular momentum and orbital angular momentum are well-defined
and separately measurable quantities of a photon. In theory, the OAM beams have an
unlimited degree of freedom and enhance information-carrying capacity in both classical
and quantum optical communications.

Hence, it is now generally accepted that the total angular momentum J of a photon
consists of both SAM, the intrinsic component of the photon which is associated with wave
polarization, and OAM, the extrinsic component that represents the spatial distribution of
the electromagnetic wave/photon:

J = SAM + OAM (1)

With SAM and OAM defined, respectively, by:

SAM = ε0

∫
(E× B)d3r (2)

OAM = ε0/2iw∑i=x,y,z

∫
Ei∗(r×∇ ) Eid3 (3)

E and B are the electric field and the magnetic field, respectively, ε0 is the vacuum
permittivity, and w is the speed of light. The i-superscripted symbols denote the Cartesian
components of the corresponding vectors. The conservation of total angular momentum
J assumes that without the presence of external forces, no energy of the wave is lost as
it propagates. The OAM property of a photon can be multiplexed with the polarization
property (SAM) of the same photon, which is independent of OAM, to increase channel
capacity. Table 1 summarizes the properties of SAM and OAM.

Table 1. Overview of SAM and OAM features. σ represents the number of states the circularly
polarized waves have whereas l is the azimuthal mode index/OAM mode ranging from 1 to infinity
∞. It indicates the number of independent twists (2π phase shift in the azimuthal direction) that a
beam possesses. ± indicates the handedness of the beams; − signifies that that beam is propagating
in a clockwise direction and + signifies the anticlockwise direction.

Angular Momentum SAM OAM

Wavefront polarization Circularly polarized waves Helically phased waves

Angular momentum per photon Σ σh Σ lh̄
Photon state number σ = ±1 l = ±(1, 2.3, . . . , ∞)

2.3. Laguerre-Gaussian Modes

Twisted light beams are a new type of laser beam that have separate OAM modes,
also known as Laguerre-Gaussian (LG) modes. Laguerre-Gaussian modes are the most
common form of a helically phased beam. Each mode is differentiated by the number of
spirals or twists it possesses as in Figure 3.
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Figure 3. Wavefront, phase profile, and intensity profiles of OAM beams. (a) l = 0. This is a Gaussian
beam with a donut-shaped intensity profile and no twist/OAM in the wavefront; (b) l = 1, which has
one twist per wavelength; (c) l = 2, which has two twists per wavelength; (d) l = 3, which has three
twists per wavelength. Helical beams (b–d) are all orthogonal to each other with each traveling in the
anticlockwise direction indicated by the + sign. These beams can carry independent information on
the same transmission and channel frequency. Reprinted from ref. [53].

Allen et al. stated that the amplitude of a Laguerre-Gaussian mode has an azimuthal
dependence of eilϕ and that the Laguerre polynomial distributions of amplitude TEMpl
possess well-defined orbital angular momenta where p is the radial dependence and l is the
azimuthal dependence. When p = 0 and l 6= 0, the LG beam is called TEM01 which is more
applicable in micromanipulation [54]. The intensity profile of a Laguerre-Gaussian beam
LGlp varies with p and l. When p and l are zero (0), one has a Gaussian intensity profile, a
spot, but as the l value increases or decreases, the intensity profiles are seen as an optical
vortex indicated by the dark centers surrounded by bright annular rings of helical beams.
The higher the p-value, the more rings or intensity profiles as seen in Figure 4.
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The expression for the electric field amplitude of a single LG mode is given by

LGlp(r, ϕ, z) = Cpl
w0

zRw(z)

[√
2
(

r
w(z)

)]|l|
× L|l|p

(
2

r2

w(z)2

)
e−ilϕ × e−i(2p+|l|+1)tan−1 (

zR
z ) × e

[ −ikr2

2z(1+(
zR
z )

2
)
]

× e
(− r2

w(z)2
)

(4)

The coefficient Cpl =
A
√

p!
(p+|l|)! is obtained at the requirement that every mode trans-

mits the same amount of power. L|l|p (x) is the generalized Laguerre polynomial given by
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L|l|p (x) = (−1)|l| d|l|

d(x)|l|
Lp+|l|(x). Where p is the number of radial nodes in the intensity

distribution, l is the azimuthal mode number/index giving an OAM of lh̄ per photon, w(z)
is the beam radius, k is the free space wave number, zR signifies the Rayleigh range. In
terms of their intensity cross-section, an LG mode with l > 0 comprises p + 1 concentric
rings with a zero intensity on the axis [56]. Sjöholm [57] stated that the reason for using
the absolute value of l ( that is, |l|) in the Laguerre polynomial and the amplitude part as
seen in Equation (2) is that the Laguerre polynomials are only defined for l > −1 and that
having the amplitude to the power of −l would result in infinite amplitude as r tends to 0.

3. Generation of OAM Beams

OAM or vortex beams in the optical domain can be generated in free space using
spatial-generating devices and in optical fibers using fiber-generating devices.

3.1. Spatial-Generating Methods

OAM is usually generated by manipulating the spatial phase structure of the electric
field of an electromagnetic wave [58]. A spatial device with a specially designed surface
structure is used to imprint a phase profile on the electric field of a propagating plane light
wave as it passes through the device. The resulting beam has a spiral or helical phased
structure because of the spatial variation in the phase. A structured light wave can also
be generated when an external magnetic field interacts with the light wave on a carbon
nanotube [59]. When a magnetic field is applied to an optical device made from magneto-
optical materials and a light wave is passed through, the refractive index of the wave
becomes altered and this also changes the spatial phase distribution of the light [60,61].

The spatial-generating methods include the use of spatial devices such as cylindrical
lenses [62–66], spiral phase plates [67–74], Phase holograms [75–81], spatial light modula-
tors [82–88], and q-plates [89–92].

Allen’s experiment established high-order Hermite-Gaussian (HG) modes are trans-
formed into a helically phased beam with an azimuthal dependence exp(−ilϕ), a phase
singularity or vortex at the center. The conversion process is performed in various optical
materials known as mode converters shown in Figure 5. A fundamental transverse mode
(a Gaussian beam, TEM00) emitted from a laser, makes a small angle as it passes through
the optical medium. This gives a twist to the resulting beam called the Laguerre-Gaussian
beam [93].
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Figure 5. Exemplification of OAM spatial generation techniques: (a) Cylindrical lens which was used
by Allen et al. to transform HG modes to LG modes with OAM and a phase singularity at the center;
(b) spiral phase plate is the simplest converter. It has spiral phase distribution which converts a plane
Gaussian beam of a particular wavelength into an OAM beam that has a spiral wavefront; (c) phase
hologram with the use of forked diffraction grating, an OAM beam is formed as it passes through the
forked grating. The number of forks determines the OAM number of the beam generated; (d) spatial
light modulator uses the molecules in their liquid crystal to deflect and give a twist to the incident
plane beam; (e) Q-plates are inhomogeneous birefringent devices that convert Gaussian beams to
OAM beams.
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It is important to note that distance and coherence length of propagation have signifi-
cant effects on the propagation and generation of a vortex beam. As the vortices propagate
farther or as the coherence length decreases, a vortex of an opposite sign is formed, resulting
in two vortices in space; however, this does not affect the properties of the vortex beam,
making it potentially useful in optical communications [94].

It should also be noted that these methods are plagued with disadvantages such
as large volume space requirement by the spatial devices, high insertion loss due to the
high refractive index difference at the interphase where the incident plane wave is being
converted to OAM beams, a limited number of OAM beams created per time, and a
high cost of fabrication of the optical materials as new materials need to be fabricated for
the desired OAM number. Table 2 features a comparison of the different spatial OAM
generation methods.

Table 2. Comparison of the spatial generation techniques of OAM.

Spatial Generation
Methods

Cylindrical
Lens

Spiral Phase
Plate

Phase
Hologram

Spatial Light
Modulator Q-Plates Metamaterials

Cost Normal low Low High high Low

OAM modes generated Single Single Single Single/Multiple Single Single

Flexibility Low Low Low High High Low

Transmission distance Short Short Short Short Short Short

Is it passive? Yes Yes Yes Yes Yes Yes

Can it withstand high
power? Yes Yes No No Yes No

Processing difficulty Low Low High High Low High

Does it enable space
division multiplexing? No No No No No No

Still in the spatial domain, generating OAM beams at the nanoscale is of significant
interest for various applications in nanophotonics [95,96] and optical device miniaturiza-
tion [97]. Recent developments in the creation and detection of optical vortex as well as
some of its applications are observed in photonic integrated circuits [98–103], micro-ring
resonators [104–111], metamaterials [112–120], plasmonic nanostructures [121–124], and
metasurfaces [125–128], which offer precise control over the phase, amplitude, and polar-
ization of light at the nanoscale. By engineering the meta-atoms on a metasurface, it is
possible to design them to introduce a tailored phase gradient, resulting in the generation of
OAM beams. Metasurfaces can be fabricated with various materials, including plasmonic
nanostructures or dielectric resonators, allowing for efficient manipulation of light and
generation of OAM beams at the nanoscale.

In general, at the time of writing this review, it suffices to say that the spatial-generating
methods have many limitations in the fabrication of the devices and cost among others,
and cannot be commercialized profitably; hence, other methods need to be embraced.

3.2. Fiber-Generating Methods

The second method of generating OAM modes is the so-called fiber-generating method.
This is more advantageous owing to characteristics such as miniaturization, lower insertion
loss in fibers, increased transmission distance, higher efficiency, and a reduction in external
interference, which is lacking in the spatial generating method [129]. Moreover, owing to
the cylindrical shape of fibers, the eigenmode of the incident wave is easily restricted to the
cylindrical symmetry of the fiber during conversion into OAM beams.

Conventional optical fibers cannot transmit OAM; hence, new specialized fibers need
to be designed to support OAM mode transmission. These specialized fibers, however,
require converters listed below and shown in the experimental setups in Figure 6.
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(a) Fiber gratings [130] used in FMF [131];
(b) Mode-selective couplers [132] used in both SMF and FMF;
(c) Photonic lanterns [133,134] also used in SMF;
(d) Microstructure optical fibers or photonic crystal fibers (PCF) [135–137].
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Figure 6. Experimental setup of OAM generation through fibers. (a) Fiber grating: Experimental
setup to generate and detect 4th-order OAM modes by presetting the number of twists before the
fabrication of the fiber grating. OC-optical coupler; PC-polarization controller; PT-LPFG—preset twist-
long period fiber gratings; HWP-half-wave plate; SLM—spatial light modulator; Col—collimator;
NPBS—non-polarization beam splitter. Reprinted from ref. [138]; (b) mode selective couplers which
uses a single-mode fiber (SMF) as the input fiber and FMF as the output fiber joined together with
fiber optic couplers. The mode coupler ensures that the refractive index of the fundamental Gaussian
at the input fiber is retained in the resultant OAM mode at the output fiber. Reprinted from ref. [139];
(c) photonic lanterns: The fundamental mode is emitted from the laser passes through the splitter
into the photonic lantern which couples and converts the beam into the desired OAM beam. PM—
phase modulators; PL- photonic lantern; CGH—computer-generated hologram; MO—microscope
objectives; L1, L2—imaging lenses; FL—Fourier lens. Reprinted from ref. [140]; (d) Photonic crystal
fiber. Reprinted from ref. [141].

3.3. Photonic Crystal Fibers (PCF)

Although fibers that support OAM states have had limited success because they
have only been able to propagate very short distances and the modal intensity patterns
are unstable due to the mode mixing of the eigenmodes [142,143], specially designed
microstructure optical fibers (MOFs), also known as photonic crystal fibers (PCF), have
shown incredible abilities with flexible and adjustable fiber parameters structure [144].
Most especially, structures comprising air holes [145–148]. These perform excellently and
are easy to manufacture. Some PCF designs with air holes are as follows:

• A circular PCF (C-PCF) supporting 26 OAM modes [149];
• A C-PCF with square air holes in the cladding that supports 46 OAM [150];
• A unique PCF with square and circular air holes (SC-PCF) that support 86 OAM

modes [151];
• A pure-silica-based PCF with a central round air hole that supports 114 OAM modes

was also designed showing higher effective refractive index difference, lower confine-
ment loss, and non-linear coefficient [152];

• A PCF with an ssk2 dense crown glass ring with optimized central air hole radius and
annular region thickness stably transmitted 394 OAM modes [153];

• A total of 84 OAM modes [154], 110 OAM modes [155], and 166 OAM modes [156].

The several results generated through the finite element analysis of the above-listed
PCFs show a result of an effective modal index, low/flat dispersion, small and controllable
non-linearity, high birefringent, high mode quality, high performance, and avoid mode cou-
pling. These qualities are needed for the best performance in long-distance communication
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systems and hold a huge promise in high-performance optical communication systems.
However, more improvements are seen with PCF designs made with low refractive index
rings owing to their easier fabrication/manufacturing [157]. Table 3 highlights the advan-
tages and disadvantages of each fiber-generating method, whereas Table 4 gives a general
merit and demerit of the spatial method and fiber method according to their corresponding
references in the texts.

Table 3. Advantages and disadvantages of the fiber-generation technique of OAM.

Fiber-Generating
Method Advantages Disadvantages

Fiber gratings Compatibility with existing fiber structure;
highly stable and robust, low loss

Limited OAM mode selection due to design and
fabrication limitations; reduced mode purity in

high-order modes; limited bandwidth

Mode selective couplers

High mode purity; design flexibility to
generate

different OAM modes for various applications;
wide bandwidth

Complexity in fabrication, leading to high cost
and limited scalability; sensitive to misalignment

Photonic lanterns Compatibility with existing fiber structure;
efficient mode conversion; mode flexibility

Complexity in fabrication, leading to high cost
and limited scalability; coupling losses can cause

reduced OAM purity

Photonic crystal
fibers (PCF)

High mode purity; supports multiple modes
across a wide bandwidth; compact

Complex design and fabrication; high losses due
to complex waveguide design

Table 4. Advantages and disadvantages of the fiber-generation technique of OAM.

Method of
Generation Advantages Disadvantages Application

Spatial-generation methods

Beams can be shaped and
manipulated with great versatility;

advanced beam steering capabilities
and control over beam direction; a

wide range
of applications

Vulnerability to environmental
influences such as atmospheric

turbulence, scattering, and absorption
results in beam variations, effectiveness,
and distortions. Alignment challenges

between transmitting and
receiving systems

Free-space optical
communication; imaging;

sensing; quantum
information processing;

interferometry;
micromanipulations

Fiber-generation methods

Compatible with the existing fiber
optic communication networks;

robust and stable with minimal beam
distortions; high data capability due
to scalability in transmitting multiple

OAM beams

Complexity in design and fabrication
can result in high cost; inefficient

coupling impacts mode purity and
results in transmission loss; high modal

crosstalk

Optical fiber
communications; optical

imaging and sensing;
fiber laser

3.4. Measurement of OAM Modes

As much as it is important to generate OAM beams, it is equally important to be
able to measure and determine the number of modes an OAM beam possesses for use in
diverse applications. The topological charge l or OAM mode of a helical or vortex beam
can be measured by examining the interference pattern between the beam and a reference
beam [158] and the use of a Mach–Zehnder interferometer for higher-order topological
charges [159,160]. The OAM of a single photon can also be measured using a computer-
generated hologram setup [161]; the fork dislocation of the hologram is used to generate
the azimuthal phase dependence of eilϕ on the incident beam, giving it a helical phase
front. To turn the twisted beam back into a plane wave, a reverse hologram is used to
focus the helical beam through a pinhole, and it is then detected as a plane phase front.
Measurements of the OAM state of a beam with SLM-based annular gratings were also
reported in [162] where the number of black fringes and the direction of the diffraction
patterns indicate the size and sign of topological charge values, respectively.
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These measurements can be completed theoretically and experimentally in close in-
teraction [163]. Theoretical methods involve mathematical simulations and models to
understand, predict, and optimize the design parameters for the generation of OAM in
light beams. Experimental methods involve physically manipulating light beams with the
use of various optical components mentioned in Section 3 to imprint a desired spatial phase
structure onto the light beam, resulting in the creation of OAM modes. Theoretical models
guide the development of experimental techniques by providing insights into the funda-
mental principles of OAM generation whereas experimental results inform and validate
theoretical models by providing empirical data and feedback for refining theoretical under-
standing. However, both approaches adhere to the azimuthal symmetry and conservation
of angular momentum associated with OAM. Both theoretical and experimental methods
essentially contribute to advancing knowledge and applications of OAM in various fields,
such as optical communications, imaging, and quantum information processing.

4. Multiplexing of Information-Carrying OAM Beams

When a Gaussian beam encoded with information passes through an optical element
such as a spiral phase plate, it acquires an azimuthal phase dependence of eilϕ and becomes
an OAM beam with a helical phase front. Multiple of such OAM beams (l = 1, 2, 3, . . . , N),
each carrying its own information, can be multiplexed. Each helical beam develops a phase
singularity (optical vortex with a bright ring and a dark center) while the wavefront spirals
around the optical axis as they propagate. The orbital angular momentum of each OAM
beam remains unchanged by its propagation through free space and spherical lenses [164].

The beam with the highest OAM number N creates the outermost vortex by wrapping
the smaller vortices around itself, whereas the helix with the lowest OAM number is located
in the center of the multiplexed vortex structure. As a result, many OAM beams propagate
as though they were a single beam.

After their transit through the communication channel, the OAM beam must be con-
verted back to a Gaussian to extract the information contained in them. An inverse spatial
element (SPP) with a predetermined charge of −l is utilized and used for demultiplexing,
isolating, and recovering each data-carrying OAM beam at the receiver end to eliminate
the azimuthal phase dependence eilϕ of the OAM beam and its information [165].

Most OAM beam multiplexing was experimentally demonstrated across relatively
short distances of less than 1m in the lab often; however, in recent years, several investiga-
tions have investigated the possibility of employing OAM beams to create long-distance
FSO linkages in the field environment [166,167].

4.1. OAM in Space-Division Multiplexing

Space-division multiplexing is a technology used in optical communication systems
to boost capacity and data transmission capabilities by employing various spatial modes
within an optical fiber or waveguide. Unlike TDM or WDM, which used time or frequency,
SDM exploits the spatial domain to simultaneously transmit many independent data
streams. Using fibers as the communication links with the SDM multiplexing techniques,
reports show that 2Pbps/fiber was achieved [168–172], half of which has been unrealized
with the other multiplexing methods. This is because each spatial path or mod4e in SDM is
a separate/independent communication channel; hence, it is extremely useful in improving
the capacity of communication systems.

SDM relies on multiplexing spatially separated beam modes such as linearly polarized
(LP) modes [173–175] and OAM modes [176–178]. This is made possible by orthogonality,
transverse phase structure, and a helical/twisted phase front of such modes. OAM multi-
plexing corresponds with mode-division multiplexing (MDM), which is a popular form of
SDM multiplexing. MDM can increase the transmission capacity in optical fiber communi-
cations due to the orthogonality and theoretically infinite states of OAM modes [179] used
in such a technique.
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Based on their orthogonality, OAM beams could also be multiplexed with the other
multiplexing techniques and transmitted over free space or fiber to increase the data capacity
of communication systems by the number of beams transmitted. Likewise, the spectral
efficiency is increased because the transmitted beams are in the same frequency range [180].
The first time OAM multiplexing was used for MDM communication links, four different
OAM modes were multiplexed on two polarizations in free space in Figure 7a–c. This yielded
a data rate of 1.37 Tbit/s [181].
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Figure 7. OAM multiplexing with PDM in free space. (a) Represents the generation of an information-
carrying OAM beam after an information-carrying Gaussian has been passed through a spatial
element (spiral phase mask) with OAM mode l = 4; (b) signifies the recovery of an information-
carrying Gaussian from an information-carrying OAM beam after passing through an inverse spiral
phase mask of l = −4; (c) describes the multiplexing and demultiplexing of the polarization multi-
plexed OAM beams. Reprinted from ref. [181].

In addition to PDM multiplexing, OAM beams can also be multiplexed with WDM
to boost the capacity of OAM multiplexed in free space links [182]. In the experiment
illustrated in Figure 8a,b, the OAM multiplexed beams and OAM-PDM multiplexed beams,
respectively, are carried on the same frequency. Figure 8c depicts how other independent
data channels can be sent or received using the other frequencies on the same number
of OAM modes N and both polarizations. Because OAM multiplexing and PDM are
compatible with WDM in this manner, the aggregated connection capacity is boosted
further by M times by using M separate carrier frequencies. Overall, the data rate of the
communication link is 2 × N × M, indicating that OAM is truly an additional degree
of freedom to the PDM and WDM techniques. In the experimental setup, a data rate of
100Tbit/s was achieved with 12 OAM modes, two polarizations, and 42 wavelengths.
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Figure 8. The idea of boosting channel capacity by combining OAM multiplexing with PDM and
WDM. (a) Using OAM beams to multiplex numerous data channels; (b) combination of PDM
and OAM multiplexing; (c) a total of 12 OAM modes, 2 polarizations, and 42 wavelengths were
multiplexed to reach a 100.8 Tbit/s aggregated data rate by combining OAM multiplexing and PDM
with WDM [182].

Aside from OAM modes, the SDM technique can also be used in multi-core fiber
(MCF) [183], a fiber that consists of multiple individual cores within a single fiber. The
number of cores in the fiber gives the fiber capacity. Moreover, few-mode fiber (FMF) [184],
which supports multiple spatial modes within a single core, is employed in SDM. Here,
the number of modes supported by the fiber gives the fiber capacity. SDM transmission
allows a combination of multiple cores within a single cladding (MCF) or multiple modes
in a single core (FMF) [185]. SDM thus positions itself as the multiplexing approach best
suited to carry future capacity needs.

The advantages of OAM-based MDM systems are numerous. Apart from increasing
the channel capacity and spectral efficiency of communication links due to the several spa-
tial modes accommodated, SDM also provides scalability by enabling the addition of more
spatial pathways or modes when the need for more capacity rises, without necessitating sub-
stantial changes to the underlying infrastructure. OAM-SDM also simultaneously enables
significant reductions in cost-per-bit and increased energy efficiency [186]. Likewise, it will
avoid complex multiple-input and multiple-output (MIMO) digital signal processing and
overcome intermodal crosstalk and finite modes [187–189]. In the multiple-in multiple-out
(MIMO) technique, the channel capacity increases in correspondence with the number of
transmitting and receiving antennas [190,191], making it a bulky and expensive technique.

Although there are many advantages, the actual application of OAM-based multi-
plexing is still constrained significantly by crosstalk. Crosstalk between OAM modes can
cause interference, poor signal quality, and impose a limit to the number of multiplexable
channels [192,193].

4.2. OAM-Compatible Infrastructures and Devices for Scaling

Although OAM-SDM systems are taking the top research attention, Winzer [194]
looked at the integration of SDM components into the existing non-SDM infrastructure.
Data network designers believe that in order to use the currently embedded fiber struc-
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tures to scale up the channel capacity and spectral efficiency of communication system,
the OAM optical communications research community must come up with compatible
new technologies such as devices such as photonics integrated circuits, light sources,
(de)modulators, amplifiers, switching devices, OAM filters [195], transmitters, receivers,
and signal processing elements which support compact, efficient, cost-effective OAM gen-
eration, multiplexing, demultiplexing, and detection [196,197]. Figure 9 shows some of the
devices needed to fully scale the OAM-SDM technique.
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In terms of commercialization of the SDM multiplexing technique, an optical lab
named “Cailabs” has developed a solution using multi-plane light conversion (MPLC)
technology to generate high-order, high-purity OAM beams in free space and fiber [199].
The MPLC technology converts multiplexed modes from SMF inputs by using successive
reflections on a single reflective phase plate and a mirror. The technology then converts
each input into a given mode within an MMF or free space output. Since each mode
represents an additional information channel, this means that there would be an increase
in the bandwidth which is the goal of all OAM research. The setup also consists of a
demultiplexer which recovers the original signal information. According to the company,
their solution overcomes all the other constraints by the other generation techniques
featuring a high number of modes (up to 45 modes), optimal crosstalk, low insertion loss
level, completely passive, and compatibility with a wide range of wavelengths. It is the only
commercial solution that offers OAM-SDM multiplexing at the time of writing this review.

Several commercial enterprises also demonstrated wireless transmission for multi-
plexed OAM beams [200–202], achieving a data rate 100× that of LTE and Wi-Fi. These
can be used for next-generation 5G and 6G systems, such as connected cars, virtual real-
ity/augmented reality (VR/AR), high-definition video transmission, and remote medicine.

5. Summary and Outlook
5.1. Summary

This work offers an overview of the orbital angular momentum components of elec-
tromagnetic waves and their capabilities in boosting the optical communication channel
to meet the growing capacity needs of future technologies. Firstly, the authors reviewed
why OAM beams are important, especially in optical communications. The background of
OAM was presented and the various methods of generating OAM in space, such as the use
of spiral phase plate, cylindrical lens, and others that convert incident Gaussian beams to
beams with twisted wavefronts also known as Laguerre-Gaussian mode. The orthogonality
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of these modes makes them suitable for various applications and makes it possible for
them to be multiplexed with the other multiplexing techniques to generate higher chan-
nel capacity. Additionally, the authors reviewed how OAM beams are being generated
in specialized optical fibers with the use of fiber gratings, couplers, and especially the
photonic crystal fibers that support OAM mode transmission needed in high-performance
optical communication. Contexts of multiplexing OAM with SDM, PDM, and WDM were
also considered.

5.2. Outlook and Future Perspectives

There are still many questions and challenges to be overcome in OAM research. These
challenges can be turned into opportunities for the future development and utilization of
OAM. It would be interesting to see more research towards the design of efficient cost-
effective and compatible multiplexing and demultiplexing devices that would support a
large number of OAM-SDM modes [203] including some advances in tunable, compact,
and high-power OAM lasers [204–207]. Multiplexing of OAM and WDM was recently
experimented with in a multimode fiber to also improve capacity [208], so this could also
be considered to keep pushing the limits and scope of OAM beams. In future research, the
development of cutting-edge fibers which are fit for SDM and which will also be able to
accommodate the next frontier technologies needs to be investigated. Crosstalk between
channels is a clear potential drawback that is continuously being addressed [209,210]. An
interdisciplinary exploration of OAM in other scientific disciplines can also lead to new
discoveries and applications in diverse fields.

With ongoing attempts to investigate and enhance various methodologies, including
multicore fibers, few-mode fibers, and OAM-based systems, SDM remains a topic of current
study and development. These developments in SDM will help optical communication
systems fulfill the goal of introducing OAM as an additional degree of freedom and
increasing optical channel capacities. At the current rate of research in the field, it is
believed that this feat would be achieved in the near future and commercialization would
commence on a huge scale.
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