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1. Whispering gallery modes 1

Optical whispering gallery modes (WGMs) exist is any axially symmetric body (sphere, spheroid, toroid, etc.) made of 2

a transparent material [17,24-26]. Owing to the azimuth symmetry, all components of the light fields are proportional 3

to exp(imϕ), where ϕ is the azimuth angle and m is the azimuth number taking integer values. Typically, the vacuum 4

wavelength λ = 2πc/ω is much smaller than the major radius R, the azimuth number m � 1, and the light fields are 5

strongly localized near the rim. Exact WGM solutions to the Maxwell equations with true boundary conditions are 6

available only for the spherical case [24,25]. In other practically important cases, including the χ(2) case, approximate 7

solutions, employing smallness of the ratio λ/R, are in use [24,27-30]. While the radiation damping of WGMs is present, 8

it is negligibly small for typical values of the refractive index n and λ� R, such that the modal decay is due to the bulk 9

absorption and roughness of the surface. Typical modal Q-factors are as high as 107 − 109, correspondingly, the modal 10

line widths are in the MHz range. 11

Generally, there are two polarization types of WGMs, and each type is characterized (in addition to m) by two 12

modal numbers – the radial number q = 1, 2, . . . and the polar number p = 0, 1, . . .. For each polarization type, the 13

modal frequency can be represented as ω = kmc/n, where km = m/R and n = n(m, q, p) is the effective modal refractive 14

index. For λ� R, the modal index is close to its bulk value nb(λ) and m ' 2πRnb/λ. Thus, WGMs can be viewed as 15

quasi-plane waves propagating along the rim with discrete wavevectors km and possessing refractive indices slightly 16

dependent on the modal numbers. Within the optical range, the azimuth numbers are ∼ 104. The intermodal distance 17

measured in Hz, δω/2π = c/2πRn, is named the free spectral range. It corresponds δλ/λ = λ/2πRn� 1. 18

The case of uniaxial (birefringent) medium with the optic axis coinciding with the axial one is typical for χ(2)
19

resonators. Here the modal polarization is either ordinary (o) or extraordinary (e), and the corresponding refractive 20

indices are no and ne. As WGMs are localized near the rim, knowledge of its minor radius r is usually sufficient to 21

calculate no,e(m, q, p) with a good accuracy. The corresponding relation for the geometric dispersion reads [17,29] 22
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where ζq is q-th zero of the Airy function Ai(−ζ), such that ζ1 ' 2.338, ζ2 ' 4.088, etc. The right-hand side of Eq. (??) 23

represents two first terms of an asymptotic expansion in fractional powers of 1/m. The higher-order terms of this 24

expansion usually are not necessary for evaluation of δn = n− nb. Because of the above link between m and λ, one can 25

easily represent δn as a function of λ. Equation (??) is useful for analysis of the effects of geometric dispersion, including 26

the phase matching and minimization of the temporal walk-off. It has to be supplemented by proper empiric Sellmeier 27

equations for nb(λ) [49]. 28
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Figure S1. Geometry of the problem; R and r are the major and minor radii of the resonator, while u,
θ, and ϕ are the curvilinear coordinates, and ρ = ρ(u, θ) is the distance from the observation point
(shown by the red dot) to the vertical rotational axis.

In addition to polarization and frequency, each mode can be characterized by the modal function Ψm,q,p(r) = 29

exp(imϕ)ψm,q,p(r⊥), where r⊥ refers to the transverse cross-section ϕ = const. The pre-exponent ensures orthogonality 30
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of two wave functions with different azimuth numbers. The functions ψm,q,p(r), that can be chosen real, obey the 31

orthogonality relation 32∫
ψm,q,p(r⊥)ψm,q′ ,p′(r⊥) dr⊥ = δqq′δpp′ . (2)

Obviously, ψm,q,p(r⊥) has the dimension of r−1. The overlap integral σ−1/2
eff =

∫
ψm2,q2,p2 ψ2

m1,q1,p1
dr⊥, that occurs in 33

calculations of elementary χ(2) processes [31], can be regarded as inverse square root of the interaction cross-section σeff. 34

The modal function ψm,q,p can be calculated within the model of Fig. ??. More specifically, it is proportional to U(u) 35

and Θ(θ), where u is the radial distance to the rim and θ is the azimuth angle measured from equator. Analysis of the 36

scalar Helmholtz equation for the light field in curvilinear coordinates u, θ results in relations [29] 37

U = Um,q = Ai
(

u
um
− ζq

)
, Θ = Θm,p = exp

(
− θ2

2θ2
m

)
Hp

(
θ

θm

)
, (3)

where um = R/21/3m2/3, θm = (R/r)3/4/m1/2, and Hp(x) is the Hermitian polynomial of the order p. For m� 1, both 38

the modal function is strongly localized in u and θ. Note that U(0) = 0, i.e., strongly decaying evanescent fields for u < 0 39

are ignored. More accurate and cumbersome relations are available as well. Equations (??) are useful to evaluate modal 40

overlap integrals entering relations for the nonlinear coupling constants. 41

2. Impact of geometric dispersion on natural PM and walk-off in LN resonators 42

Here we use temperature dependent Sellmeier relations of [55] for nb
o,e(λ) relevant to congruent LN crystals doped 43

with Mg. These crystals are most suitable for manufacturing microresonators. Consider two spectral characteristics 44

– the phase velocity V = ω(k)/k and the group velocity v = dω/dk – relevant to o and e polarizations. With n(λ) 45

known, we have V = c/n and v = c/(n− λn′) with n′ = dn/dλ. The velocity differences V12 = Vo(λ1)−Ve(λ1/2) and 46

v12 = vo(λ1)− ve(λ1/2), where λ1 is the FH wavelength, characterize the birefringent mismatch and temporal walk-off, 47

respectively. At V12(λ1) = 0 we have a perfect natural (birefringent) phase matching. 48

Let us neglect first the geometric dispersion. Figures ??a and ??b show the dependences V12(λ1) and v12(λ1), 49

respectively, for two representative values of the temperature T. The ratio V12/c is relatively small. The function V12(λ1)
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Figure S2. The bulk case: Wavelength dependences of V12 (a) and v12 (b) for T = 20 and 100 ◦C.
50

turns to zero for λ1 slightly exceeding 1 µm; the PM point shifts slowly to the right with increasing T. Just this region is 51

typically used for the natural PM. However, the group velocity difference v12 is pretty large in this range. On the other 52

hand, v12(λ1) turns to zero for λ1 ' 1.58 µm; this is far from the point of natural PM. Note also, that the effect of T on 53

v12(λ1) is relatively weak. 54

Now we include the effects of geometric dispersion into consideration using Eq. (??). Solid lines in Figs. ??a and ??b 55

show dependences of V12/c and v12/c, respectively, on the FH wavelength λ1 for T = 20 ◦C, R = 1 mm, r = 0.25 mm, 56

qe = 1, and three representative values of qo. The dashed lines, given for comparison, correspond to the bulk case. We see 57

that the influence of the geometric dispersion on V12(λ1), subfigure ??a, is pretty strong: With increasing qo the curves 58

shift up and left, such that the area between the PM points shrinks. For sufficiently large values of qo and T the phase 59

matching becomes impossible. As concerned the dependence v12(λ1), it experiences only modest changes: the zero 60

walk-off point shifts slowly to the right with increasing qo. 61
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Figure S3. Dependences V12(λ1)/c (a) and v12(λ1)/c (b) for R = 1 mm, r = 0.25 mm, T = 20 ◦C,
qe = 1, and qo = 1, 3, and 7. The dashed lines correspond to zero geometric dispersion.

Using the above described features of V12(λ1, T) and v12(λ1, T), it is possible to achieve simultaneously a good 62

birefringent phase matching and a small walk-off. To demonstrate this possibility, it is useful to introduce the frequency 63

detuning ∆0 = ω2 − 2ω1 instead of V12 and the ratio v12/R. Both these parameters have to be normalized to the same 64

modal decay rate γ. Solid lines 1 and 2 in Fig. ?? show λ1-dependences of these mismatch and walk-off parameters for 65

qo = 8, qe = 1, and T = 30.4212 ◦C. The dotted line 1′ shows what happens with ∆0(λ1)/c when the temperature changes 66

to 30.4215 ◦C; it demonstrates a high sensitivity of our adjustment. Within the whole shown range of λ1, both ∆0/γ and
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Figure S4. Dependences ∆0(λ1)/c (curve 1) and v12(λ1)/cR (curve 2) for R = 1 mm, r = 0.25 mm,
T = 30.4212 ◦C, qo = 8, and qe = 1. The dashed curve 1′ corresponds to ∆0(λ1)/c at T = 30.4215 ◦C;
mismatch points are absent here. The corresponding dashed curve for v12(λ1)/Rc practically coin-
cides with curve 2.

67

v12/γR are . 1 for γ ≈ 107 s−1. Note that the wavelength distance between neighboring modes, δλ ' λ2/2πRn, is 68

about 0.2 nm for parameters of Fig. ??, so that several discrete modes are available. It is possible also to make a similar 69

adjustment for qo = 7 (instead of 8). This leads to much higher necessary temperatures, T ' 118.412 ◦C. 70

3. The effect of radial poling 71

The quadratic nonlinear optical response of ferroelectric χ(2) materials, like LiNbO3 or LiTaO3, is determined by the 72

independent real components d333 and d311 of the third-rank quadratic susceptibility tensor d̂ [13]. These components 73

change sign under inversion of the direction of the spontaneous polarization. In the case of perfect radial poling, any of 74

these components (let it be d with the bulk value d0) changes periodically its sign with the azimuth angle ϕ, as illustrated 75

by Fig. ??a for the number of periods N = 4. At the same time, the linear susceptibility tensor and the linear optical 76

properties stay unchanged. If N is the number of the alternation periods, the function d(ϕ) is 2π/N -periodic and it can 77

be expanded in the Fourier series, as given by Eq. (6) of the main text. In the case of ± symmetric domain structure, which 78

is the most suitable for quasi-phase matching, only the Fourier harmonics with numbers s = ±N ,±3N , . . . are nonzero. 79
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Figure S5. a) Schematic of a periodically poled microresonator of radius R for N = 4. Different
colors indicate the radial poling and the red spot indicates localization of light near the rim. b) Blue
peaks show the first three harmonics of the corresponding Fourier spectrum with s = N , 3N , and
5N . Red peaks illustrate occurrence of unwanted Fourier harmonics in the case an imperfect radial
poling.

For these harmonics, the reduction factor |ds/d0| = 2N/π|s| decreases with increasing |s|, but remains comparable with 80

1 for |s| = N , see also Fig. ??b. 81

Any disturbance of the 2π/N periodicity of the domain structure leads to decrease of the primary Fourier harmonics 82

dN , d3N , . . . and also to additional Fourier harmonics ds with s 6= N , 3N , . . . Strong enough distortions can suppress 83

the primary nonlinear phenomena and cause unwanted parasitic nonlinear processes. One of the most dangerous 84

perturbations of the periodicity is off-centering of the radial structure [15]. The well-spread linear poling in commercially 85

available samples of LiNbO3 crystals, is also not suitable for the χ(2) comb generation. 86

Consider in some details parameters of the radial poling necessary to achieve the quasi-phase matching near the 87

zero walk-off point λ2 = λc ' 1.349 µm for the e-polarized modes. The SH generation conditions in the terms of λ2 read 88

n(λ2)− n(2λ2)

λ2
=
N

2πR
≡ 1

Λ
, (4)

where Λ is the period of poling of the rim and n = ne. Figure ?? shows dependence Λ(λ2) corresponding to this formula.

1.0 1.2 1.4 1.6 1.8 2.0
29

30

31

32

33

34

35

Ri
m

 p
ol

in
g 

pe
rio

d 
, 

m

SH wavelength 2, m

c

Figure S6. Rim poling period Λ versus the SH wavelength λ2. The maximum value Λmax ' 35.2 µm
corresponds to the wavelength λc ' 1349 nm.

89

Remarkably, the maximum value of Λ corresponds with a good accuracy to λc ' 1.349 µm. The values of Λ of this 90

scale are accessible for the existing poling techniques. Furthermore, we can estimate N as 284 for the circumference 91

2πR ' 1 cm. 92

It is necessary to keep in mind that the above estimates are approximate, for they ignore discreteness of m1,2 and N . 93

To get more insights, we represent m1 and N as 94

m1 =
πR n(2λ2)

λ2
and N =

2πR [n(λ2)− n(2λ2)]

λ2
(5)



Version April 14, 2023 submitted to Photonics S5 of S??

and consider dependences N (λ2) and m1(λ2) within a 20 nm interval around λc. The azimuth number m1 passes many 95

(∼ 101) integer values within this interval and weak variations of R do not matter. The situation with N is different. 96

In particular, for the circumference 2πR = 1 cm we have N ' 284.019 across the whole spectral interval, so that the 97

choice of R is essential to get an integer value of N . In other words, fulfillment of the PM condition at λ2 ' λc can be 98

accomplished only within some narrow windows of R. As N and m1 are integers, m2 is automatically an integer. 99

In any case, Eqs. (??) cannot be satisfied simultaneously without the conventional fine tuning means, such as the 100

temperature or field tuning. With the tuning means, quasi-phase matching becomes possible. By analyzing the effects of 101

fine tuning, it is necessary to keep in mind that when changing the refractive indices n(λ2) and n(2λ2) we shift slightly 102

the zero walk-off point λc. Furthermore, employment of fine tuning means can lead to changes of R. Further details are 103

beyond the scope of this section. 104


