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Abstract: Source mask optimization (SMO) is an effective method for improving the image quality of
high-node lithography. Reasonable algorithm optimization is the critical issue in SMO. A GA-APSO
hybrid algorithm, combining genetic algorithm (GA) and adaptive particle swarm optimization
(APSO), was proposed to inversely obtain the global optimal distribution of the pixelated source and
mask in the lithographic imaging process. The computational efficiency was improved by combining
the GA and PSO algorithms. Additionally, the global search and local search were balanced through
adaptive strategies, leading to a closer result to the global optimal solution. To verify the performance
of GA-APSO, simple symmetric patterns and complex patterns were optimized and compared
with GA and APSO, respectively. The results show that the pattern errors (PEs) of the resist image
optimized by GA-APSO were reduced by 40.13–52.94% and 10.28–33.31% compared to GA and APSO,
respectively. The time cost of GA-APSO was reduced by 75.91–87.00% and 48.43–58.66% compared
to GA and APSO, respectively. Moreover, repeated calculation showed that the GA-APSO results
were relatively stable. The results demonstrate the superior performance of GA-APSO in efficiency,
accuracy, and repeatability for source and mask optimization.

Keywords: optical lithography; source mask optimization; resolution-enhancement technology;
GA-APSO algorithm

1. Introduction

Lithography is the primary method of manufacturing micromachining. Higher lithog-
raphy resolution is required according to Moore’s Law. Based on the Rayleigh Criterion,
shortening wavelength, increasing numerical aperture (NA), and enhancing technology
factor are three methods of improving lithography resolution. However, some unfavorable
factors, such as diffraction effect and heat accumulation, can cause image quality reduction
during lithography. High-frequency information, such as corners or sharp lines in the mask,
cannot be effectively transmitted to wafer. These negative factors become more significant
as lithography resolution improves.

Resolution-enhancement technology (RET) [1] is introduced to enhance image quality,
eliminate these negative factors, and enhance technology factors. Traditional RET includes
off-axis illumination (OAI), phase-shifting mask (PSM), and optical proximity correction
(OPC). These examples of traditional RET have a low degree of freedom due to optimizing
mask or light source modules individually. Source mask optimization (SMO) is proposed,
which increases the optimal degree of freedom by optimizing the source and mask at the
same time [2].

The input of SMO includes the parameters of the lithography process, such as numeri-
cal aperture (NA) and photoresist [3]. Based on the input data, SMO generates an initial
light source and mask. Then, the light source and mask are optimized by an intelligent
algorithm on an imaging model until the criterion functions are satisfied. Both imaging
quality and machinability can be involved in the criterion functions [4].
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An important issue for SMO is to present a high-efficiency, reasonable optimization
algorithm to obtain the global optimal solution.

Traditional gradient-based methods of solving optimization problems, such as conju-
gate gradient (CG) [5,6], steepest descent (SD) [7], and gradient descent (GD) [8–10], have
been used to solve the SMO problem. These methods are relatively efficient. However,
they tend to fall into local optimums for large-scale optimization variables and nonlinear
characteristics in SMO.

Recently, metaheuristic algorithms have been widely used in optimization problems
in extensive fields for their excellent adaptability to different optimization problems. Meta-
heuristic algorithms can be classified as population-based algorithms and neighborhood-
based algorithms. Genetic algorithms (GAs) and particle swarm optimization algorithm
(PSO) are typical population-based algorithms, and have been used to optimize source and
mask universally.

GAs obtain the optimal solution by mimicking natural selection [11]. Tim
Fühner et al. [12–15] used a GA for SMO, and discussed the convergence behavior and
different weight settings of criteria function. This method does not require any additional
a priori knowledge about lithographic processes. Yang Chaoxing et al. [16] studied the
method of improving the iterative speed of a genetic algorithm. By changing the fitness
function and using a multichromosome genetic algorithm, the number of evolutions is
reduced and the iterations speed up.

PSO is the mathematical model of a bird’s behavior when searching for food, escaping
from predators, and searching. PSO has been employed in several varieties of problems,
from classical mathematical programming problems to scientific optimization problems [17].
Wang Lei et al. [18] compared PSO and GAs using a complex mask pattern with a cross-gate
design. The results revealed that PSO can improve the quality of lithography imaging.
Zhang Zhinan [19] et al. increased the optimization rate of EUV SMO using SL-PSO (social
learning PSO), in which the particles are updated based on historical information. Sun
Haifeng [20] et al. combined PSO with the adaptive nonlinear control strategy (ANCS) to
break away from the local optimum.

In summary, the single metaheuristic algorithm has its own limitations in the opti-
mization process. GAs balance the depth and breadth of optimal solution search, but also
have a strong parameter dependence. PSO has strong adaptability, but can easily fall into
the local optimum. This paper proposes a GA-APSO algorithm to inversely obtain the
global optimal distribution of the pixelated source and mask in the lithographic imaging
process. The computational efficiency is improved by combining the GA and PSO algo-
rithms. Additionally, the global search and local search are balanced through adaptive
strategies, leading to a closer result to the global optimal solution.

The organization of this paper is as follows. The forward lithographic imaging
model and proposed GA-APSO approach utilized to achieve SMO is described in Section 2.
Section 3 provides the simulation results and discussions, followed by a summary
in Section 4.

2. Methodology
2.1. Partially Coherent Imaging Model

In this section, the lithography imaging process of the partially coherent imaging
model is explained. Partially coherent illumination is widely used in lithography to
improve resolution. A typical immersion lithography system is shown in Figure 1. The
ray emitted by the illumination source forms the Kohler illumination through a condenser
lens. Then, the ray passes through the mask and produces a diffracted ray carrying pattern
information. Finally, the ray through the objective lenses images the feature on the mask
onto the resist. Spatial intensity distribution on the resist is formed by superimposing
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the images of the source at different positions. The images are obtained by moving pupil
position. Then, the partial coherence imaging model can be expressed by [21]:

I(x, y) =
x

∞

S( f , g)

∣∣∣∣∣x
∞

H
(

f + f ′, g + g′
)

M( f ′, g′)e−i2π(x f ′+yg′)d f ′dg′
∣∣∣∣∣d f dg (1)
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Figure 1. Immersion lithography system.

In Equation (1), I(x, y) represents the intensity distribution of aerial images in optical
lithography. ( f , g) and ( f ′, g′) are the frequency-domain coordinates of the pupil and mask,
respectively. S( f , g) is an extended illumination source. M( f ′, g′) is the mask frequency
spectrum. H( f + f ′, g + g′) represent the pupil function characterizing light propagation
from a point on the object plane to an image point. To simulate the imaging model,
Equation (1) can be approximately expressed as:

I(x, y) = ∑
f

∑
g

S(f, g)F−1{H(f, g)·M}2, f = f1, . . . , f n, g = g1, . . . , gn (2)

in which S(f, g) represents the efficient pixels of the source, {·} is an inverse Fourier
transform operation, and H(f, g) indicates that the pupil is shifted with the position change
of the source point ( fn, gn). In the simulation, the photoresist effect was approximated
using a sigmoid function. The resist image I*(x, y) of the aerial image I(x, y) on the wafer
surface can be displayed after development [22].

I* = I*(x, y) = sig{I(x, y)} = {1 + exp[−α(I(x, y)− tr)]}−1 (3)

where I* is the layout distribution of the resist image, sig{·} represents a threshold function,
tr is the threshold of the sigmoid function, and α controls the steepness of intensity transition.

2.2. Source and Mask Optimization Using GA-APSO Algorithm

Figure 2 represents the coding regulations of the source and mask. To reduce compu-
tational complexity, half of the symmetrical parts are encoded. In calculation, the complete
source and mask are restored symmetrically. For the four-fold symmetrical source and
mask shown in the figure, only the first-quadrant variables are encoded.

SMO is a multiparameter with single objective optimization. For a certain system, the
imaging result can be calculated using the partially coherent imaging model. The distance
between the real imaging result and the ideal image can be evaluated by pattern errors
(Pes), which are the L1 norm of the subtraction between II and I*. The object of SMO is to
minimize the Pes. Every pixel of source and mask is limited between 0 and 1 in simulation.
Pes are defined as [20]:

PEs = norm
(∣∣∣II(x, y)− I*(x, y)

∣∣∣, 1
)
=

n

∑
x=1

n

∑
y=1

∣∣∣II(x, y)− I*(x, y)
∣∣∣ (4)
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where II(x, y) is the intensity distribution of the ideal image and I*(x, y) is the intensity
distribution of the real image.
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Figure 2. Coding of source and mask. The source and the pattern are divided into four regions
according to the symmetry, represented as 1,2,3,4.

The source and mask are optimized by the GA-APSO algorithm. APSO is a bionic al-
gorithm simulating the bird foraging process. In APSO, each particle updates its swarming
speed based on memory and current global optimal position. GA is a method to search
for the optimal solution by simulating the natural evolution process. In Gas, populations
iterate through genetics and mutation. APSO has ascendency in convergence, but can easily
fall into local optimum. However, GA is advanced in global optimization, while it has poor
convergence. The optimization method in this paper combined GA and APSO to enhance
optimization efficiency and retain global optimal search capability.

The steps of the GA-APSO algorithm are as follows:

(1) Initialization of the population

The parameters are initialized. Additionally, an initial population is randomly gener-
ated in the feasible region and the initial fitness is calculated.

(2) Population update by APSO

According to the fitness, the population is updated by APSO. Velocity of each individ-
ual is as follows:

vi+1
j = fc

[
wi

jv
i
j + c1r1

(
pi

gbest − Pi
j

)
+ c2r2

(
pi

zbest − Pi
j

)]
(5)

where: fc is the constriction coefficient; wi
j is the inertia weight factor; vi

j is the velocity
of j-th individual in i-th iteration; c1 and c2 are the individual learning factor and social
learning factor, respectively; r1 and r2 are random numbers which range from zero to one;
and pi

gbest and pi
zbest are the personal best for the j-th individual, and the global best in the

population, respectively. Velocity is limited in a certain range.
Individual learning factor c1 and social learning factor c2 reflect the acceleration of

individual learning and social learning, respectively. There are different requirements
for c1 and c2 at different stages of the iteration. Hence, adaptive strategies of c1 and
c2 are introduced during iterations. During the early iteration, the individual cognitive
acceleration c1 is increased to enlarge the search zone of individual particles scattered
in the whole search space. During the later period of iteration, c1 is decreased and c2 is
increased properly to make individual particles jump out of the local optimum and improve
convergence performance. The adaptive variation rule is as follows:

c1
i = c1max − (c1max − c1min)*i/imax (6)

where c1
i and c2

i are the parameters for the i-th step.
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Additionally, the constriction coefficient [17] fc is introduced to speed up the conver-
gence, and the constriction coefficient fc is computed as:

fc = 2/
∣∣∣2− C−

√
C2 − 4C

∣∣∣ (7)

where C = c1 + c2.
To balance global optimization ability in the early iteration and strong local optimiza-

tion ability in the late iteration, inertia weight factor wi
j requires a relatively large value in

initial iteration and decreases in late iteration. Inertia weight factor wi
j is controlled by a

hyperbolic tangent function which is shown in Figure 3:

wi
j =

1
2
(wmax − wmin)tanh

(
−4 +

8
imax

(imax − i)
)
+

1
2
(wmax + wmin) (8)

where: wmax and wmin are the maximum and minima inertia weight factor; and imax is the
maximum iteration number.
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(3) Crossover operator

First, the individual crosses are determined according to crossover probability pc.
Two individuals are randomly selected as parents from the mating pool. Then, cross-
chromosome position is selected randomly. Genes in two parent positions are exchanged,
as shown in Figure 4.
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(4) Mutation operator

First, whether the individual mutates is determined according to mutation probability
pm. Mutation chromosome position is selected randomly. The selected genes change
randomly in the feasible region.

Then, the child population is generated. Additionally, the fitness of the child pop-
ulation is calculated and the personal best for each individual and the global best in the
population are updated.

Steps (2)~(4) are repeated until the maximum iteration number imax occurs or fitness
changes between the set n number of iterations are less than the tolerance tol1.

The flow chart of source and mask optimization is as shown in Figure 5. Source and
mask optimization steps are as follows:

(1) Initialization

Input all the parameters of the partially coherent imaging model, including wave
length λ, lighting model, mask size, and sampling points of light source and mask. Ad-
ditionally, input all the parameters which the optimization algorithm needs, including
maximum iteration numbers ismax and immax, convergence tolerance tols1 and tolm1, popula-
tion size, maximum and minima inertia weight factor maximum wmax and wmin, maximum
and minimal crossover probability pcmax and pcmin, and maximum and minimal mutation
probability pmmax and pmmin.
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(2) Source optimization

Initialize the source population randomly selected in the feasible region. Then, opti-
mize the source using the GA-APSO algorithm. The imaging results with source population
are calculated according to the partially coherent imaging model, and fitness is evaluated
by pattern errors (Pes). Update the source population until the iteration number is greater
than the maximum iteration number ismax or the fitness change between the set n number
of iterations is less than the tolerance tols1.
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(3) Mask optimization

Initialize the mask population randomly selected in the feasible region. Then, optimize
the mask using the GA-APSO algorithm. The imaging results with source population are
calculated according to the partially coherent imaging model and fitness is evaluated by
pattern errors (Pes). Update mask population until the iteration number is greater than
the maximum iteration number immax or the fitness change between the set n number of
iterations is less than the tolerance tolm1. Then, the optimization of the mask and source is
finished and outputs the best mask and source.

3. Simulations and Discussion
3.1. Simulation Parameters

In this paper, the 193 nm immersion lithography model with a 45 nm node was
conducted. NA is 1.35. Source optimization was initialized by annular illumination, as
shown in Figure 6. The partial coherence factors σin and σout were, respectively, set to 0.65
and 0.95. The source was pixeled to a 42× 42 matrix. Mask 1 was sampled as a 70× 70
matrix. Mask 2 and Mask 3 were sampled as a 250× 250 matrix. Three masks with different
pattern complexities, as shown in Figure 7, were simulated in this study. Mask 1 was
asymmetric and only encoded the first quadrant of the pattern. Mask 2 and Mask 3 were
complex asymmetric patterns and encoded the whole patterns. The photoresist parameters
tr and α were 0.28 and 85, respectively.
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Source and mask optimization (SMO) using the GA-APSO algorithm was compared
with APSO and GA. In the simulation, the parameters of the algorithm were set as shown
in Table 1. The iteration steps were set as 500 for source optimization and 1000 for mask
optimization. Additionally, the population size was set as 50 in this simulation.
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Table 1. Algorithm parameters.

Parameter Value

Maximum and minimum individual learning factor c1 1.5/2
Maximum and minimum social learning factor c2 1.5/2
Maximum and minimum inertia weight factor w 0.1/1

Maximum and minimum velocity v −1/1
Crossover probability pc 0.8
Mutation probability pm 0.2

3.2. Simulation Results

Initial and optimized resist images are represented in Figure 8. The lines of the initial
resist image overlap with each other. After SMO, the quality of resist image improved
significantly. For the three masks, the Pes of resist image optimized by GA-APSO improved
by 77.18%, 69.82%, and 75.80%, respectively. Among the three algorithms, the Pes of GA-
APSO was the lowest. Compared to GA and APSO, the Pes of resist image by GA-APSO
reduced by 40.13–52.94% and 10.28–33.31%, respectively. Especially in the optimization
of complex patterns (Mask 2 and Mask 3), the GA-APSO performs better. There are some
missing lines and partial adhesions in the resist images of Mask 2 and Mask 3 optimized by
GA and APSO. This situation has been well-improved by GA-APSO.
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Source and mask optimization performance of the GA-APSO algorithm was compared
with APSO and GA. Sources after optimization are shown in Figure 9. Masks after opti-
mization are shown in Figure 10. After SMO, the source for Mask 1, which consists of only
one direction line, was approximate to dipole illumination. Additionally, for Mask 2 and
Mask 3 with irregular patterns, sources after SMO were approximate to quadra illumina-
tion. The distribution of horizontal and vertical lines affects the final illumination form.
The optimized source for patterns with unidirectional lines such as Mask 1 tend to dipole
illumination. The angle of dipole illumination is associated with the direction of the lines.
The optimized source for patterns with both horizontal and vertical lines such as Mask 2
and Mask 3 tend quadra illumination. Moreover, affected by the different distribution of
horizontal and vertical lines, one direction of the quadra illumination is stronger.
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Masks after optimization are presented in Figure 10. The binary error RBE and total
variation RTV were introduced to evaluate the manufacturability of the mask and the
complexity of the mask pattern, which are defined as follows [23]:

RBE = ∑ M*(1−M) (9)

RTV =

∥∥∥∥∂M
∂x

∥∥∥∥
1
+

∥∥∥∥∂M
∂y

∥∥∥∥
1

(10)

in which M is the mask matrix, ‖·‖1 is the L1 norm operator, and the lower value of binary
error RBE and total variation RTV represent the better manufacturability.

Masks after optimization by the presented GA-APSO algorithm have obvious advan-
tages in RBE. RBE by GA-APSO decreased by 77.6–99.9% and 28.5–99.8% compared with
GA and APSO, respectively. The RBE of masks obtained using GA were the largest among
the three. The total variation RTV of masks by three algorithms had slight difference.
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Figure 11 represents the convergence curve of GA, APSO, and GA-APSO. The SO
step converged faster than the MO step because of the smaller number of variables. Pes
dropped rapidly at the beginning of the iteration. Then, GA and APSO tended to converge
to a local optimum fast. GA-APSO achieved better Pes compared to GA and APSO in
both the source optimization (SO) step and mask optimization (MO) step. To obtain an
equivalent Pes with GA and APSO, GA-APSO costs less iteration. Additionally, the results
of GA-APSO are closer to the global optimal solution.
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Figure 11. Convergence curves in the iterative process. (a–c) represent the convergence curves of
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The time cost of the three algorithms was evaluated under the same calculation
conditions (in Figure 12). GA-APSO has obvious advantages in algorithm efficiency. Time
cost of GA-APSO reduced by 75.91%, 58.66% for Mask 1, by 87.00%, 50.96% for Mask 2,
and by 82.91%, 48.43% for Mask 3. The GA algorithm costed the most time. Especially
in complex mask optimization, the time cost for the GA algorithm improved sharply.
GA-APSO and PSO costed a slightly higher time for complex mask than for simple mask.
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Figure 12. Efficiencies of three algorithms.

As the initial population is randomly generated near the initial source and mask,
this may affect the accuracy and convergence efficiency of the final results. The three
masks were optimized three times using the GA-APSO to assess differences in convergence
process and results. Figure 13 shows the convergence curve for the three times. For Mask 1,
Pes has a certain difference within 200 iteration steps in the SO step, but finally converges to
an almost consistent result. For Mask 2, the three iterations differ significantly. For Mask 3,
the three iterations show a slight difference. Resist images of the three calculations are
presented in Figure 14.
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Figure 13. Convergence curves in the iterative processes of three calculations by GA-APSO. (a–c) repre-
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Figure 14 shows the resist images of the three repeat calculations. Figures 15 and 16
present the source and mask after SMO of the three calculations, respectively. Despite PE
differences, the same pattern of source was obtained for Mask 1 and Mask 3 in the three
calculations. Table 2 shows the PEs after optimization. Standard Deviation for the three
masks were 0.19, 107.08, and 27.52, respectively. The results show that the algorithm has
superior repeatability.
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Table 2. PEs of three calculations.

Case 1 Case 2 Case 3 Standard Deviation

MASK1 97.64 98.07 97.72 0.19
MASK2 2683.47 2553.54 2815.82 107.08
MASK3 1668.66 1736.08 1703.34 27.52

3.3. Discussion

Simulation results of SMO by GA, APSO, and GA-APSO show that all the three
algorithms can improve the resist image quality. Optimization of source and mask can
increase the degree of optimization freedom and achieve better resist image quality than
single source optimization. After the SO step, the PEs decreased significantly during the
initial iteration stage in the MO step.

The optimization results by GA, APSO, and GA-APSO reached different PEs, in which
GA-APSO obtained better results and less cost. Although both GA and APSO are global
optimization algorithms, their mechanisms are different. In GA, the whole population
evolution by randomly crossover and mutation which has not obvious orientation. This
leads to a slow optimization efficiency for GA in the later iteration stage. However, the
position and velocity of particles are retained and utilized simultaneously in optimization
by APSO. Personal best and global best information are shared for each particle, which has
obvious orientation in optimization. This leads to fast optimization efficiency for APSO
but may fall into local optima. GA-APSO combined GA and APSO. In the algorithm
mechanism of GA-APSO, population is updated by APSO first and then crossover and
mutation, which effectively improve the algorithm efficiency and obtain optimization result
closer to the global optimal. Moreover, adaptive strategies for APSO particle updates are
utilized to further improve the algorithm efficiency and global optimization capability.



Photonics 2023, 10, 638 14 of 15

4. Conclusions

In this paper, a GA-APSO algorithm was proposed to inversely obtain the global
optimal distribution of the pixelated source and mask in the lithographic imaging process.
The computational efficiency was improved by combining the GA and APSO algorithms.
Additionally, the global search and local search were balanced through adaptive strategies,
leading to a result closer to the global optimal solution. To verify the performance of
GA-APSO, horizontal lines and two different complex patterns were optimized. Moreover,
the simulation results are compared with optimization by GA and APSO. The results show
that the PEs of the resist image optimized by GA-APSO were reduced by 40.13–52.94%
and 10.28%-33.31% compared to GA and APSO, respectively. The time cost of GA-APSO
was reduced by 75.91–87.00% and 48.43–58.66% compared to GA and APSO, respectively.
Moreover, repeated calculation showed that the GA-APSO results were relatively stable.
The results demonstrate the superior performance of GA-APSO in efficiency, accuracy,
source repeatability, and mask optimization.
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