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Abstract: In natural aquatic environments, the existence of colored dissolved organic matter (CDOM),
suspended particles, and colloids can cause scattering and reflection of light and even emit fluores-
cence itself. Such interference negatively impacts algal fluorescence, further making it unreliable
to measure the algal concentration using three-dimensional excitation—emission matrix (3D-EEM)
fluorescence spectroscopy. In this study, we proposed a novel algal fluorescence anti-interference
network (AFAI-Net) based on a convolutional neural network. The main procedure of this model can
be divided into two parts: (1) to quickly determine if there is an interference of CDOM or turbidity in
the detected algal samples; (2) to correct the interfered samples and output the fluorescent compo-
nents of the algae. We trained the model using the 3D-EEMs of pure algal samples (non-interfered)
and mixed samples of algae and CDOM or turbidity (interfered); as a result, the well-trained model
achieved a total classification accuracy of 96.82%, and the RMSE of CDOM and turbidity removal
fitting effects were 0.2274 and 0.3423, respectively. Compared with the non-negative weighted least
squares (NNLS) regression analysis method, using the CNN model for CDOM correction resulted in
13.11%, 0.65%, and 5.69% reductions in the average deviation rate for PD, PG, and CM, respectively.
Furthermore, the spectra corrected by the model predicted algal densities that were closer to the
true algal densities. This study provides a new way to remove non-algal factors that affect algal
fluorescence spectra in water bodies, which is beneficial to monitoring eutrophication and red tide in
aquatic systems.

Keywords: algal fluorescence; three-dimensional excitation—emission matrix; convolutional neural
networks; colored dissolved organic matter; turbidity

1. Introduction

Phytoplankton serves as a fundamental source of energy for the aquatic ecosys-
tem, driving the entire biogeochemical cycle [1], and concurrently serves as an extensive
biomarker of water quality [2]. The changes in phytoplankton biomass directly reflect the
water quality of the upper aquatic system [3]. Therefore, the real-time monitoring of algae
is of notable importance. Although traditional methods such as microscopic examination
and high-performance liquid chromatography (HPLC) [4,5] guarantee a high detection
accuracy, they also entail prolonged sample analyses. Fluorescence spectroscopy yields
fast measurement speeds, noninvasive detection, and high sensitivity, circumventing the
requirement of cell disruption or the pretreatment of samples. This enables the effective
real-time measurement of fluorescence emitted by phytoplankton in water and has been
extensively employed in determining the community distributions of phytoplankton [6-9].

However, in complex natural aquatic environments, apart from the target algae species,
there are also other substances such as colored dissolved organic matter (CDOM), sus-
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pended particles, and colloids [10,11], which significantly affect the algal fluorescence
measurements. The types of CDOM can be divided into endogenous and exogenous. En-
dogenous CDOM originates primarily from the derivatives of phytoplankton, submerged
aquatic vegetation, and seaweed [12,13], while tannins generated by terrestrial organisms
and human activities represent exogenous CDOM [14]. CDOM absorbs both UV light
(280-400 nm) and visible light (400-700 nm), thereby impeding the absorption of visible
light by phytoplankton [15], while also emitting fluorescence that results in overestimations
of algal concentrations in water [16-18]. Furthermore, suspended particles and colloids
present in water may impact the incident light and emitted fluorescence due to a number
of factors including scattering, reflection, and absorption effects [19]. Generally, suspended
particles are non-fluorescent, but can cause extinction in the fluorescent band of the excita-
tion light, resulting in low fluorescence measurement values. These particles also scatter
and reflect both incident light and emitted fluorescence, causing fluctuations in the flu-
orescent signal strength. These interferences are extremely strong when the algae are in
relatively lower concentrations [20-22].

Hence, it is imperative to eliminate the intervention of non-algal components, such
as CDOM and turbidity, while determining algal fluorescence spectra. Zhang et al. [23]
discovered that the fluorescence domain of CDOM partially overlaps with that of algal pig-
ments. By integrating three-dimensional fluorescence spectra with non-negative weighted
least squares linear regression analysis, they established a rapid and precise technique for
calculating phytoplankton concentrations, even amid CDOM interference. Li et al. [24]
utilized a linear CCD as the detector and incorporated optical information from fluores-
cence and absorbance. They presented a turbidity compensation algorithm that relies
on a CCD integration time conversion method, thereby mitigating measurement errors
related to the concentration of chlorophyll-a. Recently, CNN-based deep learning has
emerged as a powerful approach for processing image data. CNN facilitates the auto-
matic extraction of deep features from images, thereby obviating the laborious task of
manual feature extraction [25]. The three-dimensional fluorescence spectra (3D-EEMs)
utilized for detecting algae fluorescence share similarities with the “fluorescence finger-
print” recognition of algal pigments [26]. It embodies excitation wavelength x emission
wavelength X fluorescence intensity and conforms to the same architecture as gray image
data (i.e., height x width x gray value). Wu et al. [27] implemented the pre-trained CNN
architecture, AlexNet, to extract deep features of plant oil fluorescence contour maps. They
subsequently employed the SVM and PLS algorithms to accurately identify counterfeit
sesame oil. Xu et al. [28] developed the fast fluorescence identification network model (FFI-
Net) based on deep learning approaches and amalgamated PARAFAC analysis results. This
method only requires a single 3D-EEM spectrum input to promptly predict the quantity
and spectrum of fluorescent substances in wastewater.

Therefore, we proposed a CNN-CNN structured model, namely, the algae fluorescence
anti-interference network (AFAI-Net), to quickly identify and extract pure algae fluores-
cence components from 3D-EEM spectra of samples. Initially, three typical species of red
tide algae, the HA (CDOM), and formazine (turbidity) solutions were prepared and their
3D-EEMs were scanned. These samples were then used to train the AFAI-Net model and
evaluate its testing performance. Furthermore, a comparison was conducted between the
AFAI-Net model and the conventional non-negative linear least squares (NNLS) method to
evaluate the efficacy of the AFAI-Net model in eliminating CDOM’s influence. By employ-
ing the pre-trained AFAI-Net model, water samples with CDOM or turbidity interference
can be promptly identified by uploading 3D-EEM. Furthermore, the three-dimensional flu-
orescence spectra of pure algae components can be accurately fitted. This study presents a
novel approach for mitigating the impact of non-algal factors on algae fluorescence spectra
in water bodies, which can aid in monitoring eutrophication and red tide.
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2. Materials and Methods
2.1. Algal Cultivation

Three species of typical red tide algae, each of varying size, were isolated from the
east China coast and cultivated in a medium at 20 °C, with a salinity of 30 ppt (Table 1).
The light intensity was adjusted to 10?> pmol/(m?:s), which is close to the light level in
the sub-surface layer of the ocean. Cells at the exponential growth stage were collected,
and the density of the cells was measured using a 100x microscope in a Sedgewick-Rafter
chamber. The designed concentrations of the algal samples for the experiment ranged from
10° cells/L (102 cells/mL) to 10® cells/L (10° cells/mL).

Table 1. List of algal species and cultures media.

Phyla Species Cultures Media
Dinophyta Prorocentrum donghaiense F/2
Haptophyta Phaeocystis globosa F/2
Raphidophyta Chattonella marinacm F/2

2.2. Sample Preparation

In this study, a series of turbidity samples with different concentrations (0-50 NTU)
were prepared by diluting standard formazine solution (initial turbidity: 400 NTU) with
ultrapure water [29]. As the main fluorescence peak of humic acid is closer to the visi-
ble region of CDOM fluorescence and humic acid (HA) is also the main component of
CDOM [23], the experimental CDOM samples were prepared through dissolving HA pow-
der with different volumes of ultrapure water. Then, different concentrations (0-5 mg/L)
of CDOM solution were obtained.

After obtaining standard turbidity samples (0-50 NTU) and CDOM samples (0-5 mg/L)
with different gradients, three species of red tide algae from three different phyla, includ-
ing Prorocentrum donghaiense (PD), Phaeocystis globose (PG) and Chattonella marinacm (CM),
were selected from the laboratory. They were added to different concentrations of standard
turbidity or CDOM samples in equal volumes under the condition that their chlorophyll-a
concentrations were approximately the same. This formed mixed samples with turbidity and
CDOM (the algal density was known). In addition, pure samples of the three red tide algae
were also prepared. A total of 630 experimental samples were studied (Table 2).

Table 2. The numbers of different types of samples.

Type of Samples Number of Samples
PD 60
Pure PG 96
CM 36
PD + Turbidity 42
PG + Turbidity 108
. CM + Turbidit 36
Mixed PD + CDOM 60
PG + CDOM 144
CM + CDOM 48
Total 630

2.3. Fluorescence Measurement and Data Pre-Processing

The 3D fluorescence spectra of all the samples were measured using a 3D fluorescence
spectrophotometer (F-4600 fluorescence spectrophotometer, Hitachi, Japan). The excitation
wavelength range of the algal samples was 350-600 nm with an interval of 5 nm, and the
emission wavelength range was 620-750 nm with the same interval. The excitation and
emission slits were both set to 10 nm, and the voltage of PMT was set to 400 V.
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To suppress noise interference, each sample was measured three times in parallel,
and the average of these spectral data was taken as the raw 3D fluorescence spectrum
data of the experimental samples (Figure 1a). The obtained data were exported from the
instrument’s software in ASCII format to a MATLAB program for further processing.
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Figure 1. (a) Raw 3D fluorescence spectrum data of the experimental samples, including pure algal
data, spectral data of algal mixed with CDOM, and spectral data of algae mixed with turbidity;
(b) spectral data after removal of Rayleigh and Raman scattering using Delaunay triangulation;
(c) spectral data after smoothing with the Savitzky—-Golay filtering method. (d) Adjusted excitation
wavelength range of 400-530 nm and emission wavelength range of 620750 nm, both at an interval of
5nm. This figure shows the data preprocessing flow of this study, which preprocesses all the 3D-EEM
spectrum data into a unified format (d), facilitating the extraction of spectral features containing algal
fluorescence peaks for subsequent model analysis.

The Delaunay triangulation method [30] was used to eliminate Rayleigh and Raman
scattering from the 3D fluorescence spectra of the samples (Figure 1b). Furthermore, any
negative values present in the data were set to zero before any additional spectral analyses
were carried out. Due to the pure algal fluorescence spectra being used as the target map
for model fitting, the noise level of the 3D-EEMs was further reduced by smoothing the
spectral data using a Savitzky—Golay filter to reduce random noise [31] (Figure 1c). To
facilitate feature extraction for subsequent CNN models, all the 3D-EEM spectra were
preprocessed into a uniform format (Figure 1d). All the 3D-EEM spectra were preprocessed
by the MATLAB program to form target-sized spectra containing algal fluorescence peaks
(Ex: 400-530 nm, interval: 5 nm; Em: 620-750 nm, interval: 5 nm).

2.4. AFAI-Net Model Establishment Based on Deep Convolutional Neural Network

In this study, an algal fluorescence anti-interference network (AFAI-Net) model based
on deep CNN was proposed. First, a CNN classification recognition network was intro-
duced into the model to determine whether the inputted 3D fluorescence spectra of testing
samples were interfered with and to classify their types. As shown in Figure 2, it is named
the convolutional neural network for quick classification (QCNN), with the output labels of
0, 1, and 2, which correspond to non-interfered, CDOM-interfered, and turbidity-interfered,
respectively. In the QCNN model, we represented the excitation and emission wavelengths
of the inputted 3D-EEM spectra as pixel positions, with the fluorescence intensity at each
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Ex/Em wavelength set as the channel value. This allowed us to treat the data of the
3D-EEM spectra as image-like, with dimensions of height x width x channel equal to
27 x 27 x 1. The QCNN architecture comprised two 2D convolutional layers and two 2D
max-pooling layers. We utilized the ReLU activation function for both the convolutional
and max-pooling layers, and we flattened the resulting feature maps into one dimension
to facilitate their connection to the fully connected (FC) layers. To prevent overfitting, we
incorporated dropout on the first two FC layers. The softmax function was employed as the
activation function of the output layer for classification, while the cross-entropy function
was used as the loss function of the QCNN. To optimize the model’s performance, we used
the Adam optimizer.

Features maps
QCNN 32@27 %27 32@13%X13 64@13%X13 64@6 X6

. 1X 256 1X 256
I I n
Output: 3
fc_1 fc_ 2
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relu_1 relu_2
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Figure 2. Structural diagram of the QCNN, where the 3D-EEMs of the mixed solution were used
as input, and the interference type in the solution was set as the classification label. It consisted
of two 2D convolutional layers, two 2D max-pooling layers, and two fully connected layers were
concatenated to reduce feature dimensions. The softmax function was used in the output layer
for classification.

After determining the type of testing sample by model, the second CNN model was
called to obtain the interference-corrected algal fluorescence spectrum, which was named
the convolutional neural network to eliminate interference (ECNN) here. The ECNN model
included the ECNN-Tur model (for turbidity mixed sample) and the ECNN-CDOM model
(for CDOM mixed sample), where the input was the same as that for the FCNN, and the
output was a vector of length 729, which could be integrated into a matrix of size 27 x 27.
The ECNN network consisted of three 2D convolutional layers, two 2D max-pooling layers,
and two fully connected layers, as shown in Figure 3.

The cosine similarity index (SI) [32] was introduced to compare the corrected spectra
with the interfered spectra, defined as follows

2 A1 Ay ﬂ
SI=1—- |— xarccos| ———— | |, 1
LT (|A1|'|Az| M

where A; and A; represent the spectral vectors of the two algal species. In essence, the SI
depends on the angle between the two matrix vectors. As such, higher spectral similarities
result in smaller matrix angles, and consequently, the closer the SI value is to 1.

In conclusion, the AFAI-Net model procedure consists of three stages: pre-processing
of the spectra, classification of the type of fluorescence spectrum and correction of interfered
algal fluorescence spectrum. Firstly, a new 3D-EEM spectrum was input into the QCNN
model to determine whether it contained turbidity or CDOM interference. Then, if the
output of the QCNN model was 1, this indicated the presence of CDOM interference. Then,
the 3D-EEM spectrum was input into the ECNN-CDOM model to obtain the new spectrum
with CDOM interference removed. Correspondingly, if the output of the QCNN model
was 2, the ECNN-Tur model would be called to obtain the EEMs after turbidity interference
was removed.
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Figure 3. (a) The structure of ECNN, which uses the 3D-EEMs of the mixed solution as input and sets
the 3D-EEMs of pure algal solution as the target spectral image. The MSE and RMSE of the model
were calculated based on the target values and predicted values. (b) shows the process of using the
trained AFAI-Net to correct for interference in a sample’s 3D-EEMs. The FCNN model determines
whether there is CDOM or turbidity interference in the 3D-EEMs, and if the output is 0, no further
correction is needed. If the output of the FCNN model is 1, the 3D-EEMs are input into the trained
ECNN-Tur model for fitting. If the output is 2, the 3D-EEMs are input into the trained ECNN-CDOM
model for fitting to obtain the interference-removed EEMs.

3. Results and Discussion
3.1. Characteristics of the 3D-EEMSs Data

All photosynthetic organisms contain chlorophyll 4, which absorbs blue light, as well
as additional pigments such as carotenoids, phycobiliproteins, or accessory chlorophylls
(Chl b or Chl ¢), which absorb light of other wavelengths. Based on the composition of
these pigments, different types of phytoplankton absorb light of different wavelengths,
resulting in the formation of characteristic EEMs for each algal class [33].

The optimal excitation and emission wavelengths for different algae depend on the
type of algae and the type of pigment they contain. Figure 4a illustrates the emission spectra
of three different concentrations of the red tide algae (PD, PG, and CM) at an excitation
wavelength of 460 nm, and Figure 4b displays the excitation spectra of these three algae
at an emission wavelength of 680 nm. The emission spectra of these algae are similar
in shape and have a peak at around 680 nm, while the excitation spectra have a peak at
around 460 nm, which corresponds to the optimal excitation and emission wavelengths
of chlorophyll a, respectively. These results are consistent with those of previous studies
on EEM measurements of algal samples [34,35]. Therefore, the EEMs in the excitation
wavelength range of 400-530 nm and emission wavelength range of 620-750 nm used in
our experiment can provide specific information about the photosynthetic activity of algae.

CDOM and turbidity can have a significant impact on the 3D fluorescence spectra of
microalgae. As shown in Figure 5a,b, adding CDOM to the PG algal suspension altered the
spectral shape and width, and significantly decreased the fluorescence peak intensity of
PG. This is primarily because CDOM selectively absorbs certain fluorescence wavelengths,
causing changes in the relative strength of different spectral bands and quenching the
fluorescence of the algae by absorbing and dissipating the excitation light energy. Fur-
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thermore, turbidity can cause absorption and scattering of the excitation light, and as the
turbidity increases, the intensity of the algal fluorescence peak diminishes substantially.
By comparing Figure 5a,c, it is evident that the presence of suspended particles caused a
significant reduction in the fluorescence peak intensity of PG algal samples, and this change
is particularly distinct.

40

(@)

——PD
+~—PG
cH

40 4

——PD
—+—PG
\ cH

30 4 { | 30 4 S |

20 4 i r"“
20 4

Fluorescence intensity(a.u.)
Fluorescence intensity(a.u.)

T T T T T T
600 650 700 750 300 400 500 600

Emission wavelength(nm) Excitation wavelength(nm)

Figure 4. (a) Emission spectra of three microalgal species (PD, PG, and CM) at concentrations of
1.1 x 107 cells/L, 1.8 x 108 cells/L and 5.5 x 10° cells/L, respectively, under an excitation wavelength
of 460 nm. (b) Excitation spectra of the same microalgae at identical concentrations, under an emission
wavelength of 680 nm.

740 NE)] . 740 (9]
720 30720

25 700

Em(nm)

PG+CDOM
620 620
400 420 440 460 480 500 520 400 420 440 460 480 500 520 400 420 440 460 480 500 520

Ex(nm) Ex(nm) Ex(nm)

PG+Turbidity

Figure 5. (a) represents 3D-EEMs acquired from PG algae without any interference, while (b,c) depict
3D-EEMs acquired from PG algal samples after adding CDOM and turbidity interferers, respectively.
As shown in Figure 5b,c, the spectral shape, width, and fluorescence peak intensity of PG algal
samples have been altered compared to that of the pure PG algae. The x and y coordinates of these
3D-EEMs are excitation and emission wavelengths (nm), respectively.

3.2. Training and Evaluation of the AFAI-Net Model

The training and validation datasets for the FCNN model consisted of 567 samples,
and the test dataset contained 63 samples, with a ratio of 8:1:1. Before training, the hyper-
parameters were adjusted to optimize the performance of the model. The Adam optimizer
was used, with an initial learning rate of 0.001. The network was trained for 90 epochs with
a batch size of 24, and the learning rate was reduced by a factor of 0.1 every 20 epochs. The
loss function used was categorical cross-entropy, and the accuracy and loss of the training
and validation sets were monitored. Early stopping was used to prevent overfitting, with
the validation accuracy monitored. If no improvement was observed after 10 epochs,
training was stopped. During training, both the training loss and validation loss gradually
decreased, with the training loss stabilizing after 70 epochs. The QCNN model achieved
a final test accuracy of 96.82%. According to the confusion matrix shown in Figure 6, the
QCNN accurately identified the presence of turbidity interference but made mistakes when
differentiating the presence of CDOM interference, which may have been due to the low
CDOM concentration (0.25 mg/L), resulting in minimal interference and making it difficult
for the model to make accurate judgments. These results indicate that the QCNN model
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can learn the fluorescence characteristic information and the intrinsic relationship between
interference types in 3D-EEM spectra.

0
o 0 — Algal
T 1 1 — Algal + CDOM
- 2 — Algal + Turbidity
'_

2 1

0 1 2
Predicted Label

Figure 6. The confusion matrix of the classification results of the FCNN model, where 0 represents
no interference, 1 represents turbidity interference, and 2 represents CDOM interference.

We used the ECNN model to fit pure algal fluorescence spectra that were free from
interference based on different 3D-EEM datasets. The ECNN model consisted of two
models, the ECNN-Tur model and the ECNN-CDOM model. The ECNN-Tur model
removes turbidity interference from algal 3D-EEMs, and the ECNN-CDOM model removes
CDOM interference from algal 3D-EEMs. During training, the original 3D-EEM maps were
normalized by the maximum value and fed into the model. The output of the model was a
vector with a length of 729, which can be reshaped into a 27 x 27 matrix (3D-EEM map).

RMSE was used to calculate the error between the fluorescence intensities of the output
spectra and the target spectra, but it ignored the correlation between the fluorescence
intensities of consecutive excitation wavelengths and emission wavelengths, making it
less sensitive to the structural information of the spectra. Therefore, in addition to the
traditional root mean square error (RMSE), we introduced the structural similarity index
(SSIM) and cosine similarity index (SI) to evaluate the accuracy of the model’s fitting results
to the target fluorescence spectra. Both ECNN models showed a low testing RMSE and a
high SI (Table 3).

Table 3. Test performance of ECNN-Tur and ECNN-CDOM models.

ECNN RMSE SI
ECNN-Tur 0.3423 0.9630
ECNN-CDOM 0.2274 0.9715

The performance of the ECNN model was further verified with new testing sets. We
tested the pre-trained ECNN-CDOM model with a new set of 3D fluorescence data of
mixtures of PD + CDOM, PG + CDOM, and CM + CDOM. The corrected outputs of the
ECNN-CDOM model were compared with the corresponding 3D fluorescence spectra of
pure algal samples. Figure 7 shows that the peaks of corrected fluorescence were adjusted
to the same positions of peaks of pure spectra for all three species of algae. The only
difference was that there were some deviations in the low fluorescence intensity positions
of the non-fluorescence peaks, which may have been caused by background noise in
the fluorescence spectrum measurement process, such as the instrument, sample matrix,
solvent, etc. However, these noise points had little effect on the 3D-EEM spectra. These
results demonstrated that the ECNN-CDOM model effectively eliminates the disturbing
effect of CDOM on the 3D fluorescence spectra of the PD, PG, and CM algal samples.
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Figure 7. (a—c) The 3D-EEM spectra of PD, PG, and CM algae without interference, which are the
target maps that the ECNN model aims to fit. (d-f) The fluorescence spectra obtained after removing
interference using the pre-trained ECNN-CDOM model. The x and y axes of the figures represent the
excitation and emission wavelengths (nm), and the fluorescence intensities are normalized by taking
the maximum value.

3.3. Comparison of Correction Methods

The performance of the ECNN-CDOM model was compared with that of the non-
negative linear least squares algorithm (NNLS) [23]. Figure 8a—c represents the original,
interference-free 3D-EEMs of PD, PG, and CM; Figure 8d—f shows the outputs of the well-
trained ECNN-CDOM model; and Figure 8g—i show the decomposed algal fluorescence
spectrum using NNLS. It can be observed that both the ECNN-CDOM model and NNLS
method produced results with identical fluorescence peak positions and similar shapes
as the corresponding original algal fluorescence spectra; however, minor differences were
observed in the fluorescence peak intensity. Among the three algal species, the performance
of both methods was optimal on PG, and the results obtained using the ECNN-CDOM
model were similar to the target image in the case of CM but displayed mediocre results
for PD. Compared with the NNLS method, the ECNN-CDOM model performed better in
fitting the fluorescence peak intensity.

Furthermore, we employed the cosine similarity index (SI) and deviation rate (DR) to
quantify the effectiveness of CDOM calibration. The DR is determined by dividing the difference
between the fluorescence intensity of each algal fluorescence peak (Ex/Em = 460 nm /680 nm)
and the post-calibration EEMs fluorescence peak intensity by the post-calibration EEMs fluores-
cence peak intensity. The closer the ratio is to 0, the better the calibration effect is.

Figure 9 shows the comparison of SI and DR obtained after calibrating CDOM using
the ECNN-CDOM model and the NNLS method on 36 samples of three types of algal
samples. Figure 9a displays the SI values of the three algal samples after CDOM calibration
using the CNN and NNLS methods. The results indicate that both the CNN and NNLS
methods significantly improved the SI values of three red tide algal samples. For the
PG algal species, the NNLS method produced slightly higher SI values than the CNN
method, but the deviation was not significant. Additionally, the average SI values of the
three algal species after using these two methods to remove CDOM increased from the
pre-calibration value of 87.33% to 96.42% and 96.25%, implying that the CNN method
is slightly better than the NNLS method in correcting EEMs of the three algal samples.
Figure 9b shows the DR values of the fluorescence peaks of the three types of algal sam-
ples (Ex/Em = 460 nm/680 nm) obtained by calibrating CDOM using the CNN and NNLS
methods. It can be observed that the DR values of both the CNN and NNLS methods
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for fluorescence peak intensity changed inversely before and after CDOM calibration,
indicating that both methods effectively corrected deviations of the fluorescence peaks.
Specifically, before CDOM calibration, the DR values of the three algal species concentra-
tions ranged from 16.84% to 117.63%; after CDOM calibration with the CNN method, it
ranged from 11.32% to 31.64%; and after CDOM calibration with the NNLS method, it
ranged from 11.97% to 44.75%. Compared to the NNLS method, using the CNN method to
calibrate CDOM reduced the average DR value of PD by 13.11%, PG by 0.65%, and CM
by 5.69%. These results indicate that the CNN method provides more accurate fluores-
cence peak intensities, close to the true algal fluorescence peak intensities after removing
CDOM interference.
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Figure 8. Comparison of the performance of different calibration methods in removing the CDOM
effect from three types of algal samples, PD, PG, and CM. Panels (a—c) represent the original 3D-EEMs
free of interference for the three algal species; panels (d—f) illustrate the 3D-EEMs obtained after
applying the pre-trained ECNN-CDOM model; and panels (g—i) show the 3D-EEMs attained after
removing CDOM interference using the NNLS method. The x and y axes in these figures correspond
to the excitation wavelength and emission wavelength (nm), respectively.

The comparison of the results obtained by both methods for predicting the algal
density in the mixed algae and CDOM samples is shown in Figure 10. The solid blue line
represents the linear fitting of the spectra corrected by the ECNN-CDOM model with the
pure algal spectrum of unit cell concentration to obtain the corresponding algal cell density.
In contrast, the solid orange line represents the related algal cell density obtained using
the NNLS linear regression method. It can be observed that after being corrected by the
ECNN-CDOM model, the influence of CDOM on algal fluorescence measurement was well
compensated for. Compared to the direct prediction of algal density using the NNLS linear
regression method for mixed samples, the algal densities predicted by the spectra after
compensation by the ECNN-CDOM model were much closer to the true algal densities.
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Figure 9. (a) Similarity index (SI) values of the three scenarios. The blue bar chart represents the
SI between the original, uncalibrated 3D-EEMs of PD, PG, and CM mixed with CDOM, and their
corresponding target pure algal 3D-EEMs. The orange bar chart shows the SI values obtained after
correcting the EEMs using the pre-trained ECNN-CDOM model. The yellow bar chart represents
the SI values obtained after correction using the NNLS method. (b) illustrates the DR values of the
fluorescence peaks (Ex/Em = 460 nm/680 nm) for the same three scenarios as in (a).
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Figure 10. (a—c) Relationships between the algal density values (blue line) calculated from the
spectrograms obtained with the ECNN-CDOM model output, the algal density values (orange line)
calculated with the NNLS method, and the reference values (dashed line) for the PD + CDOM,
PG + CDOM, and CM + CDOM mixed samples.

4. Conclusions

Fluorescence spectrometry is a rapid and real-time analysis method for estimating the
chlorophyll-a concentration in phytoplankton. However, its application is often limited by
the fluorescence interference of CDOM and attenuating effects of suspended particulate
matter in natural aquatic environments, which result in overestimations of algal concen-
trations. In this study, we developed an AFAI-Net model to eliminate the interference of
non-algal factors (CDOM and turbidity) on algal 3D fluorescence spectra, using a deep
convolutional neural network (CNN). The AFAI-Net model can quickly identify the pres-
ence of CDOM or turbidity interference in aquatic samples and extract the target algal
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EEMs from the detected interfered EEMs. Compared with the non-negative weighted
least squares linear regression analysis method, the CNN method showed better results in
CDOM removal. The spectra compensated by the ECNN-CDOM model to predict algal
densities were closer to the actual algal densities. Future studies can further improve
the data acquisition and processing procedures and, with increased fluorescence data,
enhance the AFAI-Net model’s accuracy and efficiency. In summary, this study provides a
new approach to eliminate non-algal interference from phytoplankton fluorescence spectra,
which is beneficial for the development of accurate real-time fluorescence-based monitoring
techniques for phytoplankton classification and ecosystem health assessment, especially
for eutrophication and harmful algal bloom monitoring.
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