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Abstract: We show that the focusing of a random electromagnetic beam by a lens gives rise to a
scintillation index at the geometrical focus that generally differs from that of the incident beam. In
the examples we present, focusing produces a significant increase of the index. This observation is
of particular relevance for optical communication systems in which scintillation is a major cause of
signal degradation.
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1. Introduction

Scintillation is the fluctuation over time of the intensity of an optical signal. Two
common causes of scintillation are a certain randomness in the source [1,2] and propagation
through atmospheric turbulence [3,4]. For a stochastic beam-like field, the intensity fluctu-
ations are trivially seen to be identical to those of the first Stokes parameter, denoted S0.
In [5], the fluctuations of all four Stokes parameters were examined. It was shown, under
the assumption of Gaussian statistics, that their normalized variances, dubbed ”Stokes
scintillations”, are not independent, but rather obey a sum rule. More precisely, the sum
of the four Stokes scintillations always equals two. Their interplay in the far zone of a
beam-generating source was analyzed in [6].

It is well known that the focusing action of a lens changes a monochromatic scalar
field in the front focal plane into its Fourier transform in the back focal plane [7]. Recently
it was described that the correlation functions that characterize a random beam undergo a
similar effect when the beam is focused. This discovery paved the way to the concept of
Fourier processing of correlation functions with a 4 f system [8,9]. The formalism was also
employed to analyze the complicated spatial distribution of the four Stokes scintillations
in the focal plane [10]. Here, we further study the classical scintillation index (i.e., the
normalized scintillation of S0) at the geometrical focus in its dependence on the different
parameters that characterize the incident field. We take the field to be a member of the
wide class of Gaussian Schell-model beams [11,12]. In general, the scintillation index is
found to be increased by the focusing process. In fact, it is only in special cases that the
scintillation is not affected by the lens.

2. Focusing

The scalar field U( f )(ρ, ω) in the focal plane of a thin paraxial lens with focal length f ,
is proportional to the two-dimensional Fourier transform of the beam-like field U(i)(ρ′, ω)
in its front focal plane (Section 5.2, [7]), i.e.,

U( f )(ρ, ω) =
1

jλ f

∫ ∞

−∞
U(i)(ρ′, ω

)
P
(
ρ′
)

exp
(
−jkρ · ρ′/ f

)
d2ρ′. (1)

Here, the transverse vectors ρ = (x, y) and ρ′ = (x′, y′) denote positions in the back and
front focal plane, respectively. The wavenumber k = 2π/λ = ω/c, with wavelength λ and
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speed of light c. The finite extent of the lens is accounted for by associating with it a pupil
function P(ρ′), defined by P(ρ′) = 1 for points inside the lens aperture, and otherwise
P(ρ′) = 0. When the physical extent of the input beam is smaller than the lens aperture, as
we henceforth assume, the factor P(ρ′) may be neglected.

Consider next the case where the incident field is a random electromagnetic beam
generated by a planar source in the front focal plane, as sketched in Figure 1. Such a source
may be described by a cross-spectral density (CSD) matrix [2]

W(ρ1, ρ2, ω) =

(
Wxx(ρ1, ρ2, ω) Wxy(ρ1, ρ2, ω)
Wyx(ρ1, ρ2, ω) Wyy(ρ1, ρ2, ω)

)
. (2)

Its four elements are

Wij(ρ1, ρ2, ω) =
〈

E∗i (ρ1, ω)Ej(ρ2, ω)
〉
, i, j ∈ {x, y}, (3)

where Ei represents a Cartesian component of the electric field vector and the angular
brackets and the asterisk indicate ensemble averaging and conjugating, respectively. After
substituting from Equation (1) into (3) and interchanging the order of integration and
ensemble averaging, the transformation of the CSD matrix by the lens is seen to be given
by the expression [8]

W( f )
ij (ρ1, ρ2) =

1
λ2 f 2

∫∫ ∞

−∞
W(i)

ij
(
ρ′1, ρ′2

)
× exp

[
−jk

(
ρ2 · ρ′2 − ρ1 · ρ′1

)
/ f
]
d2ρ′1d2ρ′2.

(4)

Here, the superscripts i and f indicate the front focal plane and the back focal plane,
respectively, and the ω dependence is no longer shown. Equation (4) states that the CSD
matrix elements in the focal plane are the four-dimensional spatial Fourier transform of the
corresponding elements in the front focal plane. This derivation is under the assumption of
weak focusing, meaning that no significant longitudinal field component is created. For
our purpose, the study of the scintillation behavior at the geometrical focus F, we need the
matrix elements evaluated at ρ1 = ρ2 = (0, 0). For that particular choice of observation
point, the dependence on the focal length f drops out, and Equation (4) reduces to the DC
term of a 4D-Fourier transform.

Figure 1. A beam-generating partially coherent electromagnetic source is located in the front focal
plane of a thin paraxial lens. We examine the scintillation index of the beam at the geometrical focus
denoted F.
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3. The Scintillation Index

Because the incident beam is stochastic, its spectral density, or intensity at frequency
ω, will be a random quantity. The fluctuation around its average value is

∆I(ρ) = I(ρ)− 〈I(ρ)〉, (5)

where I(ρ) is the random intensity of a single realization and 〈I(ρ)〉 is its ensemble av-
erage. On making use of Equation (5) it follows that the Hanbury Brown–Twiss (HBT)
correlation [5], the correlation of intensity fluctuations at two points, ρ1 and ρ2, equals

〈∆I(ρ1)∆I(ρ2)〉 = 〈I(ρ1)I(ρ2)〉 − 〈I(ρ1)〉〈I(ρ2)〉. (6)

The first term on the right-hand side involves a fourth-order correlation. Under the as-
sumption that the source is governed by Gaussian statistics, this can be expressed in terms
of second-order correlations (CSD matrix elements) by using the Gaussian moment theorem
(Section 1.6.2, [1]). The result is

〈∆I(ρ1)∆I(ρ2)〉 = ∑
i,j

∣∣Wij(ρ1, ρ2)
∣∣2. (7)

The scintillation index σ2(ρ) is defined as the normalized version of the HBT correlation at
two coincident points [4], i.e.,

σ2(ρ) ≡
〈
[∆I(ρ)]2

〉
〈I(ρ)〉2 =

∑i,j
∣∣Wij(ρ, ρ)

∣∣2
[∑i Wii(ρ, ρ)]2

. (8)

Clearly, because the lens modifies the elements of the CSD matrix, it is to be expected that
the lens also changes the scintillation index. The degree of polarization of the field is given
by the expression [2]

P(ρ) =

√
1− 4 Det W(ρ, ρ)

[Tr W(ρ, ρ)]2
. (9)

From the previous two equations it can be derived that the scintillation index is related to
the degree of polarization through the formula (see Section 8.4, [1]) and [13,14])

σ2(ρ) =
1
2

[
1 + P2(ρ)

]
. (10)

Since 0 ≤ P(ρ) ≤ 1, it then follows that the scintillation index is bounded, i.e., 1/2 ≤ σ2(ρ) ≤ 1.

4. Gaussian Schell-Model Sources

We take the field in the front focal plane to be that of a source of the Gaussian Shell-
model (GSM) type. Such a source has CSD matrix elements of the form [2]

W(i)
xx (ρ

′
1, ρ′2) = A2

x exp
[
−(ρ′21 + ρ′22 )/(4σ2

S )
]

exp
[
−(ρ′2 − ρ′1)

2/(2δ2
xx)
]
,

W(i)
yy (ρ

′
1, ρ′2) = A2

y exp
[
−(ρ′21 + ρ′22 )/(4σ2

S )
]

exp
[
−(ρ′2 − ρ′1)

2/(2δ2
yy)
]
,

W(i)
xy (ρ

′
1, ρ′2) = Ax AyBxy

[
−(ρ′21 + ρ′22 )/(4σ2

S )
]

exp
[
−(ρ′2 − ρ′1)

2/(2δ2
xy)
]
,

W(i)
yx (ρ

′
1, ρ′2) = W(i)∗

xy (ρ′1, ρ′2).

(11)

Here, Ax and Ay are the roots of the spectral densities of the two Cartesian components of
the electric field, σS is the effective beamwidth, and Bxy describes the correlation between
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Ex and Ey, with |Bxy| ≤ 1. The coherence radii δij, with δyx = δxy, must satisfy so-called
realizability constraints [15], namely√

δ2
xx + δ2

yy

2
≤ δxy ≤

√
δxxδyy∣∣Bxy

∣∣ , (12)

from which it follows that

|Bxy| ≤
2

δxx/δyy + δyy/δxx
. (13)

On making use of Equation (9) the degree of polarization across the front focal plane is
found to be homogeneous, i.e.,

P(ρ) =
(A2

x − A2
y)

2 + 4A2
x A2

y|Bxy|2

(A2
x + A2

y)
2 . (14)

On substituting from Equations (11) into Equation (4), it is found that the four elements of the
CSD matrix at the geometrical focus F (i.e., ρ1 = ρ2 = (0, 0)) are given by the expressions

W(F)
xx =

4π2σ2
S

λ2 f 2 A2
xΩ2

xx,

W(F)
xy =

4π2σ2
S

λ2 f 2 Ax AyBxyΩ2
xy,

W(F)
yx =

4π2σ2
S

λ2 f 2 Ax AyB∗xyΩ2
xy,

W(F)
yy =

4π2σ2
S

λ2 f 2 A2
yΩ2

yy,

(15)

where we have introduced

1
Ω2

ij
=

1
4σ2

S
+

1
δ2

ij
, i, j ∈ {x, y}. (16)

On using Equations (11) in Equation (8) it readily follows that the scintillation index is
uniform across the source plane, namely

σ2
i =

A4
x + 2

(
Ax Ay|Bxy|

)2
+ A4

y(
A2

x + A2
y

)2 . (17)

The scintillation index at the geometrical focus is found by substituting from Equations (15)
into Equation (8), with the result

σ2
F =

(AxΩxx)
4 + 2A2

x A2
y|Bxy|2Ω4

xy +
(

AyΩyy
)4(

A2
xΩ2

xx + A2
yΩ2

yy

)2 . (18)

On comparing Equations (17) and (18) it is seen that the scintillation index at the geometrical
focus generally differs from its counterpart in the front focal plane. This is because the three
coherence radii δij are absent in the expression for σ2

i , but they do occur in the expression
for σ2

F via Ωij. In the special case that the three radii are all equal, i.e., when

δxx = δyy = δxy, (19)
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will the beam’s scintillation not be affected by the lens, irrespective of the value of the
correlation coefficient Bxy.

As a side remark, we note that taking different effective widths for the matrix elements
in Equations (11) would have led to a non-uniform scintillation index of the incident field.
Similarly, in general, the index in the focal plane will not be homogeneous.

The expressions (11) for the incident beam’s CSD matrix have seven independent
parameters. To illustrate the effects of the focusing process on the scintillation index, we
must therefore limit ourselves to some selected cases.

(1). For an unpolarized source, Ax = Ay and Bxy = 0. The index of the source then attains
its minimum value (σ2

i = 1/2), and, according to Equation (18), the scintillation index
at focus equals

σ2
F =

Ω4
xx + Ω4

yy

(Ω2
xx + Ω2

yy)
2 . (20)

The dependence of σ2
F on the coherence radius δyy is illustrated in Figure 2. It is seen

that if δyy is equal to δxx = 1 mm, then σ2
F = σ2

i = 1/2. In all other cases the lens
significantly increases the scintillation.

(2). For a fully polarized source |Bxy| = 1, and the scintillation index across the source
takes on its maximum value (σ2

i = 1). The constraint given by expression (12) implies
that now δxx = δyy = δ. On using this in (13) it follows that δxy = δ, meaning that all
coherence radii, and hence also all factors Ωij, are equal. In this case, the scintillation
index at the geometrical focus also takes on its maximum value, i.e.,

σ2
F = σ2

i = 1. (21)

It is worth noting that any partially coherent, linearly polarized beam always pro-
duces a maximum scintillation index at focus (σ2

F = 1), even when its spatial coher-
ence is not Gaussian as is assumed in Equation (11). This can be seen as follows.
Without loss of generality, we can take the direction of linear polarization to be
along the x-axis. Then, W(i)

xx (ρ
′
1, ρ′2) is the only non-zero CSD matrix element of

the field in the front focal plane. Consequently, W(F)
xx is the only non-zero element

at the geometrical focus. The application of Equation (8) then immediately yields
that σ2

F = 1.
(3). For a partially polarized source with equal spectral densities of the two Cartesian

field components (Ax = Ay), we find from Equations (17) and (18) that

σ2
i =

1
2
+

1
2
|Bxy|2, (22)

σ2
F =

Ω4
xx + 2|Bxy|2Ω4

xy + Ω4
yy(

Ω2
xx + Ω2

yy

)2 . (23)

As an example, we set δxx = 1.2 δyy and let δxy vary between its bounds given by (12),
for three selected values of |Bxy|. The resulting scintillation index at focus is shown in
Figure 3. In all three cases the scintillation index at focus is significantly larger than
its counterpart in the front focal plane (dashed line). Furthermore, in all three cases,
the index attains its maximum value of unity when δxy reaches its upper bound.

(4). When the amplitudes of the two field components are not equal (Ax 6= Ay),
Equations (17) and (18) cannot be further simplified. The behavior of the uniform
scintillation index in the front focal plane is illustrated in Figure 4. The three inde-
pendent coherence radii are fixed, and |Bxy| is varied over its range given by the
realizability conditions. It is seen that the index in the front focal plane grows with
increasing ratio Ay/Ax as well as with increasing |Bxy|. Clearly, the scintillation
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at focus also depends on these quantities. The difference between the two indices,
∆ = σ2

F − σ2
i , is plotted in Figure 5, and reaches its maximum when Ay/Ax = 1. In all

cases, the scintillation at focus is larger than the scintillation in the front focal plane.
The increase due to focusing can be as high as 0.25, which in that case is an increase
of 37%.

1.0 1.5 2.0 2.5 3.0

yy
  [mm]

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85
2 F

Figure 2. The scintillation index at focus, σ2
F, for the case that the field in the front focal plane is

unpolarized. In this example, σS = 1 cm, δxx = 1 mm, and δyy varies from 1 to 3 mm.

1.0 1.1 1.2 1.3 1.4 1.5 1.6

xy
  [mm]

0.5

0.6

0.7

0.8

0.9

1.0

2 F

Figure 3. The scintillation index at focus when the field in the front focal plane is partially polarized,
with Ax = Ay, for three selected values of the correlation coefficient Bxy; namely, from top to bottom,
|Bxy| = 0.8 (blue), 0.5 (red), and 0.3 (green). For comparison, in each case the corresponding index σ2

i
is indicated by a horizontal dashed line of the same color. In this example σS = 1 cm, δxx = 1 mm,
δyy = δxx/1.2, and δxy varies between its two bounds.
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0.5
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0.8

0.9

1.0

Figure 4. Color-coded plot with contour lines of the uniform scintillation index σ2
i in the front focal

plane as a function of the amplitude ratio Ay/Ax and the magnitude of the correlation coefficient Bxy.
In this example σS = 1 cm, δxx = δyy = 2.0 mm, and δxy = 2.5 mm.

0.5

0.6

0.7

0.8

0.9

1.0

Figure 5. The difference ∆ = σ2
F − σ2

i between the scintillation index at focus and that in the front
focal plane as a function of the amplitude ratio Ay/Ax and |Bxy|. The parameters are the same as
in Figure 4.

5. Conclusions

The scintillation index of a partially coherent and partially polarized electromag-
netic beam can be derived, for the case of Gaussian statistics, from the cross-spectral
density matrix. Upon focusing by a thin paraxial lens, the CSD matrix elements undergo a
four-dimensional Fourier transform. This implies that such a lens may alter the scintilla-
tion index.

We have demonstrated, for incident beams of the wide class of Gaussian Schell types,
that the scintillation index at focus is typically significantly larger than the scintillation
index of the incident beam.

We have used the Gaussian Schell-model source as an illustration because it represents
a broad class of fields that are often encountered in practice. However, taking Equation (4)
as a starting point, the effect of focusing of any random beam on the scintillation index can
be analyzed.

Because beam scintillation is undesirable for optical communication, our results
may be relevant for any detection scheme of signal-carrying beams in which lenses are
being deployed.
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