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Abstract: In the field of compressed imaging, many attempts have been made to use the high-
resolution digital micromirror array (DMD) in combination with low-resolution detectors to construct
imaging systems by collecting low-resolution compressed data to reconstruct high-resolution images.
However, the difficulty of achieving micrometer-level alignment between DMD devices and detectors
has resulted in significant reconstruction errors. To address this issue, we proposed a joint input
generative adversarial network with an error correction function that simulates the degradation of
image quality due to alignment errors, designed an optical imaging system, and incorporated prior
imaging system knowledge in the data generation process to improve the training efficiency and
reconstruction performance. Our network achieved the ability to reconstruct 4× high-resolution
images with different alignment errors and performed outstanding reconstruction in real-world
scenes. Compared to existing algorithms, our method had a higher peak signal-to-noise ratio (PSNR)
and better visualization results, which demonstrates the feasibility of our approach.

Keywords: super-resolution; deep compressed sensing; alignment error correction

1. Introduction

With the development of single-pixel imaging technology, researchers have been look-
ing for faster imaging speeds and larger pixel arrays. Therefore, scholars have proposed the
theory of block-wise compressed imaging (BCI) [1]. This method can be seen as an exten-
sion of single-pixel imaging in plane space. Using high-resolution spatial light modulators
to block-encode the scene in parallel, compressed data were sampled by low-resolution
detectors and finally reconstructed into high-resolution images using a computationally
efficient reconstruction algorithm. This achieved the acquisition of high-resolution images
based on low-resolution detectors, which greatly reduced the cost of equipment and the
amount of transmitted data. This could be applied to infrared detection [2], polarization
imaging [3], and target tracking identification [4].

Due to their high resolution, simple control, and fast response, digital micromirror
array (DMD) devices have been widely used as spatial light modulators in compressed
imaging [5]. Although DMD devices have shown excellent performance in single-pixel
imaging, they have also faced some challenges when used in BCI. First, due to the use of off-
axis optics in imaging systems, they are susceptible to variations in the field of view, leading
to distortions in various points of the image. Second, the manufacturing and calibration
errors of the optical system, including aberrations in the lenses and misalignment between
DMD and detector pixels, can all degrade the final image quality [6]. Finally, traditional
algorithms for block reconstruction also have significant block effect issues.

To address these issues, various methods have been proposed. For example, the
leakage of light from DMD and CCD pixels during registration and the effects of specific
lenses on the super-resolution imaging results have been analyzed [7]. Mole patterns have
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been loaded into the optical system, and calibration errors have been corrected based on
Mole patterns [8]. Special coding schemes have been designed to reduce the effects of block
effects [9]. Nonlinear mappings between measured values and the original object have been
established using deep learning networks [10]. A joint input compression imaging network
has been proposed, where customized coding modules are used to make the imaging
degradation model input of the network [11]. However, traditional CS algorithms often
result in slow reconstruction speeds and poor reconstruction quality. While innovative
deep learning methods are seldom able to solve the problem of the actual optical system
calibration errors that cause degradation.

In this work, we first analyzed the influence of optical system calibration errors on
imaging to better simulate the degradation of imaging quality during optical imaging pro-
cesses; then, a joint input generation adversarial network was proposed, which combined
low-resolution degraded images and coding matrices with errors as network inputs to
attempt to recover low-resolution images with unknown and complex degradation; finally,
an experimental platform was built to validate the feasibility of this method in real-world
scenarios, which successfully reconstructed high-resolution images with low sampling
rates and reduced the error caused by misalignment.

2. Materials and Methods
2.1. Block-Wise Compressed Imaging System with DMD

As an extension of single-pixel imaging methods in the spatial domain, we designed a
BCI system using DMD as a spatial light modulator (SLM). DMD is a reflective digital SLM
that is composed of millions of micromirrors on the semiconductor silicon substrate [12].
Each micromirror is independently controlled and modulated by a tilting angle to modulate
light. The block-based imaging system consists of five main components: the target, a
distant objective, DMD, an imaging objective, and a visible light detector array. The
imaging process is shown in Figure 1. Firstly, the telescope objective focuses the scene on
the DMD; then, the resulting image is divided into multiple small blocks of the same size
and is compressed by a common encoding matrix. Next, the modulated image is focused
onto the detector array, where each pixel of the detector collects the intensity information
of a target block. By varying the loaded patterns on the DMD, the detector collects a
set of low-resolution compressed images. Finally, reconstruction algorithms are used to
reconstruct high-resolution images. Compared to single-pixel imaging, BCI can achieve a
higher resolution and use fewer sampling times.

In our system, each 4 × 4 micromirror on the DMD formed a large block and was
projected onto one pixel of the detector. The formula for collecting data from each block is
as follows:

y = Φx (1)

In our system, x(16× 1) is the original information corresponding to each block of the
scene, Φ(M× 16) is a measurement matrix, each row of Φ corresponds to a single pattern
loaded on the DMD, y(M× 1) is the compressed sampling result, M is the sampling count of
the detector and is also the number of patterns loading on the DMD. A parallel combination
of the data collected from each block was performed, and the detector ultimately obtained
M low-resolution images Y.
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Figure 1. Block-wise compression imaging system diagram.

2.2. Effect of Alignment Error on Compressed Imaging

Due to the special structure of the BCI system, DMD devices need to achieve precise
pixel-level alignment with the detector. However, it is difficult to achieve precise calibration
during actual optical system construction. Alignment errors can bring aberrations to the
actual optical system and have a significant impact on the reconstruction results. We
needed to analyze the alignment errors and provide guidance for compensation in the
reconstruction algorithm.

The classic wave aberration theory was used to analyze the impact of the alignment
error on the imaging system. The alignment error caused the wavefront formed by the
plane wave passing through the optical system to be no longer an ideal sphere. The actual
wavefront was tangent to the ideal wavefront at the exit pupil, and the difference between
the two wavefronts was called wavefront aberration. The off-axial optical system wave
aberration of the DMD imaging system could be expressed using Seidel polynomials [13]
as follows:

W(H, ρ, φ) = ∑
j

∞

∑
p

∞

∑
n

∞

∑
m
(Wklm)jH

kρl cosmφ, k = 2p + m, l = 2n + m, (2)

In this equation, W represents the optical path difference between the actual wavefront
and the ideal wavefront at the pupil position, Wklm the wave aberration coefficient, k, l, p,
n, and m represent the power series coefficients of each expansion, j represents the order
number of each surface in the optical system, H is the normalized field height, and φ is the
angle between the field coordinates and the pupil coordinates.

When there is a decenter and tilt in the system, the contribution of the surface j to the

aberration of any field coordinate vector
→
H in the viewing field should be calculated with
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respect to the vector of aberration centers shifted by the vertex
→
σ j of the aberration, and the

shifted vector, which is called the effective field of view
→
HAj.

→
HAj =

(→
H −→σ j

)
, (3)

From this,
→
HAj is substituted into the wave aberration vector expression and yields:

W(H, ρ, φ) = ∑
j
(W020)j(

→
ρ ·→ρ ) + ∑

j
(W111)j

[(→
H −→σ

)
·→ρ

]
+ ∑

j
(W200)j

[(→
H −→σ

)
·
(→

H −→σ
)]

+∑
j
(W040)j(

→
ρ ·→ρ )

2
+ ∑

j
(W131)j

[(→
H −→σ

)
·→ρ

]
(
→
ρ ·→ρ ) + ∑

j
(W222)j

[(→
H −→σ

)
·→ρ

]2

+∑
j
(W220)j

[(→
H −→σ

)
·
(→

H −→σ
)]

(
→
ρ ·→ρ ) + ∑

j
(W311)j

[(→
H −→σ

)
·
(→

H −→σ
)][(→

H −→σ
)
·→ρ

]
+∆∑

j
(W020)j(

→
ρ ·→ρ ) + ∆∑

j
(W040)j(

→
ρ ·→ρ )

2
,

(4)

The first-order characteristics include defocus (W020), tilt (W111) and translation
(W200), while the third-order characteristics include spherical aberration (W040), coma
(W131), astigmatism (W222), curvature (W220), and distortion (W311).

The generalized pupil function P can be expressed as follows:

P = p · exp(iW), (5)

where p represents a transmittance function. The point spread function (PSF) of an optical
system can be expressed as the generalized pupil function. Therefore, the relationship
between PSF and wave aberration can be obtained as:

PSF = |FFT(P)|2 = |FFT[p · exp(iW)]|2, (6)

where FFT represents Fourier Transformation. After encoding the image Y with PSF
convolution and adding noise n, the low-resolution image can finally be obtained. The
degradation process can be expressed by the following equation:

Y′ = Y⊗ PSF + n. (7)

Due to the alignment errors of the DMD equipment in the BCI system mainly including
defocus caused by the front and rear position deviations, decenter caused by up, down,
left, and right deviations, and tilt caused by mounting angle deviations, it was necessary to
focus on the first order characteristics.

2.3. Optical System Design

To analyze the impact of system calibration errors on the super-resolution imaging
optical system of DMD, we designed an imaging optical system. This system consists of a
telescope group and two relay lens groups. The DMD is placed in the second intermediate
image plane. The main parameters of the optical system are shown in Table 1, and the
design diagram is shown in Figure 2a. The modulation transfer function (MTF) of the
optical system is shown in Figure 2b. It can be seen that when there was no alignment
error, the optical system had good imaging quality, and the MTF value was close to the
diffraction limit.
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Table 1. Parameters of the optical system.

Parameter Value

Wavelength/nm 390–780
FOV(X/Y)/(◦) 2.2◦/2.2◦

F/# 1
DMD array size/pixel 1024 × 1024
DMD pixel size/µm 7.6

Detector pixel size/µm Detector pixel size/µm
3.45 3.45

Detector array size/pixel 256 × 256
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optical system; (b) Modulation Transfer Function (MTF) of the optical system.

However, according to the analysis in the previous section, the optical system, when
actually built, does not achieve an ideal imaging performance; therefore, we added align-
ment errors to the originally designed optical system, including the decenter, tilt, and
defocus between the DMD and the detector. We obtained multiple PSFs with different error
combinations, as shown in Figure 3. The position of the DMD in the actual system has
undergone various deviations, resulting in a significant change in the PSF, which caused
different degradation in the imaging quality.
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2.4. Super-Resolution Reconstruction Network

Different from the traditional compressed sensing image reconstruction algorithm,
deep learning learns prior knowledge from the data, uses deep neural networks to establish
a mapping relationship between the input and output, optimizes network parameters
through large-scale data training, and inputs the sequence images collected by the detector
into the compressed imaging system of the trained network, bypassing the complex com-
putational process, resulting in a faster processing and the direct output of reconstructed
high-resolution images [14].

Inspired by the Real-ESRGAN [15] network and the Joinput-CiNet network, we
designed a compressed imaging super-resolution generational adversarial network based
on error corrections. As shown in Figure 4, our network is mainly used to compensate
for aberrations and optical alignment errors in optical imaging systems, achieving better
reconstruction results. For this network, compressed encoding sampled low-resolution
images with errors and high-resolution encoded images from which errors were input, and
the reconstructed high-resolution images suppressed by error interference were output.
Meanwhile, our network input multiple low-resolution images while maintaining the
correlation among each block, effectively reducing the problem of the block effect in DMD
compressed imaging and requiring no additional computational for the elimination of the
block effect. We also used the U-Net as the discriminator for the network, which outputs
the realness values for each pixel, and provides detailed per-pixel feedback to the generator.
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Figure 4. Flow chart of reconstructed network.

We improved the Real-ESRGAN network by using low-resolution compressed sam-
pling data with alignment errors, DMD high-resolution encoded patterns, an optical system
PSF with alignment errors as joint inputs to the network, and high-resolution images as the
outputs. It has been verified that the combination of low-resolution images and compressed
encoding, when input into the Joinput-CiNet network, can achieve better reconstruction
results. Due to the four-fold difference between the low-resolution sampling and DMD
size, it is difficult to train the network; therefore, we needed to align the two resolutions.
We had to abandon the Joinput-CiNet network’s PCA process to reduce the DMD encod-
ing resolution and chose to enlarge low-resolution data to retain the full DMD encoding
information and perform convolution with the encoding information and the PSF of the
alignment mismatch to obtain the encoding matrix with errors. This approach improved
the reconstruction results while simultaneously inputting the full encoding information
and the alignment mismatch PSF.

2.5. Training Data

In order to train and evaluate the presented neural network, we used the DIV2K [8]
and Flickr2K [9] datasets as high-resolution scene images. Data encoded sampling process
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is shown in Figure 5. Using the previously mentioned degradation process, we compressed
the high-resolution image into multiple low-resolution images and then convolved them
with the PSF of the optical system designed. Finally, we calculated the low-resolution
compressed image with alignment errors and simulated the process of DMD compression
imaging through encoding. The 40 sets of PSF were calculated, which were then convolved
with the high-resolution image randomly. We added noise and reduced the resolution of
the convolved images; the resulting degraded image is shown in Figure 6. The 3000 sets of
high-resolution images were used as the training data, 300 sets of images were used as the
validation data, and 100 sets were used as the testing data. In addition, random horizontal
and vertical flips were also selected during training. To increase the speed of training, the
training HR patch size was set to 256. Similar to Real-ESRGAN, our net was trained with a
combination of L1 loss, perceptual loss, and GAN loss, with weights (1, 1, 0.1), respectively.
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3. Results

In order to apply this work to real scenarios, we conducted simulations and actual
imaging experiments using our deep learning network to perform the super-resolution
reconstruction of the collected images. The results from these experiments demonstrated
the effectiveness of our approach.

3.1. Simulation

We divided the DMD into small blocks of size 4 × 4, with each block using the same
8-bit random Gaussian matrix as the sampling matrix. Then, we controlled the sampling
rate by controlling the number of imaging times of the detector. Since the image magnifi-
cation was 4× and 16 images were acquired for complete sampling, the number of input
low-resolution images corresponding to these three compression ratios was 1, 2, and 4.
Super-resolution algorithms typically evaluate reconstruction results using PSNR and
SSIM, and we calculated the values of the reconstructed images with different compression
rates, as shown in Table 2. The reconstructed images with different compression rates of
polarization are shown in Figure 7

Table 2. PSNR/SSIM values of reconstructed images with different compression rates of the test set.

CS Rate 1/16 1/8 1/4

PSNR/SSIM 23.3149/0.7649 26.9589/0.8846 28.0675/0.8723
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In order to evaluate the reconstruction effect of the algorithm, we compared our
algorithm to the compressed sensing algorithm OMP and the deep learning networks
Reconnet and Real-ESRGAN. The input of the OMP algorithm and Reconnet network
on each block of data was obtained, directly outputting the reconstructed single block
information and then combining each block of information to create a high-resolution
image. Real ESRGAN is a single image super-resolution algorithm, with the input being a
single low-resolution image that is directly collected without encoding, and the compression
rate is equivalent to 0.0625. PSNR and SSIM are usually used to evaluate the reconstruction
results. We evaluated the reconstruction effect of each algorithm under different alignment
errors. The specific values of the reconstructed images under different alignment errors are
shown in Table 3.

Table 3. The specific values of the reconstructed images under different alignment errors.

Decenter Tilt Defocus Complex

OMP 12.6821/0.0462 12.6631/0.0448 12.6633/0.0475 12.6673/0.0434
Reconnet 21.4278/0.5843 21.2601/0.5772 21.6159/0.5902 20.8833/0.5720

Real-ESRGAN 18.6232/0.6923 18.3760/0.6733 18.8864/0.6923 17.7600/0.6604
Ours 24.6103/0.8305 23.6994/0.8108 23.6765/0.8201 23.4484/0.7983

In Figure 8, the reconstruction images of different algorithms at a sampling rate of
0.0625 and magnification of four are shown. It can be seen that the OMP and Reconnet
network could not be well applied to data reconstruction with alignment errors, and the
inevitable presence of mosaic artifacts was caused; therefore, further correction is necessary.
The Real-ESRGAN network performed well in a single-image super-resolution, but its
original degradation model and alignment error model still had significant differences,
resulting in the loss of reconstruction details. Our algorithm could reconstruct images with
good imaging quality. More details of the reconstructed image in different error cases are
shown in Figure 9.
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(d) Complex.

It can be seen that our algorithm exhibited excellent reconstruction effects at a low
compression rate and dealt with different errors, both visually and numerically.

We used the Modulation Transfer Function (MTF) to analyze the reconstruction reso-
lution. Our detector pixel size was 3.45 µm, and the corresponding system cutoff frequency
was approximately 144 lp/mm. We tested black and white line pair images with different
frequencies, added various alignment errors, and calculated the MTF of the reconstructed
images, as shown in Figure 10. It can be seen that low-resolution images were difficult to
visually distinguish at 25 lp/mm, while the images reconstructed by our algorithm still
performed well at 50 lp/mm.

To evaluate the performance of our network, we tested the running time of OMP,
ReconNet, Real ESRGAN, and ours in Figure 11. Reconstruction images with a size of
(2040 × 1360) were used. The block size was (4 × 4). Our network included 16.6 million
parameters for the generator and 4.37 million parameters for the discriminator. It can
be seen that we performed well in the reconstruction effect, but there is still room for
improvement in the running time. In future work, we hope to continue to optimize the
reconstruction speed of the network.
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(f) MTF images of reconstruction results with different alignment errors.
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3.2. Experiment

To verify the application performance of our reconstruction network in a realistic
scene, we selected core components such as TI Corporation’s DMD, dual telecentric projec-
tion lenses, and LUCID Company’s visible-light camera, and built a dual-arm reflective
experimental setup, as shown in Figure 12a, the results of the experiment are shown in
Figure 12b–f. Firstly, the scene was projected into the DMD by a convergent lens and a dual
telecentric projection lens 1, with a resolution of 1920 × 1080. The size of each micro-mirror
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in DMD was 10.8 µm, and the lenses could be switched at a high speed between ±12◦ di-
rections. Next, the reflected direction of different micromirrors on the DMD was controlled
to encode and modulate the scene. Due to the diagonal flip of the micromirror, we rotated
the DMD 45◦ and the angle between the two arms at 24◦. Finally, the encoded scene image
was collected by the camera using the dual telecentric projection lens 2. The camera was
also rotated 45◦. We selected a region of 1024 × 1024 pixels on the DMD, corresponding to
the 256 × 256 regions of the detector, for image acquisition. The entire device was placed
on a flat optical plate to take photos of the outdoor scene.
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Despite the large difference between the experimental data set and the actual instal-
lation error, we still improved the quality of the reconstructed image, indicating that our
algorithm had certain robustness. This future improvement could be further improved by
adding more real training data from actual photography.

4. Discussion

We built a deep learning network to achieve the super-resolution reconstruction of
image compression sensing while compensating for the image degradation caused by
alignment errors. During the reconstruction process, our network established a mapping
relationship from low-resolution intensity images with alignment errors and compressed
coding matrices to high-resolution intensity images. Compared with traditional methods,
our deep compression and reconstruction algorithm not only had better reconstruction
effects and faster reconstruction speeds but also the ability to correct the alignment error,
making it more suitable for use in actual optical systems.

Currently, our method is limited by the resolution of DMD. In the visible wavelength
range, our imaging method has not significantly improved its resolution. However, in the
infrared detection dimension, by using appropriate training data sets, this resolution could
be increased to approximately 2–4 times that of the original image. Our imaging method
could use low-resolution infrared detectors to obtain high-resolution information, thereby
reducing the cost of optical systems.

We designed a DMD compressed imaging optics system with Zemax optical design
software and analyzed the effect of the alignment error on super-resolution reconstruction.
The relationship between alignment error and the PSF can be explained with the wave
aberration theory. We simulated the imaging degradation process caused by various
alignment errors. When building the training data sets, we incorporated alignment errors
into the optical system, generating a non-ideal PSF. When establishing the training dataset,
we used our designed optical system to add alignment errors to generate nonideal PSF
and used convolution to obtain images with errors, replacing the degradation model of
common image algorithms. These methods are more suitable for real-world optics systems.

In order to better reconstruct the image, we took the compressed coding matrix as a
priori knowledge and attempted to convolution the mismatch point spread function with
the coding matrix to obtain the mismatch matrix. The mismatch matrix and low-resolution
images were jointly input into the reconstruction network to improve the impact of optical
system alignment errors on super-resolution imaging. The experiments have shown that
our method significantly improved the reconstruction effect.

When the network trained from existing datasets was used to reconstruct images
encoded and collected from real DMD optical systems, the reconstruction effect was already
better than other traditional reconstruction algorithms, but the effect could still be further
improved. Therefore, in future work, we look forward to collecting large amounts of data
using DMD devices to meet specific demands, which will enable us to build a more accurate
database for training.

5. Conclusions

In this article, we proposed a super-resolution compressed imaging method with an
optical alignment error correction, which addressed the problem of image degradation
caused by optical alignment errors in BCI. It took the encoded low-resolution image
and high-resolution encoded matrix with optical alignment errors as joint inputs and
reconstructed high-resolution images by GAN. Our method has been compared with
existing methods, and it was found that the proposed method had a lower sampling
rate, and the reconstructed images based on this method had more advantages in terms of
evaluation indicators and visual effects. Additionally, our experimental setup demonstrated
the potential of the imaging method and reconstruction network in future work, which
will excite people’s interest in applying deep learning and compressed sensing to practical
imaging applications.



Photonics 2023, 10, 581 14 of 14

Author Contributions: Conceptualization, M.X. and C.W.; methodology, M.X. and C.W.; software,
M.X.; validation, Q.F. and C.W.; data curation, H.S. and L.D.; writing—original draft preparation,
M.X.; writing—review and editing, C.W.; project administration, Y.L.; funding acquisition, H.J. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by [National Natural Science Foundation of China] 61805028,
61805027, 61890960, [Natural Science Foundation of Jilin Province] YDZJ202201ZYTS411, [Founda-
tion strengthen domain technology fund] 2022-JCJQ-JJ-xx28, [Scientific and technological research
projects of The Education Department of Jilin Province] JJKH20220742KJ, [Strategic Research Issues
of Beijing Institute of Space Mechanics & Electricity], [Center of Space Exploration, Ministry of Edu-
cation “Conceptual study on material exploration and in situ utilization of lunar underground lava
tubes”] SKTC202101.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data underlying the results presented in this Letter are not publicly
available at this time but may be obtained from the authors upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ke, J.; Lam, E.Y. Object reconstruction in block-based compressive imaging. Opt. Express 2012, 20, 22102. [CrossRef] [PubMed]
2. Zhang, X.; Li, C.; Meng, Q.; Liu, S.; Zhang, Y.; Wang, J. Infrared Image Super Resolution by Combining Compressive Sensing and

Deep Learning. Sensors 2018, 18, 2587. [CrossRef] [PubMed]
3. Xu, M.; Wang, C.; Wang, K.; Shi, H.; Li, Y.; Jiang, H. Polarization Super-Resolution Imaging Method Based on Deep Compressed

Sensing. Sensors 2022, 22, 9676. [CrossRef] [PubMed]
4. Wang, F.; Wang, C.; Chen, M.; Gong, W.; Zhang, Y.; Han, S.; Situ, G. Far-field super-resolution ghost imaging with a deep neural

network constraint. Light Sci. Appl. 2022, 11, 1. [CrossRef] [PubMed]
5. Zhang, X.; Xie, J.; Li, C.; Xu, R.; Zhang, Y.; Liu, S.; Wang, J. MEMS-based super-resolution remote sensing system using

compressive sensing. Opt. Commun. 2018, 426, 410–417. [CrossRef]
6. Wang, C.; Xing, S.; Xu, M.; Shi, H.; Wu, X.; Fu, Q.; Jiang, H. The Influence of Optical Alignment Error on Compression Coding

Superresolution Imaging. Sensors 2022, 22, 2717. [CrossRef] [PubMed]
7. Dumas, J.P.; Lodhi, M.A.; Bajwa, W.U.; Pierce, M.C. Computational imaging with a highly parallel image-plane-coded architecture:

Challenges and solutions. Opt. Express 2016, 24, 6145–6155. [CrossRef] [PubMed]
8. Ri, S.; Fujigaki, M.; Matui, T.; Morimoto, Y. Pixel-to-Pixel Correspondence Adjustment in DMD Camera by Moiré Methodology.

Exp. Mech. 2006, 46, 67–75. [CrossRef]
9. Wu, Z.; Wang, X. DMD Mask Construction to Suppress Blocky Structural Artifacts for Medium Wave Infrared Focal Plane

Array-Based Compressive Imaging. Sensors 2020, 20, 900. [CrossRef] [PubMed]
10. Kulkarni, K.; Lohit, S.; Turaga, P.; Kerviche, R.; Ashok, A. ReconNet: Non-Iterative Reconstruction of Images from Compressively

Sensed Measurements. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las
Vegas, NV, USA, 26 June–1 July 2016.

11. Cui, C.; Ke, J. Spatial compressive imaging deep learning framework using joint input of multi-frame measurements and degraded
maps. Opt. Express 2022, 30, 1235. [CrossRef] [PubMed]

12. Yang, J.; He, Q.; Liu, L.; Qu, Y.; Shao, R.; Song, B.; Zhao, Y. Anti-scattering light focusing by fast wavefront shaping based on
multi-pixel encoded digital-micromirror device. Light Sci. Appl. 2021, 10, 149. [CrossRef] [PubMed]

13. Thompson, K. Description of the third-order optical aberrations of near-circular pupil optical systems without symmetry. J. Opt.
Soc. Am. A Opt. Image Sci. Vis. 2005, 22, 1389–1401. [CrossRef] [PubMed]

14. Lohit, S.; Kulkarni, K.; Kerviche, R.; Turaga, P.; Ashok, A. Convolutional Neural Networks for Noniterative Reconstruction of
Compressively Sensed Images. IEEE Trans. Comput. Imaging 2018, 4, 326–340. [CrossRef]

15. Wang, X.; Xie, L.; Dong, C.; Shan, Y. Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data. In
Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), Montreal, QC, Canada,
11–17 October 2021; pp. 1905–1914.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1364/OE.20.022102
https://www.ncbi.nlm.nih.gov/pubmed/23037360
https://doi.org/10.3390/s18082587
https://www.ncbi.nlm.nih.gov/pubmed/30087286
https://doi.org/10.3390/s22249676
https://www.ncbi.nlm.nih.gov/pubmed/36560044
https://doi.org/10.1038/s41377-021-00680-w
https://www.ncbi.nlm.nih.gov/pubmed/34974515
https://doi.org/10.1016/j.optcom.2018.05.046
https://doi.org/10.3390/s22072717
https://www.ncbi.nlm.nih.gov/pubmed/35408330
https://doi.org/10.1364/OE.24.006145
https://www.ncbi.nlm.nih.gov/pubmed/27136808
https://doi.org/10.1007/s11340-006-5861-6
https://doi.org/10.3390/s20030900
https://www.ncbi.nlm.nih.gov/pubmed/32046226
https://doi.org/10.1364/OE.445127
https://www.ncbi.nlm.nih.gov/pubmed/35209288
https://doi.org/10.1038/s41377-021-00591-w
https://www.ncbi.nlm.nih.gov/pubmed/34285183
https://doi.org/10.1364/JOSAA.22.001389
https://www.ncbi.nlm.nih.gov/pubmed/16053160
https://doi.org/10.1109/TCI.2018.2846413

	Introduction 
	Materials and Methods 
	Block-Wise Compressed Imaging System with DMD 
	Effect of Alignment Error on Compressed Imaging 
	Optical System Design 
	Super-Resolution Reconstruction Network 
	Training Data 

	Results 
	Simulation 
	Experiment 

	Discussion 
	Conclusions 
	References

