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Abstract: A new signal processing method named orthogonal signal phase multiplication (OSPM) is
proposed, which is used to improve the precision of vibration measurement in a phase-modulating
self-mixing interferometer (SMI). The modulated signal is acquired by an electro-optic modulator,
which is placed in the external cavity. Higher measurement precision is realized by performing the
phase multiplication algorithm on the orthogonal signals extracted from the harmonic components
of the signal spectrum. Theoretically, the displacement reconstruction precision of OSPM is higher
than that of conventional modulation methods, and it can be continuously improved by increasing
the multiplication times. The feasibility and performance of the proposed method are verified by
simulated signals and confirmed by experiments; the absolute error is less than 11 nm, and relative
error is less than 0.75%, within the amplitude range from 661 nm to 2013 nm. This method does
not involve additional optical elements, and its effectiveness meet the requirements for real-time
high-precision measurements.

Keywords: phase modulation; phase multiplication; self-mixing interference; micro-displacement reconstruction

1. Introduction

With the development of advanced manufacturing, biomedicine, and many other
leading-edge fields, the requirement for micro motion measurement at the nanometer level
is increasing [1–5]. As a new interferometry technology, SMI has been widely used in
the field of precision measurement. So-called self-mixing interference refers to the fact
that a part of the reflected or scattered light feedbacks into the laser cavity and interferes
with the original light, resulting in changes in laser output characteristics. Compared
with traditional interferometry used to measure the motion of an external target, self-
mixing interferometry has been applied in many sensing fields, such as distance [6–9],
angle [10–12], displacement [13–16], velocity [17–19], and other fields [20–23], due to its
inherent advantages, such as its simple and compact structure, self-alignment, and low cost.

Over the past 20 years, many measurement techniques based on the SMI technique
have been proposed, the simplest of which is the fringe counting method [24], where each
fringe corresponds to λ0/2 of the displacement of the external target, where λ0 is the laser
wavelength without optical feedback. In order to improve the basic resolution of λ0/2,
many algorithms based on the phase unwrapping method (PUM) have been proposed [25],
with the accuracy of reconstruction ranging from λ0/8 to λ0/ 60. Although the PUM
provides quite good precision for LD-based self-mixing systems, it is computationally
complex and time consuming, because it needs iterative routines to estimate the optical
feedback parameter { and the linewidth enhancement factor α, which makes it inefficient
in real-time, high-bandwidth, embedded sensing applications. Moreover, the accuracy
and the effectiveness of this method will be affected by noise, the speckle effect, and other
environmental factors. In order to reduce its sensitivity to the fluctuations of laser power
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and ambient noise, a variety of phase modulation methods have been proposed [26–28].
Although the proposed modulation methods, such as EOM (electro-optic modulator), have
relatively high precision of reconstruction and strong anti-interference ability, it is difficult
to further improve their accuracy. In recent years, there have been some algorithms that
can reconstruct the displacement at less than λ0/2, but such algorithms still have some
inherent problems. Ali et al., using spectral processing, achieved nanometric vibration
sensing, but the algorithm is complicated and can only recover target vibrations with an
amplitude larger than λ0/8 [29]. Lu et al. proposed a method based on reflective phase
modulation, which uses the high-frequency vibration mirror as the modulation device
of the system; therefore, the reconstruction accuracy can be improved, and the ability to
measure an amplitude less than λ0/2 is achieved [30]. However, this method requires
accurately adjusting the position of PZTs (piezoelectric transducers) in the optical path,
which is hard to do in practical conditions and damages the inherent simplicity of the
self-mixing system.

In this paper, an orthogonal signal phase multiplication algorithm is introduced into
a phase-modulating SMI system for improving the measurement accuracy. Through the
operation of harmonic components of the signal spectrum, the wrapped signal with doubled
phase can be obtained, and the displacement of the vibrating target can be reconstructed
with higher precision. Since the proposed method does not require additional optical
devices or optical path adjustments, the entire system retains its inherent simplicity. In
addition, it has the advantage of scalable accuracy, by setting the multiplication times,
which gives it wide application prospects in the field of micro vibration measurement at
the nanometer scale.

2. Measurement Principle

According to the three-facet Fabry–Perot model [31], when sinusoidal phase modula-
tion is introduced into the SMI, the transmitted power P under a weak feedback regime
can be expressed as:

P = P0{1 + mcos[φF + Ψ(t)]} (1)

Here, P0 is the power of the laser output without feedback; m is the modulation
coefficient; φF = 4πL(t)/λ0 is the measured phase of the external cavity; λ0 is the central
wavelength of the laser; and Ψ(t) = 2hsin(2π fwt + β) is the sinusoidal phase modulation
term. Considering that the light beam passes through the EOM twice in the external cavity,
the sinusoidal phase modulation depth is 2h. The frequency and initial phase are fw and
β, respectively. Expanding Equation (1) with the Bessel function after DC (direct current)
blocking and normalization processing, it can be expressed as [32]:

P = cos(φF)J0(2h)

+2cos(φF)×
∞
∑

n=1
J2n(2h)cos[(2n)(2π fwt + β)]

−2sin(φF)×
∞
∑

n=1
J2n−1(2h)cos[(2n− 1)(2π fwt + β)]

(2)

Here, Jn(2h) is the first type Bessel function of order n, and J2n(2h) and J2n−1(2h)
are the even and odd orders, respectively. It can be seen that the AC component of the
SMI signal is composed of the fundamental frequency fw and its harmonics, and the odd
harmonics fluctuate with sin(φF), while the even harmonics fluctuate with cos(φF).

According to the Equation (2), the first and second harmonic components can be
expressed as follows:

P1(t) = 2sin(φF)J1(2h)cos(2π fwt + β) = A1(t)cos(2π fwt + β) (3)

P2(t) = 2cos(φF)J2(2h)cos(4π fwt + 2β) = A2(t)cos(4π fwt + 2β) (4)
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Here, the A1(t) = 2sin(φF)J1(2h) and A2(t) = 2cos(φF)J2(2h) represent the strengths
of the first and second harmonic components, respectively. As can be seen, A1(t) and A2(t)
are composed by sine and cosine functions of the feedback phase of the system, respectively,
and the values of first-order and second-order Bessel functions, respectively. Therefore,
the orthogonal signals can be obtained by dividing the corresponding value of the Bessel
functions. Then, the required phase φF can be calculated. The specific calculation process is
as follows:

sin(φF) = A1(t)/2J1(2h) = S1(t) (5)

cos(φF) = A2(t)/2J2(2h) = C1(t) (6)

ΦF = arctan
[

S1(t)
C1(t)

]
(7)

Here, A1(t) and A2(t) can be obtained by eliminating the carrier of P1(t) and P2(t),
respectively. The specific formulas for eliminating the carrier are as follows:

A1(t) = Im
[

P1(t)/ej(2π fw+β)
]

(8)

A2(t) = Re
[

P2(t)/ej(4π fw+β)
]

(9)

Therefore, after normalizing the A1(t) and A2(t), the S1(t) and C1(t) can be obtained.
The principle of phase multiplication can be illustrated as follows. First, based on the

double angle formula combined with previous equations, we can obtain:

S2(t) = 2S1(t) ∗ C1(t) = sin(2φF) = sin
(

2× 4πL(t)
λ

)
(10)

C2(t) = C2
1(t)− S2

1(t) = cos(2φF) = cos
(

2× 4πL(t)
λ

)
(11)

From Equations (10) and (11), it can be clearly seen that the phase of the processed
signal S2(t) and C2(t) has doubled after the operation, and this indicates that L(t) only
needs to change λ0/4 to produce one fringe.

Similarly, Sn(t) and Cn(t) can be obtained by the same process. After that, φF can be
solved by:

φF = arctan
[

Sn(t)
Cn(t)

]
/2n−1 (12)

According to the preceding analysis, the process of vibration measurement using
orthogonal signal phase multiplication technique is shown in Figure 1. First, perform
the fast Fourier transform (FFT) on the SMI signal to obtain the Fourier spectra; then, the
frequency content is fed to two band-pass filters to extract the first and second harmonics.
After inverse fast Fourier transform (IFFT), the orthogonal signals S1(t) and C1(t) are
obtained, respectively. According to Equations (10) and (11), S2(t) and C2(t) are easily
obtained by doing the phase multiplication operation. Similarly, Sn(t) and Cn(t) are
obtained by the same process. Then, the curves Sn(t) and Cn(t) are used to determine the
wrapped measured phase. Finally, a phase unwrapping process is employed to reconstruct
a continuous phase variation of the SMI signal.



Photonics 2023, 10, 575 4 of 10
Photonics 2023, 10, x FOR PEER REVIEW 4 of 10 
 

 

 
Figure 1. Flow chart of the method. 

3. Simulations and Experiments 
To validate the feasibility of the orthogonal signal phase multiplication algorithm, a 

series of simulations with varying parameters were conducted based on the analysis 
above. The parameters involved simulating the harmonic vibration of an external target 
using amplitude 𝐴 = 195 nm,  frequency 𝑓଴ = 80 Hz , and sampling rate 𝑓௦ = 400 kHz . 
The modulation frequency of the EOM 𝑓௠ is set to 80 kHz, with a modulation depth of 
1.67 rad. The remaining parameters were set to 𝜆଴ = 650 nm, 𝛼 = 5, and ∁ = 0.1. The 
displacement reconstruction process followed the flowchart in Figure 1. The simulated 
results are presented in Figure 2. Figure 2a shows the phase-modulated SMI signal. First, 
the signal frequency spectrum was obtained by fast Fourier transform, and the capturing 
window length was the same as the length of the time domain signal, as shown in Figure 
2a. Then, the zero-frequency point was placed in the middle of the spectrum to observe 
the spectrum conveniently, as shown in Figure 2b. The harmonic components were found 
to be distributed on both sides of the zero-frequency point with an 80 kHz interval, which 
is consistent with the theoretical analysis. The first and second harmonics were then ex-
tracted using two filters in the frequency domain, followed by using the inverse fast Fou-
rier transform and carriers remove to process the filtered components. The intensities of 
the harmonics are thus obtained, as shown in Figure 2c,d. Then, we perform the orthogo-
nal signal phase multiplication operation on the first and second harmonics, respectively. 
Figure 2e,f show the processed signals according by Equations (10) and (11). Apparently, 
the use of the proposed phase multiplication algorithm resulted in a doubling of the num-
ber of fringes between the two flip points. After a phase unwrapping process, the contin-
uous phase variation of the SMI signal was retrieved to reconstruct the motion signal of 
the external target, as shown in Figure 2g. The results show that the displacement recon-
struction error of the proposed method is nearly half that of the conventional EOM 
method, as shown in Figure 2h.  

Figure 1. Flow chart of the method.

3. Simulations and Experiments

To validate the feasibility of the orthogonal signal phase multiplication algorithm,
a series of simulations with varying parameters were conducted based on the analysis
above. The parameters involved simulating the harmonic vibration of an external target
using amplitude A = 195 nm, frequency f0 = 80 Hz, and sampling rate fs = 400 kHz.
The modulation frequency of the EOM fm is set to 80 kHz, with a modulation depth of
1.67 rad. The remaining parameters were set to λ0 = 650 nm, α = 5, and { = 0.1. The
displacement reconstruction process followed the flowchart in Figure 1. The simulated
results are presented in Figure 2. Figure 2a shows the phase-modulated SMI signal. First,
the signal frequency spectrum was obtained by fast Fourier transform, and the capturing
window length was the same as the length of the time domain signal, as shown in Figure 2a.
Then, the zero-frequency point was placed in the middle of the spectrum to observe the
spectrum conveniently, as shown in Figure 2b. The harmonic components were found to
be distributed on both sides of the zero-frequency point with an 80 kHz interval, which is
consistent with the theoretical analysis. The first and second harmonics were then extracted
using two filters in the frequency domain, followed by using the inverse fast Fourier
transform and carriers remove to process the filtered components. The intensities of the
harmonics are thus obtained, as shown in Figure 2c,d. Then, we perform the orthogonal
signal phase multiplication operation on the first and second harmonics, respectively.
Figure 2e,f show the processed signals according by Equations (10) and (11). Apparently,
the use of the proposed phase multiplication algorithm resulted in a doubling of the
number of fringes between the two flip points. After a phase unwrapping process, the
continuous phase variation of the SMI signal was retrieved to reconstruct the motion signal
of the external target, as shown in Figure 2g. The results show that the displacement
reconstruction error of the proposed method is nearly half that of the conventional EOM
method, as shown in Figure 2h.

In order to demonstrate the impact of phase multiplication times N on displacement
reconstruction precision, the reconstruction process of N = 2 is simulated without altering
any other parameters. The results are shown in Figure 3. Figure 3a–f shows the recon-
struction process with N = 1 and N = 2, respectively. It is evident from Figure 3a,d that
the fringes of wrapped phase double when the multiplication times are doubled. The
reconstructed displacement is given by Figure 3b,e. Figure 3c,f shows the reconstruction
error, and the mean square error with N = 2 is approximately 4 nm, which is almost half
that of 8.9 nm at N = 1. Theoretically, it can perform more instances of phase multiplication
to obtain higher displacement reconstruction precision, but there is no doubt that this will
be limited by the modulation frequency. According to the Nyquist sampling theorem,
the modulation frequency fm should be more than twice the maximum frequency of the
fundamental frequency Fmax.

fm > 2Fmax (13)
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Figure 3. Displacement reconstruction results with N = 1 and N = 2. (a) Extracted phase from SMI
signal (N = 1). (b) Reconstructed displacement (N = 2). (c) Displacement reconstruction error (N = 1).
(d) Extracted phase from SMI signal (N = 2). (e) Reconstructed displacement (N = 1). (f) Displacement
reconstruction error (N = 2).

If the external target has a motion L(t) = A·sin(2π f0t), then φF(t) = 4πL(t)/λ0. The
instantaneous frequency F of A1(t) and A2(t) can be expressed as follows, where n is the
number of phase multiplications:

F = 2n·1/2π·dφF(t)/dt = 2n·4πA f cos(2π f0t)/λ0 (14)

Combining Equations (13) and (14), the following can be derived:

fm ≥ 2n·8πA f0/λ0 (15)

From Equation (15), we can see that the measurement range of the system is theoreti-
cally limited by the modulation frequency.



Photonics 2023, 10, 575 6 of 10

To test the effectiveness of the orthogonal signal phase multiplication method, a set of
experiments has been conducted using the setup shown in Figure 4. In this experiment, a
semiconductor laser (MGL-III-532) is used as the light source, which can emit up to 20 mW
of light at 532 nm on single-longitudinal mode and is powered by a constant current supply.
To ensure that the SMI system operates under a low-feedback regime, a variable attenuator
(VA) was inserted next to the output facet of the LD (laser diode) in the external cavity.
The sinusoidal phase modulation was achieved using an electro-optical modulator (EOM,
EO-PM-NR-C4) and signal generator (SG, E-610.S0), in combination with a high-voltage
amplifier (HVA200). The voltage amplifier has a maximum continuous output current of
100 mA, a voltage gain of 20 times, and a maximum output voltage of ±200 V. A polarizer
(P) is inserted after the LD and adjusted in parallel with the EOM active axis to generate
a linear polarized light. The external periodic harmonic vibration was provided by PZT
(PSt150/5*5/20H, coremorrow), which was driven by a signal generator. The PZT has
a movement range of 28 µm with a resolution of 0.15 nm. Changes in laser power were
detected by a photodetector (PD) and converted into current, which was then amplified
by a transimpedance amplifier (TIA) and acquired by a computer via a data acquisition
card (DAQ cards, ISDS205A) with a sampling rate of 1 MS/s. A commercial Doppler
interferometer (LV-IS01, SOPTOP, 0.015 nm resolution) was introduced to the detection
system as a reference displacement of the PZT to verify the accuracy of the measurement
results. A photograph of the experimental setup is shown in Figure 5.
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In this experiment, the EOM was operated at a modulation voltage of 6.75 V and
modulation frequency of 4 kHz, and the PZT was set to 40 Hz with a driving voltage of 9 V.
The proposed OSPM algorithm was used to reconstruct the external vibration displacement,
and the results are presented in Figure 6. Figure 6a,b show the modulated SMI signal and
its corresponding frequency spectrum. The intensities extracted from the first and second
harmonic components are shown in Figure 6c,d. Then, we multiplied the wrapped phase
three and four times, and the results are shown in Figure 6e,f. Finally, the reconstructed
displacement and the reconstruction error are shown in Figure 6g,h, respectively. It can be
seen that the mean square error at N = 4 is approximately 5.4 nm, which is almost half that
of 10.6 nm at N = 3.
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Figure 6. Experimental results. (a) Simulated phase modulating SMI signal. (b) Frequency spectrum
of SMI signal. (c) Intensity of the first harmonic. (d) Intensity of the second harmonic. (e) Extracted
phase from SMI signal (N = 3). (f) Extracted phase from SMI signal (N = 4). (g) Reconstructed
displacement. (h) Displacement reconstruction error.

To further investigate the performance of the OSPM method, reconstruction experi-
ments using the OSPM method were carried out with varying amplitudes. The voltage
applied to the PZT was varied from 5 V to 15 V (corresponding amplitude A = 661–2013 nm)
in steps of 1 V and multiplication times of N = 4, while all other parameters remained
constant. To ensure the accuracy and reliability of the results, the root mean square error
(RMSE) of the reconstructions was calculated from multiple measurements. The experi-
mental results, depicted in Figure 7, demonstrate that the reconstruction error of the OSPM
method remains consistently below 11 nm, and the maximum relative error of 0.75% occurs
at 7V, which is consistently lower than that of the conventional EOM phase modulation
method [26]. This provides further evidence of the superiority of the OSPM approach.
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Getting the higher order Sn and Cn increases the accuracy of the measurements, and the
error will increase at the same time. In fact, when the signal-to-noise ratio (SNR) of the
SMI signal is high, the increase in the error induced by the higher order Sn and Cn is
relatively smaller than the increase in accuracy. When the SNR is low, the error caused
by higher-order Sn and Cn is dominant. In short, the SNR will limit the order of Sn and
Cn. Because of the modulation, the signal is less affected by low-frequency noise, and we
usually do the low-pass filter to improve the SNR to achieve better accuracy.
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Figure 7. Experimental RMS errors of reconstruction based on the proposed OSPM method (in red),
and the conventional EOM methods (in blue) with different driving voltages.

4. Conclusions

To summarize, our research presents a novel approach that improves the precision of
displacement reconstruction by doubling the phase of the orthogonal SMI signal, which
obtained from the sinusoidal phase-modulating SMI signal. A detailed explanation of
the principle of our proposed method has been provided, and its signal processing pro-
cedures are thoroughly described. Both simulated and experimental SMI signals have
been utilized to verify the method. The results demonstrate that the reconstruction error
is less than 11 nm in the amplitude range from 661 nm to 2013 nm. The experimental
results are consistent with the simulations, and the precision can be further improved by
performing more rounds of phase multiplication. Application of the orthogonal signal
phase multiplication method will promote the application of phase-modulated SMI in
displacement measurement with nanometer precision.
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