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Figure S1. Experimental counts as a function of particle number density for
different values of flow rate.



Model for the pulse duration distribution

We assume the parabolic velocity profile with circular symmetry inside a
circular tube/capillary given by:

v(r) =vy [1 — (%)2] (1)

where:

VM=2<V>=2%

with Q as the liquid flow rate.

Eq. 1 gives:
dv r
ar - Mg

Let us consider the particle concentration n uniform inside the liquid and,
thus, a uniform particle number density per unit volume. Therefore, the
number of particles within a certain cylindrical annulus of ray r, thickness
dr, and length L in the tube section will be:

N(r)dr = 2nnrdrL (2)

From Eqg. 1, we have:

r=R[1--2L , dr= — dv
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which can be substituted in Eq. 2 (heglecting the sign) to obtain the velocity distribution:

nnR?

2
N(W)dv = 2nnLR /1—lxR—dv= Ldv
) VM 2Rvy /1—% M

Therefore, the velocity statistical distribution is uniform up to v,,.

However, in a certain measurement time interval AT, only the particles within a distance from the laser
excitation volume L = v AT will be counted. Therefore, the distribution of the number of counted particles over

the time period T will be:



TnR?

N(Wv)dv = VvATAV (4)

The relation between the particle speed v and the transit time t across
the illuminated path of length x (fluorescence pulse duration) is:

X X : H
V= ? = |dV| o t_z |dt| ‘Water flow 4:

Therefore, EQ. 4 gives the pulse duration distribution: —

mmR? x  x mnR?  x? AT
N(t)dt = SAT=dt = AT =dt = K—=dt (5)
vy t t? VM t3 t3
-6
Upto topin = % = 57&% = 322 us according to a laminar flow at 10 mL/h

This model does not have free parameters and gives a reasonable agreement with experimental distribution,
as reported in Figure S2.
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Figure S2. Experimental results for 10 um OFPS microspheres at a flow rate of 10
mL/h. Theoretical distribution calculated according to Eq. 5 with no free
parameters.



However, experimental verifications of Poiseuille’s law often give values of vm lower than the predicted
one [45], and thus this can be considered as an adjustable parameter. A better fit was found for v = 0.158 m/s

which gives:
x 57x107°
tmin_ E = W —361],[5
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Figure S3. Experimental results for 10 um OFPS microspheres at a flow rate of 10
mL/h. Theoretical distribution calculated according to Eq. 5 with vy as a free

adjustable parameter.
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Figure S4. Observed counts in spiking experiment of stained PS MPs in different
types of real water and in DI water. Water was filtered through a 0.7 um filter and
NR concentration was 0.1 mg/L.
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Figure S5. Observed counts in spiking experiment of stained PS MPs in
different types of real water and in DI water. Water was filtered through
a 40 um filter and NR concentration was 5 mg/L.
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Figure S6. Observed counts in spiking experiment of stained PS MPs in
different types of real water and in DI water. Water was filtered through
a 40 um filter and NR concentration was 0.1 mg/L.
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Figure S7. The absorption (blue curve) and emission spectrum (red curve) of Nile
Red used in the present study.
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Figure S8. The spectral response (red curve) of the H10721-110 Hamamatsu
photomultiplier used in the present study.

From:

https://www.hamamatsu.com/eu/en/product/optical-sensors/pmt/pmt-
module/voltage-output-type/H10723-20.html
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Figure S9. The transmission/reflection curves of the dichroic mirror Thorlabs
DMLP550L used in the present study.

From:
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=3313&pn=DM
LP550
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Figure S10. The transmission curve of the long-pass filter Thorlabs FEL0550
used in the present study.

From:
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=6082&pn=FELH0550



