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Abstract: Tightly focused vector fields, which can be generated by focusing a light beam through
a high-numerical-aperture objective, play an important role in nano-optics research. How to fully
characterize this kind of field in the subwavelength scale is a challenging but important task. The
Mie scattering nanointerferometry technique has been proposed to reconstruct the tightly focused
vector field accurately. In this work, we theoretically demonstrate that the technique can be realized
by collecting the transmitted light with two orthogonal polarization states simultaneously. Therefore,
when nanoparticles are employed to scan the fields to be measured, more information of the scattering
field can be acquired in the far field. This is helpful for solving the linear inverse scattering problem
by reducing the number of scanning points, thus making the measurement more efficient.

Keywords: Mie scattering; tightly focused vector field; field reconstruction; polarization decomposition;
T-matrix

1. Introduction

In the research field of the interaction between light and nanoscopic objects, the
enhanced field in the near-field region can be obtained at certain frequencies, which is
also known as optical resonance [1]. Assisted by optical resonance, many interesting
properties of objects can be observed more easily, such as fluorescence emission [2,3],
Raman scattering [4], bound states in the continuum (BIC) [5,6], anapole states [7,8], and
nonlinear optical effects [9,10]. These resonances are closely related to the optical properties
of the nanoparticles, which should be well-designed and fabricated as required. In recent
years, tightly focused vector field has been intensively studied, because many special states
in nanoparticles can be excited under the illumination of such fields. Moreover, it has
been shown that they also have great potential in the fields of optical storage [11], super-
resolution microscopy [12], nano-fabrication [13], and optical micro-manipulation [14].

In recent decades, several techniques have been proposed to characterize the spa-
tial distribution of tightly focused vector fields, including the knife-edge method [15,16],
fluorescence film method [17], nanoscale fluorescence probe scanning method [18], field
scanning optical microscopy [19,20], etc. The knife-edge method records the power of the
transmission light by moving the knife edge, and the intensity distribution near the focus
can be mapped. The method based on fluorescence thin film can indirectly measure the
shape and size of the focus. By employing a nanoscale fluorescence probe, the optical field
is scanned to reconstruct the three-dimensional intensity distribution of the focused light
field by using the relationship between the intensities of the fluorescence signal and the
illumination field. Near-field scanning optical microscope (NSOM) technology can also
provide the intensity distribution of the measured field. However, distributions of phase
and polarization are difficult to measure using the above methods. In 2014, T. Bauer et al.
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proposed a Mie scattering nanointerferometry technique [21] to measure the spatial dis-
tributions of the amplitude, phase, and polarization state of a tightly focused vector field
by using a nanoparticle probe to scan the optical field. It has been demonstrated that the
tightly focused fields by linearly polarized, radially polarized, and azimuthally polarized
beams can be well reconstructed. Furthermore, the technique has been applied to measure
the special light field distribution [22], study the transverse spin of unpolarized light [23],
and develop super-resolution optical microscopy [24]. On the other hand, studying the
interaction mechanism between light and Mie particles will help us to explore new phys-
ical phenomena. For example, the upper limit of circular dichroism can be achieved at
a specific frequency by using light excitation of anapole states in chiral nanospheres [7].
The nonlinear optical properties of a single Mie particle are used to detect the magnetic
components of a light field with arbitrary electromagnetic structures [25]. By observing the
Mie scattering of a single superconducting particle in the superfluid helium quadrupole
magnetic field, the angular distribution of the scattered light intensity is used to determine
the radius of the particle [26]. The Mie scattering nanointerferometry technique can be
employed to experimentally study the properties of Mie particles excited by a vector field.

In this work, we theoretically propose a modified scheme for a Mie-scattering nanoint-
erferometry technique which decomposes the transmitted light according to the polariza-
tion directions and reconstructs the incident field based on the distributions of intensity
and polarization of the transmitted light. Specifically, the incident field is scanned by
the nanoparticle probe, and during the scan process, x-polarized and y-polarized light
distributions at the pupil plane of the collection objective are recorded. By the polarization
decomposition method, more restraint conditions for the tightly focused field can be ob-
tained. Considering the light field is highly concentrated near the focal point, it is suitable
to be expanded by the vector spherical harmonics (VSHs). The light scattering process
is rigorously solved by the T-matrix method. The relationship between the expansion
coefficients and the x- and y- polarized components of the transmitted field has been built.
Therefore, the number of restraint conditions is doubled compared with the previous work,
which only collects the patterns of the total transmitted field. This polarization decompo-
sition method can reduce the spatial scan points, while the restraint conditions are still
sufficient to solve the linear inverse problem. In fact, the measuring time of this technique
mainly depends on the scan process. Therefore, our work can speed up the reconstruction
of the tightly focused vector light fields.

2. Theoretical Model

The scheme for the proposed method is shown in Figure la. The incident beam is
focused by the upper high-NA objective. In the tightly focused vector field, a nanosphere
can produce the scattering field. Then, the combination field of the scattering field and the
incident field is collected by the lower objective with a larger numerical aperture than the
upper one. The polarization beam splitter (PBS) is used to decompose the transmitted beam
according to the polarization directions. Therefore, the x- and y-polarized components of
the transmitted beam are detected by CCD1 and CCD2, respectively. Lens1 and Lens2 are
used to transfer the light field at the pupil plane of the collection objective on the image
planes of CCD devices. During the measurement, the nanosphere is used to spatially
scan the tightly focused vector field on the focal plane (z = 0) as shown in Figure 1b. The
scan is carried out to fully acquire information on the scattering field, which is enough to
reconstruct the incident field. To determine the relationship between the measured field
and the intensity patterns recorded by CCD cameras, we next solve the scattering process
to study the dependence of the incident field on the intensity patterns. In this case, these
measurable patterns can be considered as the constraint condition of the incident field.
Finally, the incident field can be determined by solving the inverse scattering problem.
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Figure 1. (a) The designed setup of the improved Mie scattering nanointerferometry to measure the
tightly focused vector field. (b) The schematic of the nanosphere scan process on the focal plane of
the upper objective.

In order to use nanoprobes to reconstruct the full vector field of tightly focused beams,
the scattering process should be analyzed rigorously. For the nanosphere particle, the
Lorenz-Mie theory is suitable for calculating the scattering field. In this theoretical frame,
the incident field and the scattering field outside the nanosphere are both expanded by
vector spherical harmonics (VSHs) in Equations (1) and (2)

agh

2 umnRngn(kOr) + UmnRgNmn(kOr)]/ (1)
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where ky is the wave vector in free space and r = (r, 6, ¢) represents the location of the field
point and the origin of the spherical coordinate is at the center of the nanosphere. It should
be noted that the incident field is expressed as the summation of regular VSHs, which
have finite value at the origin, while the scattering field contains only outgoing VSHs to
guarantee the radiation boundary condition in the far field. The order of VSH is denoted by
(m, n). When the expansion coefficients (i.e., #;;; and v;,) are determined, the task of field
reconstruction has been completed. The expression in Equation (1) is also called Whittaker
angular spectrum expansion, which is regarded as an efficient method to represent the
tightly focused vector field with wavelength-scale volume [27].
Following the notation of reference [28], the regular VSHs can be expressed as:
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where j, (kr) represents the spherical Bessel function, P} (cos 6) is the associated Legendre

function, and 1, is the Riccati-Bessel function. v is a coefficient which only depends on
the order of VSH.
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The 6-dependent functions of 7" and 7" are expressed as:

m _ mPy(cosf)
" sinf

(6)

m _ dPj(cosB)
T, = — 7)
According to the Lorenz—Mie theory, the scattering coefficient (i.e., 2y, and by,,) can
be calculated by the incident field, i.e., [a,b]” = T[u,v]". The T is a diagonal matrix, which
can be determined by the size and optical constants of the sphere. The diagonal matrix
elements T,; and Ty, are represented as:

_ ZO¢n(k0RS)¢;1(k1RS) _ Zl‘Pn(klRS)ll’ilq(kORS)
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where &,(x) = xh,(}) (x), h,(ql) (x) represents the spherical Hankel function, &,(x) and
Py, (x) represents the derivatives of ¢, (x) and ¥, (x), respectively, and Z; and Z; are wave
impedance in free space and sphere, respectively. When the measured field is scanned by
the nanosphere, the center of the nanosphere deviated from the origin of the coordinate. By
employing the translation transformation rule [29], the effective T-matrix associated with
the nanosphere position should be expressed as:

Ty, = )

Teff(Ro) = Tr(—Ro)TTr(Ro). (10)

where Ry is the displacement vector, which is also the location of the nanosphere center.
The transformation matrix Tr(Rg) can be obtained using the addition theorem of VSHs.
Therefore, the transmitted field can be calculated analytically at each scan step by modifying
the effective T-matrix of nanosphere. In the far-field region, the angular-dependence power
of the transmitted light P(6, ¢) is contributed by both incident field and scattering field.
It has been derived that P(6, ¢) is expressed as the summation of incident, scattered, and
extinct power, where the extinction power here is caused by the interference between the
incident and scattered fields, which has the same expression as the extinction term of Mie
theory. The relevant derivation process is shown in Appendix A. Furthermore, on the
pupil plane of the collection objective, P(6, ¢) can be decomposed by x- and y-polarized
components as expressed as:

P.(6,9) = P (6,9) + P (6,9) + P (6,9), (11)

P,(6,9) = P} (6,9) + P)(6,9) + BL2) (6,9). (12
In Equations (11) and (12), each part of the power can be calculated by the expan-
sion coefficients of incident field and scattering field. Considering the relationship of

[a, b]T = T,f¢(Ro)[u, V] T one can theoretically calculate the far-field distribution of the
light power as follows:

(x/y) (x/y)
1 . x| W w u
Px/y<e,¢>—2Re{[u v][ o M H} (13

Wo1 W
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Here, the w-matrix is determined by the conversion efficiencies between spherical
harmonic functions and plane waves towards the directions of (6, ¢). The expression of
w/¥) matrix is:

T
wl/y) = (x/y) + [ €ff} Wgca y) Tefr + [ fff} E;{t/y) +Wgt/y)Tffff‘ (14)

(x/y)

The (mn, m'n’) elements of the w, ' °" are given in Equations (15)—(22):
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where Z is the wave impedance in free space. The scattered multipole modes (M, and
N,») and incident multipole modes (RgM,,; and RgNmy) have different radial behavior.
However, according to the plane wave expansion of VSH [21], the scattered multipole
modes are just two times larger than that of the incident ones in far field. It can be de-

termined that ng/y) 4w(X/y) and w(X/y ) = ZW(X/y ) By using Equations (13)-(22), the

angular distributions of the lty;ansnutted light 1nten51t1es, Py(8,¢) and Py(6, ¢), can be calcu-
lated for the specific incident field denoted by [u V] T Inthe setup in Figure 1a, Py (6, ¢)
and Py(6,¢) are measurable parameters. To reconstruct the incident field, the inverse
problem of Equation (13) should be solved. Each measured transmitted light intensity can
be considered as a constraint condition, which corresponds to a quadratic equation. During
the scan process, the effective T-matrix depends on the position of the nanosphere on the
focal plane. The number of constraint conditions (i.e., quadratic equations) is proportional
to the number of scan points. In this work, the two orthogonal polarization states are sepa-
rately analyzed, so the number of quadratic equations is doubled compared with the case
that transmitted light are measured without polarization decomposition. The new variables
of F; = Re(AmnA%, ) and G, = Im (A, A%, ) (here, the Ay, is either iy, Or vy, in the
coefficient of expansion) are introduced to transform the nonlinear quadratic equations
into linear equations with the form of WX =Y. When W is a full rank matrix, F; and G;
can be obtained directly by solving the linear equations. Then, the complex expansion
coefficients (i.e., u;; and vy,,) are determined by the gradient descent algorithm based on
the value of F; and G;. Finally, the tightly focused field is reconstructed by Equation (1). In
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the next section, we will consider the reconstruction of the optical field, which is generated
by tightly focusing a radially polarized beam.

3. Results and Discussions

In this section, we will discuss the reconstruction process for the light field which is
generated by tightly focusing a radially polarized (RP) beam. The RP beam is a typical
vector light field with non-uniform distribution in spaces of polarized states, which can
be generated by the superposition of orthogonally polarized Hermite—Gauss modes [30].
An RP beam has an axially symmetric polarization structure in which the electric field is
polarized along radial directions within the transverse plane. In cylindrical coordinates
with r = (p, ¢), the field of an RP beam in paraxial approximation can be expressed as:

Pz A
E(o,¢) = EgLt-e w?e™o?p, (23)
wo
where wy is the beam waist and E represents the electric field amplitude factor. When
the topological charge is zero (i.e., my = 0), using the Richards—Wolf diffraction integral
theory [31,32], the tightly focused field near the focus point (0 = 0 and z = 0) can be
calculated using Equation (24) [15]:

J1(kp sin 8) cos 01,

. gmax .
E(p,¢,z) =—kfe ™/ / g(6) 0 ¢'k2<050 5in 94, (24)
0 iJo(kp sin @) sin 671,

where J,(x) is the Bessel function of the first kind with order n, f is the focus length
of the upper objective, and k is the wavevector in free space. 0,y = 1.12, according
to the sine condition, p = fsinf. Thus, the apodization function can be expressed by
g(0) = ﬁoe’/jOZ Vcos 8 with By = 1.25. The distributions of the three electric field compo-
nents in the focal plane (z = 0) are calculated as shown in Figure 2. The distributions of
[Eyx 12, | Ey | 2 and | E, |2 are shown in Figure 2a—c. The light field travels in the direction
of the z-axis, thereby causing the phase to vary along the z-direction. On the focusing
plane (z = 0), the profile of the wavefront is flat. Due to the presence of a polarization
singularity point at the center of field, there is a 7 phase difference between the light fields
at two points related to origin symmetry, resulting in their oscillation directions being
opposite. Among these three components, | E, |2 is stronger than the other two transverse
components and highly localized near the focus point [33]. This feature of RP beam enables
it to generate a smaller focusing spot than linearly polarized or circularly polarized light.
Therefore, the tightly focused RP beam can be widely used in microscopic imaging [34],
optical trapping [35], and laser machining [36]. How to completely characterize this kind
of light field is crucial to developing these applications.

Next, we will demonstrate the reconstruction process for the tightly focused field
in Figure 2 based on measurable quantity in far field, i.e., the intensity pattern of the
transmitted field through a nanoparticle in this method. To verify the feasibility of phase
retrieval for different electric field components, three reference points are picked arbitrarily.
The phase difference between each two pointsis ¢1 — ¢ =7, $1 — ¢3 =0.5mand ¢y —
¢3 = —0.57. In this model, the gold nanosphere is employed as the probe, whose radius is
40 nm, and dielectric constant is ep, = —3.3915 + 2.3668i. The entire scan range is 1.25 pm
x 1.25 um and the scan step is 25 nm. Thus, 5000 images were recorded for the intensity
pattern of the two polarization states at different nanosphere positions. To validate the
feasibility of our method in experiments, we introduced random noise into each intensity
image during the reconstruction process simulation. Specifically, we added random noise
with a signal-to-noise ratio (SNR) of 15 dB to the intensity image, which is a typical value for
commercial CCD cameras. As the noise from different pixels is independent, we addressed
its impact by integrating the intensity values within specific regions on the CCD image
plane. This approach effectively mitigated the influence of noise. The integrations mean
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to collect the angular-dependent transmitted power Py, (6, ¢) within the corresponding
solid angle Q). When the angular integration region is 0 € [61,0,] and ¢ € [¢1, ¢2], the
integrations are expressed as:

6 9
psim(Q)) = / " sin 646 / " Pe(6,9)dg, (25)
6 ol
02 $2
psim(y) = /9 sin0do [ Py(0,¢)dp. 26)
1 ]
(a) (b) (©
xl 03 |E | (l3 s |E |2 0.8
T o o 1 O 8 y
I 0 < I 0
z 3 z 04
~ ~ i 0.2
-0.5 0 0.5
x (pm) X (,um) x (ﬂm)
0.5 0.5 ) 0.5 "
) ) )
§ 0 3 0 0 3 0
g} > s
' -2 ~ -2
X (um) x (um) X (um)

Figure 2. The intensities of the three electric field components, | Ex | 2| Ey 12, | E,12, are shown in (a),
(b), and (c), respectively. The corresponding phase distributions are shown in (d-f), with ¢1 — dp =,

(bl - (])3 = 0.57‘[, and (1)2 - (b3 = —0.57.

When the integration region is § € [0,0.92] and ¢ € [0, 277], the light power of P{*" and
P31 is calculated when the nanosphere reaches each scan point as shown in Figure 3a,b.
Although the integration region has cylindrical symmetry, according to Equations (14)—(21),
the polarization decomposition method can break the symmetry and introduce more cross
terms between two VSHs with different orders. Therefore, the rank of the equation system
is increased, which is beneficial for the field reconstruction by solving the inverse problem.
In Figure 3c—f, sector integration regions are adopted with 6 € [0,0.92] and ¢ € [0, 1] for
Figure 3¢,d, and 6 € [0,0.64] and ¢ € [0, 3] for Figure 3e f. Furthermore, it is necessary to
increase the number of equations by selecting more different integration regions, until the
full-rank matrix is obtained for the equation system. To avoid the overlap between different
regions, the areas of the integration regions become smaller, which will heighten the impact
of noise and diminish the precision of the reconstructed field. In this work, 14 integration
regions were selected to determine the constrained conditions for the measured field.
When reconstructing a field using only the distributions of total intensity (i.e., sum of Pg*™
and P;*™) under the same conditions, the coefficient matrix for the inverse problem may
not be full-rank, thereby requiring more scanning steps and integration regions to attain
enough constraint equations. However, using the polarization decomposition technique
can provide more constrained conditions in the Mie scattering nanointerferometry method,
making it particularly suitable for reconstructing complex light fields with a significant
number of multipole modes.



Photonics 2023, 10, 496

8of 13

o)
0.5 ;
-0.5 -
-0.5 0 0.5
X(jum)
(b

y(pm)

) %1072
05 7.6
75
0 7.4
73
-0.5 7.2
—0.5 0 0.5 —(i.S . 0 i 0..5 —0.5 0 0.5

X(pum) X(pem) X(pem)

Figure 3. Theoretical scanning images of the optical power Py and Py of transmitted light power
within different integral regions. The integration regions are adopted with 6 € [0,0.92] and ¢ € [0, 27]
for (a,b), 6 € [0,0.92] and ¢ € [0, 1] for (c,d), and 6 € [0,0.64] and ¢ € [0, 3] for (e f).

By solving the quadratic equation system, the expansion coefficients of u;,, and vy
can be uniquely determined. In this work, the maximum n-order of VSHs, including in
the reconstruction process, was 1max = 5. By recombining VSHs using these coefficients,
the total field in Figure 4 can be obtained. In comparison with the results calculated by
Richards-Wolf formulation in Figure 2, the amplitude distribution remains consistent, while
the phase distribution shows minor alterations due to the introduction of noise. According
to the phase at the three reference points, the results of ¢1 — ¢ = 0.9907, d1 — b3 = 0.493m,
and ¢, — ¢3 = —0.4977 are basically the same as the theoretical values. Therefore, the
proposed method is reasonably robust to noise. To test the convergence of the method with
different values of nmax, we conducted a reconstruction of the light field with #max = 6, the
results of which were largely in agreement with those depicted in Figure 4, thus indicating
that nmax = 5 is adequate for reconstructing the specific light field.

(d) h X (pm) (i) ’ x (pm)

0.5 b | 0.5 )
fz; 0 | E:L 0 0
- -

-2
-05 -0.5
-0.5 0 0.5 0.5 0 0.5
X (pom) X (pm)

Figure 4. Reconstruction results of a tightly focused radial polarization vector beam. The intensities
of the three electric field components, | E | 2 Ey | 2 |E,I12
The corresponding phase distributions are shown in (d-f), with ¢; — ¢ = 0.9907, ¢1 — b3 = 0.493m,

and ¢, — ¢z = —0.4977.

, are shown in (a), (b), and (c), respectively.

To further verify the method, the tightly focused field of radially polarized light in
Equation (23) with nonzero topological charge was considered. When mg = 1, using the
Richards-Wolf diffraction integral theory, the field distribution expression near the focus is
expressed as:
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. Gmax .
E(p,¢,z) =—kfe ™/ /0 g(0)e'?

L (Jo(kpsin®) — J»(kpsin6)) cos 01,

2 .
3 (Jo(kpsin ) + J»(kpsin6)) cos 7 e'kz0s0 5in 0dg. (27)
—J1(kpsin @) sin 671,

For the case of my = 1, the distributions of the three electric field components in the
focal plane (z = 0) is calculated as shown in Figure 5. The reference points for comparison
of phase distribution have been marked in Figure 5d—f. The phase difference between each
two points can facilitate the validation of the reconstruction results.

(b) (©)
0.5 0.4
0.4 0.4
. - 0.3
0.3 § o 0.3 5
3 0.2
02 Y 02 7
0.1 0.1 0.1
-0.5 -0.5
X (pm) x (pm)
©) ® |
5 0.5 5 0.5 5
g T
0 3 0 0 X 0 0
> | >
7 s 2 s 2
-0.5 0 0.5 -0.5 0 0.5 -0.5 0 0.5
x (£2m) X (frm) X (fom)

Figure 5. Theoretical results of a tightly focused vector field for the incident radially polarized beam
with mg = 1. The intensities of the three electric field components, | Ex 12, Ey | 2 |E, |2, are shown
in (a), (b), and (c), respectively. The corresponding phase distributions are shown in (d-f) with
C])1 — (1)2 = 0.018, (1)1 - Cb3 = —0.013. and Cb2 — (1)3 = —0.310.

The Mie scattering process using a golden nanosphere was analyzed using the pro-
posed numerical model. The power integrations of Pi*" and P at each scan position
are shown in Figure 6. During the scan process, the scan range, scan step, and selected
integration regions are consistent with the case of m = 0 in Figure 3.

()

0.5
0 ..
—0.5 .
-0.5 0 0.5

x(um)

-0.5 ) ) 0 0.5
x(um) X(um) x(um)

Figure 6. Theoretical scan image of the transmitted light power within specific angular region for RP

input beam carrying the topological charge of my = 1. The integration regions are 6 € [0,0.92] and

¢ € [0,27] for (a,b), 8 € [0,0.92] and ¢ € [0, 1] for (c,d), and 6 € [0,0.64] and ¢ € [0, 3] for (e f).

The reconstruction of amplitude and phase distributions are shown in Figure 7. Differ-
ent from the case of my = 0, the E,-component exhibits a doughnut shape with zero intensity
at the center of the beam, where the intensities of transverse components Ey and Ey are
enhanced. These features have been comprehensively discussed in previous works [37]. By
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comparing the results in Figures 5 and 7, the reconstructed field is shown to be consistent
with the rigorous calculation results using vector diffraction theory. Therefore, this method

is suitable to measure tightly focused fields by various kinds of beams as discussed in
Ref. [1].

(c
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Figure 7. Reconstruction results of a tightly focused vector field for the incident radially polarized
beam with my = 1. The intensities of the three electric field components, |Ex | 2 Ey 12, |E,12, are
shown in (a), (b), and (c), respectively. The corresponding phase distributions are shown in (d—f)
with ¢1 — ¢ =0.004, 1 — p3 = —0.018, and ¢ — $3 = —0.220.

4. Conclusions

In conclusion, we have theoretically proposed a polarization decomposition method to
measure a tightly focused field based on Mie scattering nanointerferometry. By collecting
the x- and y-components of the transmitted field from the nanosphere in the far-field
region, more constraint equations for the measured expansion coefficients can be obtained.
Therefore, the number of spatial scan points and integration regions necessary to solve the
inverse scattering problem is reduced, thus making the measurement more efficient. The
scheme can acquire the information of scattering field efficiently and provide an excellent
platform to study the interaction between light and Mie particles [38].
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Appendix A

In order to ascertain the relationship between the transmission power P and the expan-
sion coefficient, we employed the following derivation process. The intensity pattern of the
transmitted light in the far-field region is generated by three terms in Equations (A1)—(A3):
the incident power density, the scattering power density from the nanosphere, and the
interference term between the two fields.

1
Pin = ERe[Ei*n X Hin}/ (Al)
1 .
Psca = zRe[Esca X Hsca]/ (AZ)
1 * *
Pext = =Re[E};, X Hgca + Ely X Hip]. (A3)

2

The interference term in Equation (A3) is defined as the extinction term because it has
the same expression with the extinction power in classical Mie theory [28]. This term is
essential for retrieving the phase of the incident field, as the phase relationship between
the scattering field and the incident field is retained in this term. According to the far-field
angular spectra of the vector spherical harmonic functions, the magnetic field components
can be calculated using the expansion coefficients of umn and vmn. In this work, the
incident field and the scattering field are decomposed into the x-direction and y-direction:

E;, = Elx+ ELy, (A4)
Esco = Egeox + Esycay- (A5)
where each item in (A4) and (A5) are given in Equations (A6)—(A9):
1 'Ymn m m . m P im¢
[(Umnm 7Ty 4+ VnT' ) COS P —1(Umm T, + Omnmry, ) sing|exp | ik-r |e™?, (A6)
’Ymn m MY oz : m Pl ime
[(Umnm 7Ty 4 O T ) SINQ +i(Umm Ty + OmnmTTy, ) cOs Pl exp | ik -7 ™7, (A7)
i " 'le’l m m : m P im
[(amnmmTl + bynT") cos ¢ —i(amn Ty + bynm7t™) singlexp ( ik -7 )e™?, (A8)
i " r)/mn m my . . m = 5\ i
[(@pnm 7T + by T") SN +i(Amu T2 + bynm7!) cos gl exp | ik-7 |e™?. (A9)

By combining Equations (A1)—(A9), the power expression for each part can be ex-
pressed in matrix form:

(x/y) (x/y)7
(x/y) _ 1 { ok in1l  Win12 | |4
PEY = “Red [wr v |Vinil V2 H} (A10)
" 2 (Winal  Wingy | LV
[ (x/y) (x/y)]
1 w1 | W w a
PV = zRe{[a* bW M}/ (A11)
[Wsea 21 Wsea,22
(x/y) (x/y) (x/y) (x/y)
(x/y) _ 1 o] | Wert 11 Wext12]| |Q  1x] | Wexrt 11 Wexrt12| |U
P zRe{[“ V][ (/) /) M +la b][w@x;y)) w?ff/y)] M} (A12)
ext,21 ext,22 ext,21 ext,22
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The total intensities of the transmitted field for x- and y-polarized components in
Equation (13) are the sum of Equations (A10)-(A12).
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