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Abstract: Free electron laser (FEL) is capable of producing ultra-short X-ray pulses. The estimation of
X-ray pulse propagation is the key process of X-ray FEL beamline design. By using the Kostenbauder
matrix approach, the evolution of an ultra-short pulse in a beamline system can be calculated.
Therefore, it is of significant importance to investigate the Kostenbauder matrices of different kinds of
X-ray optics. In this work, we derive a unified 6 × 6 optical matrix to describe various kinds of X-ray
optical elements, including varied-line-spacing (VLS) toroidal grating, VLS spherical grating, VLS
cylindrical grating, VLS plane grating, toroidal grating, spherical grating, cylindrical grating, plane
grating, toroidal mirror, spherical mirror, cylindrical mirror, and plane mirror. These optics are usually
adopted in soft X-ray regime. We apply this method to describe the transverse focusing, pulse front
tilt, and pulse stretching after an X-ray pulse going through a VLS plane grating monochromator
(VLS-PGM). We also use this approach to simulate a grating compressor which can be used to
compress chirped soft X-ray pulse. This work is helpful in the design and optimization of X-ray
beamline systems.

Keywords: free electron laser; pulse propagation; dispersion; X-ray optics

1. Introduction

X-ray free electron laser (XFEL) can generate ultrashort X-ray pulses with extremely
high intensities [1,2]. The XFEL pulses are manipulated by X-ray optics in the beamline,
such as focusing, collimation, compression, and monochromatization, before being trans-
ported to the experimental endstations. In soft X-ray regime, FEL beamline systems usually
adopt reflective optics with grazing incidence angles, such as plane mirror, KB mirror [3–5],
and varied-line-spacing (VLS) grating, which are components of monochromators and
spectrometers [6–10]. To evaluate the X-ray beamline systems, several software packages
have been developed, such as Shadow [11], SRW [12], HYBRID [13], xrt [14], and MOI [15].
These packages can effectively describe the spatial distribution of an X-ray beam after going
through a beamline.

With the development of FEL facilities, the pulse duration of XFEL can now reach
femtoseconds and attoseconds. To characterize the spatiotemporal properties of FEL pulses
going through a dispersive X-ray beamline, scientists have to consider the spatiotemporal
effects of XFEL pulses, such as spatial chirp, angular dispersion, pulse front tilt, pulse
stretching, pulse compression, and so on. However, there is still a lack of simulation tools to
estimate the spatial and temporal properties of XFEL pulse propagation in X-ray beamlines.

Pulse propagation in dispersion systems can be analyzed using the Fourier trans-
form method [16,17], which is essentially a time-dependent mode decomposition (TDMD)
method. We discussed the application of TDMD to propagate 3-dimensional XFEL pulses
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in beamlines [18]. Here, we will discuss another method for pulse propagation, namely the
Kostenbauder-matrix (K-matrix) method. This approach can be used to describe the propa-
gation of an ultrashort pulse going through a linear optical system. It was first presented
by Kostenbauder in [19]. Then, Akturk et. al. developed a general theory to characterize
spatiotemporal properties of ultra-short pulses by using K matrices [20]. Afterwards, Mar-
cus extended K matrices from 4 × 4 to 6 × 6 in [21]. By using the method of K matrices,
the spatiotemporal properties mentioned above can be well estimated. Although the frame-
work of pulse propagation by using K matrices has been established, the K matrices of
X-ray optical elements adopted in X-ray beamline have not been investigated yet.

In this paper, the K matrices of different types of X-ray optics are investigated, and
the applications of X-ray pulse propagation in X-ray optical systems are studied. The
paper is organized as follows. We first review pulse propagation by using K matrices in
Section 2, including the definition and formulation of K matrices, pulse propagation in
real space, and Wigner phase space. In Section 3, we derive a unified K matrix to describe
different types of X-ray optics. This unified matrix nominally belongs to VLS toroidal
grating, and can further reduce to describe VLS spherical grating, VLS cylindrical grating,
VLS plane grating, toroidal grating, spherical grating, cylindrical grating, plane grating,
toroidal mirror, spherical mirror, cylindrical mirror, and plane mirror. Applications of our
method for VLS plane grating monochromator (VLS-PGM) and grating pulse compressor
are discussed in Section 4. We first apply our model to simulate pulse stretching, pulse
front tilt and pulse focus after a VLS plane grating monochromator (VLS-PGM), and the
benchmark is performed by using Shadow and SRW. Then, we apply our method to
estimate X-ray chirped pulse compression by a grating compressor. A summary is given
in Section 6. This work is useful to estimate the spatiotemporal coupling induced by the
dispersive optics in X-ray beamline systems.

2. Pulse Propagation by Using Kostenbauder Matrices

In this section, the approach of pulse propagation by using K matrices is reviewed [19–21].
We first introduce the definition of K matrices in Section 2.1. Then, pulse propagation in
real space is discussed by using the generalized Huygens integral in Section 2.2. Finally,
pulse propagation in Wigner phase space is introduced in Section 2.3.

2.1. Kostenbauder Matrices

To characterize an ultra-short pulse, 6-dimensional vector V= (x, θx, y, θy, t, v)T are
required. Here, x and y are the transverse coordinates. θx and θy denote the divergences. t
and v refer to time and frequency. The optics and free space can be described by 6× 6 K
matrix.

K =



∂xout
∂xin

∂xout
∂θxin

0 0 0 ∂xout
∂vin

∂θxout
∂xin

∂θxout
∂θxin

0 0 0 ∂θxout
∂vin

0 0 ∂yout
∂yin

∂yout
∂θyin

0 ∂yout
∂vin

0 0 ∂θyout
∂yin

∂θyout
∂θyin

0 ∂θyout
∂vin

∂tout
∂xin

∂tout
∂θxin

∂tout
∂yin

∂tout
∂θyin

1 ∂tout
∂vin

0 0 0 0 0 1


=



Ax Bx 0 0 0 Ex

Cx Dx 0 0 0 Fx

0 0 Ay By 0 Ey

0 0 Cy Dy 0 Fy

Gx Hx Gy Hy 1 I

0 0 0 0 0 1


. (1)

The physical interpretations of the elements in the K matrix are summarized in Table 1.
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Table 1. The physical meaning of each element in the K matrix.

Ax,Ay Bx,By Cx,Cy

Transverse
magnification

Configuration of
the system

Focusing or
Defocusing

Dx ,Dy Ex,Ey Fx,Fy

Angular
magnification

Spatial chirp Angular
dispersion

Gx,Gy Hx,Hy I

Pulse front tilt Time vs. Angle Group delay
dispersion

For a system with n elements including free space, the K matrix of the system is
expressed as

K = Kn · · ·K3K2K1. (2)

If a pulse goes through this system, the output coordinates can be written as a linear
combination of the initial coordinates

Vout = KVin. (3)

The K matrix of free space with length L is given by

Kfree =



1 L 0 0 0 0
0 1 0 0 0 0
0 0 1 L 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


. (4)

2.2. Real Space Propagation

It is well known that ray tracing in an optical system can be characterized by ordinary
ABCD matrix, and this is equivalently described by Huygens integral [22]. Similarly, pulse
propagation by using K matrix can also be presented by the spatiotemporal Huygens
integral [19–21]. After going through an optical system which can be described by K matrix,
the amplitude of the pulse can be expressed as

E(x, y, t) = E0 exp

−i
π

λ0


x

y

−t


T

Q−1


x

y

t


, Q =


Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

, (5)

where λ0 is the central wavelength of the ultra-short pulse. x, y are the lateral position
deviation from the pulse center, and t is the time deviation from the pulse time center. The
Qout matrix at the output can be obtained by transforming Qin with the system matrix K.
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Qout =


Ax 0 0

0 Ay 0

Gx Gy 1

Qin +


Bx 0 Ex/λ0

0 By Ey/λ0

Hx Hy I/λ0




Cx 0 0

0 Cy 0

0 0 0

Qin +


Dx 0 Fx/λ0

0 Dy Fy/λ0

0 0 1


. (6)

Then, the output pulse is obtained by substituting Qout into Equation (5). Actually, it
is easy to transform the Q matrix in (x, y, v), (θx, θy, v) and (θx, θy, t) domains. More details
can be found in reference [20]. Pulse propagation in real space by using K matrices can
describe spatiotemporal coupling which is produced by dispersive optical elements, such
as blazed grating, asymmetry-cut multilayer, and asymmetry-cut crystal.

2.3. Wigner Phase Space Propagation

It is apparent that Equation (5) can not transform to (x, θx), (y, θy) and (t, v) domains,
which are called Wigner phase space. Here, we define the distribution of a pulse in Wigner
phase space.

W(t, v) = W0 exp


 t

v


T

Ω

 t

v


, Ω =

Ω11 Ω12

Ω21 Ω22

. (7)

To propagate in Wigner space, the first step is to obtain the 6-dimensional K matrix of the
system. Then, the K matrix reduces to a 2-dimensional matrix.

Ktv =

1 I

0 1

. (8)

The output Ωout matrix is expressed as

Ωout = K−1
tv

T
ΩinK−1

tv . (9)

A chirped pulse in (t, v) phase space can be expressed by using the Ω matrix. Similarly, the
Ω matrices in (x, θx) and (y, θy) domains can be obtained by calculating the Kxθx and Kyθy

of the system. We have understood the method of pulse propagation by using K matrices.
In the next section, we investigate the K matrices of X-ray optics.

3. Kostenbauder Matrices of X-ray Optics in XFEL Beamline

The optics generally adopted in soft XFEL beamline systems include mirrors and
gratings. Mirrors include plane mirror, cylindrical mirror, spherical mirror, and toroidal
mirror, while gratings include plane (VLS) grating, cylindrical (VLS) grating, spherical
(VLS) grating and toroidal (VLS) grating. These optics can be described by a unified model:
Toroidal VLS grating. In this section, we first derive the unified K matrix, which can reduce
to the K matrices of the above X-ray optics. Then, we discuss the X-ray optics in different
orientations.

3.1. Unified Model of X-ray Optics

As shown in Figure 1, an XFEL pulse incidents on a toroidal VLS grating with angle
α, and reflects with angle β. The radiuses in the meridian and sagittal directions are Rm
and Rs, respectively. The groove density N = N0(1 + b2w), where n0, b2, and w are the
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central groove density, VLS parameter, and grating coordinate along the meridian direction,
respectively. The ABCD matrices of plane grating and spherical VLS grating can be found
in references [23,24], which can propagate the transverse information of a pulse. Here, we
derive the 6-dimensional K matrix of Toroidal VLS grating (upward orientation).

K =



1 0 0 0 0 0

− cos β+cos α
Rs

1 0 0 0 0

0 0 −C f f 0 0 0

0 0 n0b2mλ0
C f f cos2 α

+
1+C f f

Rm cos αC f f
− 1

C f f
0 − n0mλ2

0
cos βc

0 0 n0mλ0
c cos α 0 1 0

0 0 0 0 0 1


, (10)

where c, λ0, and m are the speed of light, central wavelength, and diffraction order, re-
spectively. C f f = cos β/ cos α and is called the asymmetry parameter. In Appendix A, we
provide more detailed derivations of Equation (10).

Figure 1. Schematic illustration of the unified optics model: Toroidal VLS grating.

Equation (10) can almost reduce to the K matrices of all the optical elements in soft
XFEL beamline by adjusting the parameters in the K matrix of Toroidal VLS grating. In
Table 2, the corresponding parameters of different kinds of optics are summarized.

Table 2. Parameters of different types of optics. Here, X denotes the relevant parameter remaining
unchanged. For gratings with constant spacing, we only need to set b2 = 0.

Rm Rs C f f b2 n0

Toroidal VLS grating X X X X X

Spherical VLS grating Rm = Rs X X X

Cylindrical VLS
grating X ∞ X X X

Plane VLS grating ∞ ∞ X X X

Toroidal grating X X X 0 X

Spherical grating Rm = Rs X 0 X

Cylindrical grating X ∞ X 0 X
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Table 2. Cont.

Rm Rs C f f b2 n0

Plane grating ∞ ∞ X 0 X

Toroidal mirror X X 1 0 0

Spherical mirror Rm = Rs 1 0 0

Cylindrical mirror X ∞ 1 0 0

Plane mirror ∞ ∞ 1 0 0

3.2. Kostenbauder Matrices in Different Orientations

Generally, the X-ray optics in XFEL beamline are oriented in different directions,
including upward, downward, leftward, and rightward directions. Equation (10) is the K
matrix in upward orientation. The matrices in other orientations can be obtained by

K = R−1KupR, (11)

where R is the transformation matrix of coordinate. The transformation matrices are given
in Equation (12). By substituting the transformation matrices Rdown, Rleft, and Rright into
Equation (11), the matrix Kup can be transformed to downward, leftward, and rightward
orientations, respectively.

−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


︸ ︷︷ ︸

Rdown

,



0 0 −1 0 0 0
0 0 0 −1 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1


︸ ︷︷ ︸

Rleft

,



0 0 1 0 0 0
0 0 0 1 0 0
−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1


︸ ︷︷ ︸

Rright

. (12)

4. Examples of Application

Having obtained the K matrices of X-ray optics, we can calculate pulse propagation
in X-ray optical systems. In this section, we apply K matrices to estimate pulse properties
through the grating monochromator and grating compressor.

4.1. Grating Monochromator in FEL Beamline

In this subsection, we first briefly introduce a typical VLS-PGM that may be adopted
in soft XFEL beamlines. Then, we apply K matrices to investigate the spatiotemporal
coupling of an ultra-short Gaussian pulse through the monochromator. The configuration
of VLS-PGM is shown in Figure 2. It consists of a plane pre-mirror, a VLS plane grating,
and an exit slit. The function of the pre-mirror is to change the incident angle of the grating
and keep the offset of the beamline constant. The VLS plane grating can focus the pulse at
the exit slit and disperse different wavelength components. The exit slit is used to filter the
spatial dispersive pulse, then a monochromatic pulse is obtained.

For the design of VLS-PGM in the XFEL beamline, we hope to obtain high resolving
power and tiny pulse stretching. Therefore, the estimations of pulse widths after the grating
and at the exit slit are required. Here, we apply the optical matrix approach to simulate the
monochromator. The distance l from the source to the pre-mirror is 206.5 m. The distance d
between the pre-mirror and grating is 0.5 m. The distance from the grating to the exit slit is
118 m. The grazing angle of the pre-mirror is 1.313◦. The parameters of source and grating
are summarized in Table 3. The K matrix of the VLS-PGM system is given by

Kmono = Kr′
freeKgrating

down Kd
freeKmirror

up Kl
free, (13)
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where Kr′
free, Kgrating

down , Kd
free, Kmirror

up and Kl
free are the K matrices of free space with distance r′,

VLS plane grating in downward orientation, free space between pre-mirror and grating, pre-
mirror in upward orientation and free space with distance l, respectively. These matrices
can be obtained by using the method in Equations (10)–(12). The spatiotemporal response
of VLS-PGM can be calculated by using the model of pulse propagation in real space.

Figure 2. Schematic illustration of the VLS-PGM. Here, r is the distance from the source point to the
grating, and r′ is the distance from the grating to the exit slit.

Table 3. Simulation parameters of VLS-PGM.

Source Parameters

λ0 [nm] σx [µm] σy [µm] σt [fs]

1 30.25 30.25 29.73

Grating parameters

n0 [1/m] b2 [1/m] α [◦] β [◦]

3 × 105 2.882 × 10−2 89.062 88.312

Before the VLS plane grating, the pulse intensity distribution in the (y, t) domain is
shown in Figure 3a. The pulse intensity distribution after the grating is shown in Figure 3b,
and we can observe the pulse front tilt effect. Mathematically, the pulse widths after the
VLS plane grating can be described by

σyb = σyaC f f , (14)

σ2
tb = σ2

ta + (Gyσya)
2, (15)

where σya and σta are the r.m.s of intensity in the vertical dimension and pulse duration
before the VLS plane grating, respectively. σyb, σtb are r.m.s of intensity in the vertical
dimension and pulse duration after the VLS plane grating, respectively. Equation (15)
shows that the pulse duration after the VLS plane grating is the convolution of the initial
pulse duration and the stretched term induced by the grating.

The pulse intensity distribution after propagating 59 m from the grating is presented in
Figure 3d. It is obvious that pulse rotation occurs due to the focusing effect of VLS grating.
In the focus, as shown in Figure 3e, we can find that the pulse is focused in transverse, and
the pulse duration is stretched.

Here, we use Shadow and SRW to benchmark the approach of pulse propagation
by using K matrices. We also compared pulse propagation using the TDMD method
and the K-matrix method. Figure 3c shows the calculation of the horizontal intensity
distribution at the focus (exit slit). The simulation results indicate that the K-matrix
approach makes a great agreement with Shadow SRW, and TDMD. Figure 3f shows the
vertical intensity distribution at the focus. We can find that the intensity profile calculated
by the K-matrix approach is broader than the results calculated by Shadow and SRW,
and the results calculated by K-matrix method exhibit a high degree of concordance
with those estimated by the TDMD method. This is because simulations performed by
Shadow and SRW are under the assumption of a single wavelength and can not describe the
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spatiotemporal couplings. However, the methods using K matrices and TDMD can describe
pulse propagation which includes temporal distribution and spectral information(Fourier
transform limited bandwidth). That means different wavelength components are dispersed
in the focus of the VLS grating, and the intensity width is undoubtedly larger than the
results calculated by Shadow and SRW. Mathematically, the pulse widths at the focus can
be expressed as

σ2
yd = (σys

r′

rC f f
)2 + (

Fyr′

4πσts
)2, (16)

σtd = σtb, (17)

where σys and σts are the r.m.s. of intensity width in the vertical dimension and pulse
duration at the source point, respectively. σyd and σtd are the r.m.s. of intensity width
in the vertical dimension and pulse duration at the focus, respectively. The first term in
Equation (16) is corresponding to the magnification (demagnification) and agrees with the
results estimated by Shadow and SRW. The second term in Equation (16) is corresponding
to dispersion. In Figure 3f, the r.m.s. of the intensity calculated by K matrix is 14.37 µm, and
that of the intensity calculated by Shadow and SRW is around 9.58 µm, which is closed to
demagnification term σysr′/rC f f = 9.57 µm. The dispersion term Fyr′/4πσts = 10.71 µm.
Certainly, we have σyd =

√
9.572 + 10.712 µm = 14.37 µm. Compared with the TDMD

method, the K-matrix method offers a more simple computational process and demands
comparatively fewer computational resources.

Figure 3. The pulse distributions in (y, t) domain at different positions. (a) Before the VLS grating, σy

and σt are 544.39 µm and 29.73 fs. (b) After the VLS grating, σy and σt are 981.09 µm and 44.64 fs.
(d) After propagating 59 m from the VLS grating, σy and σt are 490.71 µm and 44.64 fs. (e) At the
focus (exit slit), σy and σt are 14.37 µm and 44.64 fs. (c) At the focus, the transverse intensity profiles
estimated by Shadow, SRW, TDMD, and K matrix. (f) At the focus, the vertical intensity profiles
calculated by Shadow, SRW, TDMD, and K matrix. Here, the transverse (vertical) intensity is the
projected intensity of the 2-D contour plot in the transverse (vertical) coordinate.

4.2. Pulse Compressor in XFEL

In this subsection, the application of optical matrix in a soft XFEL pulse compressor
is studied. We first establish the K matrix of a typical negative group delay dispersion
(GDD) grating compressor. Then we calculate an up-chirped XFEL pulse going through
the grating compressor.

Figure 4 is a typical negative GDD grating compressor that can be used to compress
up-chirped soft X-ray FEL pulses. The compressor consists of two identical blazed grating
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G1, G2, and the distance between G1 and G2 is N. The incident angles of G1 and G2 are
α1 and α2, while the diffraction angles are β1 and β2. The diffraction orders of G1 and G2
are 1 and −1, respectively. By adjusting the distance N, we can change the GDD of the
compressor Table 4.

Figure 4. Schematic illustration of negative GDD grating compressor.

Table 4. Parameters of negative GDD grating compressor.

Distance G1 G2 G1 (m = +1) G2 (m = −1)

N [m] n0 [1/m] α1 [◦] β1 [◦] α2 [◦] β2 [◦]

2.167
× 10−2 1.2 × 106 88.37 84.87 84.87 88.37

The K matrix of the compressor is given by

Kcompressor = KG2
downKfreeKG1

up, (18)

where KG2
dow, Kfree, and KG1

up are the K matrices of G2 in downward orientation, free space
with distance N/ cos β1 and G1 in upward orientation, respectively. The pulse compression
can be calculated by using Ω matrix pulse propagation in Wigner phase space.

In this calculation, the FWHM of the bandwidth of the up-chirped soft X-ray FEL
pulse is 0.88%. The central wavelength and the FWHM of pulse duration are 3 nm and
10 fs, respectively. The simulation parameters of the negative GDD compressor are given in
Table 4. The Wigner distribution of the input pulse is shown in Figure 5a, and the Wigner
distribution of the output pulse is shown in Figure 5b. For K-matrix method, the 1-D
spectral and temporal distribution in Figure 5c,d is obtained by projecting the 2-D Wigner
distribution in Figure 5b onto the photon energy axis and time axis, respectively. We can
observe that the pulse duration changes from 10 fs to 0.5 fs. As shown in Figure 5c,d, we
compared the K-matrix method and the TDMD method, and the calculation shows that the
simulation results of these two methods are highly consistent.
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Figure 5. (a) The Wigner distribution of the up-chirped pulse before the compressor. (b) The Wigner
distribution of the pulse after the compressor. (c) The normalized spectral intensity distribution after
the compressor. (d) The normalized temporal intensity distribution after the compressor.

5. Discussion

The simulation of XFEL pulse propagation is a key process in beamline design. Several
simulation packages are usually adopted, such as Shadow [11], SRW [12], HYBRID [13],
xrt [14], and MOI [15]. The above software can be used to simulate steady-state beam
propagation, where the beam does not have temporal distribution. These software tools
can provide a good evaluation of the transverse beam propagation characteristics in non-
dispersive optical systems, but cannot simulate the spatiotemporal coupling effects in
dispersive optical systems. The TDMD method [16–18] and the K-matrix method [19–21]
can be classified as time-dependent beam propagation, where the beam is pulsed and has
temporal distribution. The two methods can not only describe the transverse propagation
characteristics of X-ray pulses very well but also accurately simulate the spatiotemporal
coupling effects generated in dispersive optical systems, such as spatial chirp, angular
dispersion, pulse front tilt, and so on. Compared to the TDMD method, the K-matrix
method has the advantages of simpler calculation and less dependence on sampling.

This work extended the method of pulse propagation by using K matrices to X-ray
regime and derived the K matrices of different types of X-ray optics. We applied our
method to simulate two typical dispersive X-ray systems: a grating monochromator and
a grating compressor. By using this approach, the spatiotemporal properties of ultra-
short X-ray pulses in dispersive systems can be well simulated. Our approach and the
existing simulation tools [11–15] demonstrate good complementarity in beamline design
and optimization. Based on the characteristics of the various simulation tools mentioned
above, we can choose simulation tools according to our needs in beamline design and
simulation.

6. Conclusions

In this paper, we derived a unified 6-dimensional K matrix to describe the optics
in soft XFEL beamline. This unified matrix can reduce to different types of X-ray optics,
including plane mirror, cylindrical mirror, spherical mirror, toroidal mirror, plane grating,
cylindrical grating, spherical grating and toroidal grating, plane VLS grating, cylindrical
VLS grating, spherical VLS grating, and toroidal VLS grating. By using this method,
we can simulate X-ray pulse propagation in real space and Wigner phase space. We
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successfully applied this method to calculate pulse propagation through a VLS-PGM.
The simulation benchmark was performed by using Shadow and SRW, and the results
make great agreement with our method. We also found some differences which arise
from different assumptions. Simulations of Shadow and SRW are carried out under the
assumption of a single wavelength, while our method of pulse propagation includes
spectral information which corresponds to a Fourier transform limited bandwidth. We also
discussed the application in the simulation of a grating compressor.
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Appendix A. The Derivation of the Unified Model

An X-ray beam can be regarded as composed of a group of particles with different
coordinates, and the state of these particles can be described by (x, y, t, θx, θy, v). The
reference particle’s coordinates are located at the origin, and its propagation path is called
the optical axis. Specifically, x, y, t are the spatial coordinates, describe the position of the
particle relative to the reference particle. The positive direction of the coordinate axis t
always corresponds to the direction of reference particle propagation. The coordinate axes
x and y are perpendicular to t and are used to describe the lateral position. As shown in
Figure A1a , The spatial coordinate system of the X-ray beam and the coordinate system
of the toroidal VLS grating are independent of each other. θx, θy describe the angle of
the particle’s propagation direction relative to the reference particle, and v represents the
frequency difference between the particle and the reference particle. The coordinate system
of the toroidal VLS grating is composed of the meridian direction M, the sagittal direction
S, and the normal direction N of the optical element surface. The grooves of toroidal VLS
grating is perpendicular to the meridian direction.

The unified optics model is nominally a VLS toroidal grating. To obtained the K matrix
of this unified model, we need to make the following assumptions:

• Paraxial approximation: θx and θy are small.
• The radius of curvature RM and RS and are much larger than the beam size.

Based on the definitions and assumptions mentioned above, we will derive the K
matrix of the toroidal VLS grating in the following subsections. The derivation process is
decomposed into the sagittal dimension, meridional dimension, and time dimension. The
optical ray mentioned in the following is the propagation path of the particle.
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Figure A1. (a) Illustration of the coordinate system. (b) Illustration of ray propagation in the sagittal
dimension. (c) Illustration of ray propagation in the meridian dimension.

Appendix A.1. Sagittal Dimension

In sagittal dimension, it is easy to obtain that the transverse magnification ∂xout/∂xin
and the angular magnification ∂θxout/∂θxin are 1. Here, we focus on the deviation of
the focusing term ∂θxout /∂xin. In Figure A1b, we present two rays (green curves) going
through the toroidal VLS grating, where both rays are incident in a parallel manner. Ray 1
is the reference ray, which is incident at point O, and both the incident and reflected rays
are within the meridian plane NOM. Ray 2 is incident at point O1, which is offset from
O by a distance S in the sagittal direction. As the toroidal VLS grating has a curvature
of RS in the sagittal direction, The plane spanned by the incident and reflected vectors
of ray 2 is inclined to the meridian plane by an angle η. The normals at points O and O1
intersect at point K. O′ is a point on the M-axis and O′K is the unit vector in the direction
of the incident ray. O′A1 and O′B1 are the unit vectors of the reflected rays, O′A and O′B,
respectively. Points C and D are the orthogonal projections of points B′ and A′ onto the
lines ON and O1N1, respectively. According to the assumptions postulated previously,
the quadrilateral A′B′CD can be approximated as a rectangle, and hence, it follows that
the length of segment A1B1 is approximately equivalent to that of CD. Therefore, we can
obtain the angle by which the reflected ray deviates from the direction of the reference ray.

θxout ≈
A1B1

O′A1
≈ CD ≈ ηCK =

S
RS

(cos α + cos β), (A1)

where, η = S/RS, and CK = O′K cos α+O′B1 cos β = cos α+ cos β. Based on the definition
of coordinate system, we have

∂θxout

∂xin
= ±cos α + cos β

Rs
. (A2)

For optical elements possessing a concave surface in the sagittal plane, a positive
deviation S in the sagittal direction of the incident point relative to the reference incident
point causes a negative angular deviation in the reflected ray. Conversely, for optical
elements possessing a convex surface in the sagittal plane, a positive deviation S in the
sagittal direction of the incident point relative to the reference incident point results in a
positive angular deviation in the reflected ray. In Equation (8), the toroidal VLS grating is
concave in both the meridian and sagittal directions, so a negative sign is used.

Appendix A.2. Meridian Dimension

In Figure A1c, two parallel rays are incident on the toroidal VLS grating. Ray 1 is the
reference ray, which is incident at point O, while Ray 2 is incident at point O′, which is
offset from O by a distance M in the meridian direction. Due to the curvature of the optical
element in the meridian direction, which is denoted as Rm, and the variation of the grating
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line density in the meridian direction, the reflected beam of Ray 2 will have an angular
difference with respect to the reference ray. The grating equation is given by

sin α + sin β = n(M)mλ, n(M) = n0(1 + b2M). (A3)

Then, we have

∆β =
∆nmλ

cos β
− ∆α

cos α

cos β
, (A4)

where
∆α =

M
RM

, ∆n = Mn0b2. (A5)

The angle of the reflected ray deviation from the reference ray can be expressed as

θyout = ∆β− ∆α =
Mn0b2mλ

cos β
−

M(1 + C f f )

RMC f f
. (A6)

where, the deviation M = −yin/ cos α. Thus,

∂θyout

∂yin
=

n0b2mλ

cos α2C f f
+

1 + C f f

RM cos αC f f
. (A7)

The transverse magnification can be written as

∂yout

∂yin
= −OO′ cos β

OO′ cos α
= −C f f . (A8)

The angular magnification and angular dispersion can be derived from Equation (A3)

∂θyout

∂θyin
=

∆β

∆α
= − cos α

cos β
= − 1

C f f
,

∂θyout

∂vin
=

∆β

∆v
= −n0mλ2

cos βc
. (A9)

Appendix A.3. Time Dimension

As is well known, the pulse duration of an ultrashort pulse will be stretched after
passing through a grating, and the stretching term can be expressed as

τ =
Nmλ

c
≈ Wn0mλ

c
= yin

n0mλ

c cos α
, (A10)

where N is the number of grooves covered by the footprint of the incident beam. Thus the
term corresponding to pulse front tilt is given by

∂tout

∂yin
=

n0mλ

c cos α
. (A11)
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