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Abstract: The propagation characteristics of Airy beams in an inhomogeneous medium with periodic
potential are studied theoretically and numerically. The Gross–Pitaevskii equation was solved with
periodic potential using the separating variables method, and a breathing soliton solution and the
breathing period were obtained. Further, the propagation properties of an Airy beam, and the
interaction between two Airy beams while considering the medium parameters and beam parameters
were numerically simulated in detail. First, we discuss the influence of the initial medium parameters
(modulation intensity P and modulation frequency ω) on the propagation characteristics. Then, we
investigate the effect of the initial beam parameters (initial chirp C and position x0) on the propagation
characteristics. Lastly, the interaction of two Airy beams with opposite spatial positions for different
phase ϕ, amplitude A, and initial interval x0 is analyzed. The breathing period and central position of
the breathing solitons could be controlled by changing the initial medium parameters. By varying the
initial beam parameters, the deflection direction and size, and the maximal intensity of the breathing
solitons were manipulated. The breathing solitons of different bound states were formed by changing
the phase ϕ, amplitude A, and initial interval x0 of two Airy beams. The results provide a theoretical
basis for the propagation and manipulation of Airy beams.

Keywords: Airy beam; breathing soliton; periodic potential; propagation characteristics

1. Introduction

The realization of self-bending and even self-revolving light has always been the
dream and pursuit of scientists. About 40 years ago, the pioneering work of Berry and
Balazs [1] proposed the dispersion-free Airy wave. Because of the similarity between
the Schrödinger equation in quantum mechanics and the paraxial equation in optics, this
concept has been extended to the field of optics. Airy beams are nondiffractive, self-bending,
and self-accelerating, that is, the field profile along the propagation direction is unchanged
and can achieve self-acceleration deflection without the refractive index gradient and
self-heal of the main lobe in the presence of obstacles [2–5]. The propagation properties
of Airy waves in nonlinear media [6–10], and the interaction between Airy waves and
other waves [11] could have many interesting and important applications, such as vacuum
electron accelerators [12], light bullets [13,14], optical particle manipulation [15–17], and
optical routing [18]. These application prospects render Airy beams a very popular, exciting,
and groundbreaking hot topic.

Periodic potential is one of the most fundamental concepts in physics. Periodic
structures are widely found in nonlinear physical systems [19], such as Bose–Einstein
condensates [20], fluid mechanics [21], and optics [22]. This type of complex physical
system, which has been widely investigated, has periodic modulation effects on waves that
propagate through it. For example, applying an electrostatic field to the periodic lattice of
electrons causes them to periodically oscillate in the spatial and frequency domains, that is,
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the Bloch oscillation effect. The optical analogies of electron Bloch oscillation effects were
also demonstrated in many systems, such as waveguide modulators [23], photonic spectral
lattices [24], fiber loops [25], and plasmas [26]. The periodic potential intermittently regu-
lates the waveform and spectrum of the initial input beam, resulting in periodic changes
in the energy and width of the beam, and the generation of breathing solitons [27,28].
When these effects are combined with an Airy beam’s propagation properties, the Airy
beam obtains unique propagation properties that further enrich the shape of the signal for
optical communication.

Due to the effect of periodic potential in inhomogeneous media, the central position
and intensity of the beam periodically change to form breathing solitons. In the forma-
tion, propagation, and manipulation of breathing solitons when various forms of beams
propagate in periodic potentials, numerous scientific issues remain to be resolved.

As an effective method for manipulating the propagation of light beams, linear [29]
and parabolic [30] potentials change the propagation trajectory of light beams. There is little
research on the generation and manipulation of the breathing solitons of self-bending and
self-bent Airy beams in an optical lattice with periodic nonlinear potential. Airy beams also
generate breathing properties in an inhomogeneous medium with periodic potential, and
their self-accelerating and self-bending properties enrich the morphology of the breathing
beam. This paper studies the propagation characteristics and interactions of Airy beams in
periodic potential, and seeks ways to manipulate their breathing period and morphology.

2. Theoretical Model

In paraxial approximation, the nonlinear Schrödinger equation can be used to describe
the propagation of a laser beam in an inhomogeneous medium with periodic potential. The
normalized form for the nonlinear (2+1)D Schrödinger equation is as follows [19]:

i ∂ψ(x,y,z)
∂z = − 1

2
∂2ψ(x,y,z)

∂x2 − 1
2

∂2ψ(x,y,z)
∂y2 + V(x, y)ψ(x, y, z)

+g|ψ(x, y, z)|2ψ(x, y, z)
(1)

In Equation (1), ψ(x, y, z) is the light field, x and y are the dimensionless transverse
space position, z is the dimensionless longitudinal propagation distance, V(x, y) is the
potential coefficient, and g is the general nonlinear coefficient. When the general nonlinear
refractive index is greater than 0, the beam is self-focusing, and when the general nonlinear
refractive index is less than 0, the beam is self-defocusing. Equation (1) is also known as
the Gross–Pitaevskii equation (GPE). Researchers have studied the analytical solution of
the generalized (2+1)-dimensional particle equation. However, its stable soliton solution is
only present in an inhomogeneous medium with periodic potential and a fixed modulation
frequency, and the exact derivation of the period of the breathing solitons is unknown. The
periodically varying potential field studied in this paper satisfies the following [19]:

V(x, y) = V[(x + 2π)/ω, (y + 2π)/ω] (2)

where ω is the repetition frequency of the periodic potential. The most common periodic
potential, V(x, y), can be expressed as follows:

V(x, y) = P[cos(ωx) + η cos(ωy)] (3)

Due to the periodic structure of the lattice, the periodic potential model is widely used
in the study of various crystal materials and devices. In Formula (3), P is the modulation
strength of the periodic potential, and η is the anisotropy factor. Thus, the normalized form
of the (2+1) GPE is as follows:

i ∂ψ(x,y,z)
∂z = − 1

2
∂2ψ(x,y,z)

∂x2 − 1
2

∂2ψ(x,y,z)
∂y2 +

P[cos(ωx) + η cos(ωy)]ψ(x, y, z) + g|ψ(x, y, z)|2ψ(x, y, z)
(4)
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The exact solution of nonlinear Schrodinger Equation (4) with a periodic potential re-
mains a great challenge. In this paper, we find a breathing soliton solution for Equation (4),
and demonstrate the relationship between the period of the breathing solitons and the
characteristic inhomogeneous medium parameters. The results play an important role in
guiding the propagation of Airy beams. Equation (4) can be solved by using the separation
of the variables. Assuming that the solution of optical waves propagated in an inhomoge-
neous medium with periodic potential had the form of ψ(x, y, z) = eiµzu(x, y), Equation (4)
could be converted into the following form:[

∂2u(x,y)
∂x2 + ∂2u(x,y)

∂y2 − 2µu(x, y)
]
+

2P[cos(ωx) + η cos(ωy)]− 2µ− 2g|u(x, y)|2 −
(

ω
2
)2

= 0
(5)

where µ is the chemical potential and the normalized period of the inhomogeneous medium.
The two parts of Equation (5) were assumed to be zero. Then,

2P[cos(ωx) + η cos(ωy)]− 2µ− 2g|u(x, y)|2 −
(ω

2

)2
= 0 (6)

∂2u(x, y)
∂x2 +

∂2u(x, y)
∂y2 − 2µu(x, y) = 0 (7)

When g = 1, we have the class of the periodic soliton solution of Equation (6):

u(x, y) =
√

2P

 √
1− a2 cos

(
ω
2 x
)
+ εa
√

η cos
(

ω
2 y
)

+i
(

a cos
(

ω
2 x
)
− ε
√

η(1− a2) cos
(

ω
2 y
))

 (8)

µ = −P(1 + η)− 1
2

(ω

2

)2
(9)

where a is an arbitrary constant from −1 to 1. From Equation (9), we can interpret the
period of the wave function in the mode of propagation into the following form:

λ =
2π

P(1 + η) + 1
2
(

ω
2
)2 (10)

The 1D GPE can be expressed as follows [31]:

i
∂ψ(x, z)

∂z
= −1

2
∂2ψ(x, z)

∂x2 + V(x)ψ(x, z) + g|ψ(x, z)|2ψ(x, z) (11)

The most common periodic potential V(x) can be expressed as follows:

V(x) = P cos(ωx) (12)

Using the same method of separation of variables, could can obtain a class of the
periodic soliton solutions of (1+1)D GPE:

u(x) =
√

2P
[√

1− a2 cos
(ω

2
x
)
+ ia cos

(ω

2
x
)]

(13)

µ = −P− 1
2

(ω

2

)2
(14)

Therefore, the special periodic solutions of Equation (12) with g = 1 were obtained:

ψ(x, z) =
√

2P
[√

1− a2 cos
(ω

2
x
)
+ ia cos

(ω

2
x
)]

e−i(P+ 1
2 (

ω
2 )

2)z (15)
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Through Analytical Equation (15), we could interpret the period of the wave function
in the mode of propagation into the following form:

λ′ =
2π

P + 1
2
(

ω
2
)2 (16)

The above theoretical analysis shows that the periodic soliton solutions existed in
an inhomogeneous medium with periodic potential. The law described in Formula (15)
is applicable to the evolution of beams of other shapes in an inhomogeneous medium
with periodic potential. When the shape of the incident beam is different, the shape of the
breathing solitons is different, but the breathing law is similar. Therefore, some evolution
rules of the beam were obtained from Formula (15). Therefore, we predicted that the period
would decrease with P and ω. The prediction results were consistent with the numerical
simulation results.

Next, we discuss the propagation properties of a single Airy beam and two Airy beams
with opposite spatial positions in an inhomogeneous medium with periodic potential.
When studying the propagation characteristics of a single beam, the field distribution of
the initial Airy beam can be written as follows:

ψ(x, 0) = Ai(x− x0) exp[a0(x− x0)] exp[iC(x− x0)] (17)

where x0 is the translational distance of the beam’s transverse position; and a0 is the decay
factor associated with an infinite Airy mode that has a positive value, so that the infinite
Airy tail could be contained; C is the quadratic chirp factors of the Airy beam; Ai(x) is an
Airy function, whose expression is as follows:

Ai(x) =
1

2π

∫ ∞

−∞
exp

[
i
(

u3

3
+ xu

)]
du (18)

In order to study the interaction of Airy beams, a more complex incident beam should
be constructed. The Airy beam was composed of two parallel Airy beams at opposite
acceleration directions. Consequently, we assumed that the incident beam consisted of
two spatially opposed Airy beams with a constant phase difference and distinct amplitudes:

ψ(x, z = 0) = A1 Ai[(x− x0)] exp[a0(x− x0)] exp[iC(x− x0)]+

A2 exp(iϕ)Ai[(x + x0)] exp[a0(x + x0)] exp[iC(x− x0)]
(19)

where A1 and A2 are the relative amplitudes of the two Airy beams; ϕ is the phase factor
controlling the phase shift between the two Airy beams: when ϕ = 0, the two Airy beams
were in-phase; when ϕ = π, they were out-of-phase.

3. Analysis of Numerical Calculation Results

The electric field distribution was equivalent in the x and y directions of Equations (1)–(4);
thus, the propagation properties of Airy beams were similar in the x and y directions.
To reduce the computational complexity, we only considered the (1+1)D GPE in the
numerical simulation.

It is generally difficult to solve the nonlinear Schrödinger equation with analytical
methods, and only various approximate numerical methods can be used. The split-step
Fourier method is a widely used numerical method in the problem of light wave transmis-
sion in nonlinear media. Its basic idea is to separate the diffractive and nonlinear effects to
simulate their interaction. First, the transmission length is divided into many small and
equal intervals called step lengths. When the beam propagates in the first 1/2 step, it is
only affected by the diffraction effect. After the operation is completed, the calculation of
the latter 1/2 step is performed. Only the influence of nonlinear effect is considered in the
latter 1/2 step. This calculative process is repeated until the final transmission distance is
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calculated. Then, various storage data from the beginning are output to the final position,
including on strength, width, frequency, and peak position.

In this paper, the propagation characteristics of an Airy beam in an inhomogeneous
medium with periodic potential are studied. When Airy beams with different initial param-
eters propagate in an inhomogeneous medium with varying initial parameters, different
types of breathing characteristics are evidently formed. We discuss the characteristic pa-
rameters of a periodic potential inhomogeneous medium (modulation frequency P and
modulation strength ω) (Figures 1 and 2), and the influence of the characteristic param-
eters of Airy beams (chirp C and initial position x) (Figures 3 and 4) on the propagation
characteristics of a single Airy beam. In order to further investigate the interaction between
two Airy beams at opposite spatial positions in an inhomogeneous medium with periodic
potential, the propagation characteristics of Airy beams with different phases ϕ (Figure 5),
amplitudes A (Figure 6) and positions x0 (Figure 7) are discussed.
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Figure 1. Spatial propagation characteristics of Airy beams in optical lattices with four different
modulation intensities when a0 = 0.3 and ω = 0.1: (a) P = 3, (b) P = 6, (c) P = 9 and (d) P = 12; (e) central
position evolution of Airy beams; (f) maximal intensity evolution of Airy beams: P = 3 (black line),
P = 6 (red line), P = 9 (blue line) and P = 12 (green line).
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Figure 2. Spatial propagation characteristics of Airy beams in optical lattices with four different
modulation frequency levels when a0 = 0.3 and P = 3: (a) ω = 0.03, (b) ω = 0.06, (c) ω = 0.09 and
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3.1. Propagation Characteristics of a Single Airy Beam in an Inhomogeneous Medium
with Periodic Potential

Figure 1 shows the propagation diagram of an Airy beam in an inhomogeneous
medium with different modulation strength levels when truncation coefficient a0 = 0.3
and modulation frequency ω = 0.1. Figure 1a–d show the propagation characteristics
of the Airy beam’s intensity, and Figure 1e,f demonstrate the changes in the center of
mass and intensity of the Airy beam, respectively. Asymmetric spatial solitons could
be formed when the broadening caused by diffraction and the compression caused by
the modulation effect of the inhomogeneous medium with periodic potential reached a
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balance. The incident Airy beam in the inhomogeneous medium was localized in the
transverse position, and its diffraction phenomena during propagation were reduced to
some extent by the nonlinear effect, which formed the breathing features of a periodic
S-type oscillation. In the initial propagation phase of the Airy beam, diffraction plays a
dominant role, and the beam is widened. However, as the propagation distance increases,
the nonlinear effect dominates. Due to the high nonlinear effect at the center of the lattice,
the Airy beam gathers up to the center and is compressed in the process. When its peak
reaches a certain value, the Airy beam is reflected in the opposite direction because of the
potential well of the lattice that it encounters. The beam is then spread and reflected again.
Thus, periodic breathing behavior with sigmoid oscillations occurs. When modulation
intensity P increases, the nonlinear effect of the corresponding central region also increases,
and the inhomogeneous medium has more power to bind the Airy beams. As a result, the
breathing period of the Airy beam becomes shorter during propagation (Figure 1e,f). The
above analysis shows that the breathing period of Airy space solitons can be controlled by
varying the inhomogeneous medium’s modulation intensity. The numerical simulation
results of the effect of modulation intensity P on the breathing period of Airy space solitons
in an inhomogeneous medium with periodic potential are basically consistent with the
theoretical analysis of Equation (16).

The modulation frequency ω of the inhomogeneous medium is an important param-
eter affecting breathing speed. Simulations were performed to investigate the effect of
the modulation frequency on the breathing solitons created by the Airy beam. Figure 2
shows the propagation of an Airy beam in an inhomogeneous medium with different
modulation frequencies when truncation coefficient a0 = 0.3 and modulation intensity
P = 10. Figure 2a–d show the propagation characteristics of the intensity of an Airy beam.
Figure 2e,f show the changes in the center of mass and intensity of the Airy beam, re-
spectively. When propagating into an inhomogeneous medium, an Airy beam could be
bound to the inhomogeneous medium for stable propagation, and form breathing optical
solitons with periodic sigmoid oscillations (Figure 2a–d). The breathing solitons show local
characteristics in the spatial distribution direction, and periodic breathing characteristics
in the propagation direction. As modulation frequency ω increases, for the same longitu-
dinal propagation distance (Z = 100), the pulsation period gradually decreases, and the
frequency gradually increases (Figure 1e,f). Modulation frequency ω can slightly change
the maximal intensity of the breathing solitons (Figure 2f). Breathing solitons conserve
energy throughout the propagation. The above analysis shows that the breathing period
of Airy spatial solitons can be controlled by changing the lattice modulation frequency.
The numerical simulation results of the breathing period of the Airy spatial solitons were
basically consistent with the theoretical analysis in Formula (16).

The period of the Airy beam propagating in inhomogeneous medium with periodic
potential was calculated. The relationship between the two characteristic parameters of
the medium and the period of the Airy breathing soliton show that the period of the
Airy breathing soliton monotonously decreased with the increase in modulation intensity
(Figure 3a) and modulation frequency (Figure 3b); the rate of the decrease in the breathing
period was rapidly reduced. The above analysis shows that the period of Airy breathing
solitons could be controlled by changing the characteristic parameters of inhomogeneous
media. The statistical numerical simulation results of the Airy breathing soliton period
were basically consistent with the theoretical analysis in Formula (16).

Initial chirp C is an important characteristic parameter of Airy beams, and a numerical
simulation study was conducted to explore its effects on breathing soliton production by
Airy beams. Figure 4 shows the propagation diagram of Airy beam with different initial
chirps in an inhomogeneous medium when truncation coefficient a0 = 0.3, modulation
intensity P = 10, and modulation frequency ω = 0.1. Figure 4a–d show the propagation
characteristics of the intensity of an Airy beam, and Figure 4e,f show the changes in the
center of center of mass and intensity of an Airy beam, respectively. The results show that, as
the initial chirp C increased, the propagation dynamics of the Airy beam also changed with
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vibration. As chirp parameter C increased, both the maximal central position (Figure 4e)
and the maximal oscillation amplitude of the Airy beam (Figure 4f) increased. However, in
the propagation process, the propagation characteristic frequency remained unchanged,
while the multipeak structure became inconspicuous. When the absolute values of the chirp
parameters were equal, the corresponding maximal oscillation amplitude was the same,
but the Airy beam was deflected in the opposite direction, while its shape and motion state
were the same (Figure 4e). Meanwhile, the energy of the breathing solitons was conserved
throughout the propagation. The above analysis shows that the direction, magnitude, and
maximal intensity of the spatial soliton deflection could be controlled by changing initial
chirp C of the Airy beam.

By choosing an appropriate initial transverse position x0 of the Airy beam in inhomoge-
neous media, the direction of the binding force on the beam caused by the nonlinear force of
the periodic potential can be changed. To investigate the effects of initial transverse position
x0 on the generation of breathing solitons with an Airy beam, numerical simulations were
conducted. Figure 5 shows the propagation of an Airy beam with different initial positions
in an inhomogeneous medium when truncation coefficient a0 = 0.3, modulation intensity
P = 10, and modulation frequency ω = 0.1. When x0 < 0, the Airy beam was deflected in a
negative direction from its lateral negative in the first half period, but in a positive direction
from its lateral position in the second half period (Figure 5a,b). The deflection direction of
the Airy beam was the opposite of the deflection direction when x0 < 0 (Figure 5c,d). Even
if the transverse position of an incident Airy beam does not overlap with the nonlinear
potential, Airy beams could periodically reproduce their initial envelope shape during
propagation in order to attain properties such as being diffraction-free over long distances.
The Airy beam had a side lobe to the left of the main lobe during its initial propagation.
However, when the propagation distance was the 1/4 λ ≤ z ≤ 3/4 λ cycle, the side lobe was
located on the right-hand side of the main lobe. Moreover, when the propagation distance
was the 3/4 λ ≤ z ≤ λ period, the side lobe was again on the left-hand side of the main
lobe due to the periodic potential Airy beam leading to two reversions of the intensity
distribution. The above analysis implies that the deflection direction and size, and the
maximal intensity of the spatial solitons can be controlled by changing the initial position
x of Airy beams.

3.2. Propagation Characteristics of Two Airy Beams with Opposite Spatial Positions in an
Inhomogeneous Medium with Periodic Potential

Figure 6 shows the interaction diagram of positive/negative Airy beams with different
values of initial phase ϕ when truncation coefficient a0 = 0.3, initial amplitude A1 = A2 = 1,
modulation intensity P = 10, modulation frequency ω = 0.1, and initial interval B = 1. When
ϕ = 0, the Airy beams propagated in the same phase, resulting in a mutually attractive
force. Because B = 1, the positions of the main lobes of the two Airy beams basically
coincided, and the attraction of the interaction between two Airy beams was the strongest.
Therefore, almost all of the energy of the two Airy beams converged at the central position,
where the breather was formed (Figure 6d). When ϕ = π, the Airy beams propagated in
the reverse phase, and the interacting force was repulsive. In the propagation, when the
repulsive force was balanced with the binding force of the periodic potential well, the
energy was evenly distributed on both sides, forming the double soliton phenomenon of
periodic breathing (Figure 6a). When the initial phase took on other values, the energy
of the Airy beams underwent an S-shaped lateral deviation, resulting in its energy being
alternately distributed on both sides of the center of the transverse position within the
same period (Figure 6b,c,e,f). When −π < ϕ < 0, the Airy beams first deflected to the
right-hand side of the transverse position and then periodically propagated in an S-shaped
trajectory (Figure 6b,c). When 0 < ϕ < π, the propagation situation was exactly the opposite
to that when −π < ϕ < 0 (Figure 6e,f). The larger the ϕ was, the larger the central position
deflection (Figure 6g) and maximal intensity (Figure 6h) of Airy beams are.
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Figure 7 shows the interaction diagram of two Airy beams with opposite spatial
positions with truncation coefficient a = 0.3, modulation intensity P = 10, modulation
frequency ω = 0.1, initial interval B = 1, initial phase ϕ = 0, and initial amplitude A1 6= A2.
When A1 6= A2, the interaction of the Airy beams is affected, and the stronger beam
amplitude dominates the interaction, as can be seen in Figure 7a,b, resulting in changes
in the propagation characteristics of the interaction. When A1 > A2, the central position
of an Airy beam first deflected to the left and then to the right when it encountered the
potential well of the lattice. When A1 < A2, the deflection direction was opposite to that
when A1 > A2 (Figure 7c). The propagation characteristics of the amplitude of Airy beams
were consistent when A1 = 1 and A2 = 3 and when A1 = 1 and A2 = 3.

Figure 8 shows the interaction diagram of two Airy beams with opposite spatial
positions with different values of initial interval x0 when truncation coefficient a0 = 0.3,
initial amplitude A1 = A2 = 1, modulation intensity P = 10, modulation frequency ω = 0.1,
initial phase ϕ = 0, and two in-phase Airy beams attracted each other (Figure 8a1–e1), and
two antiphase Airy beams repelled each other (Figure 8a2–e2). First, the interaction between
two Airy beams at the same direction and different intervals was studied. When x0 = 3,
due to the mutual attraction, the energy of the main lobe of the Airy beams converged near
the central position to form breathers. The attraction between the side lobes was weak, and
the energy that it radiated outwards was also bounced back after meeting the potential well
to form symmetric tails on both sides (Figure 8c1). As the interval between tnhe main lobes
gradually decrease, the energy of some side lobes also converged to the central position,
and the number of the breathing solitons gradually decreased (Figure 8a1,b1). When x0 = 0,
the space between the main lobes was small, and the energy of the two Airy beams was
concentrated near the central position to form breathers (Figure 8a1). With the increase in
x0, the space between the main lobes gradually increased, and the number of produced
breathing solitons increased due to the interaction between the Airy beams (Figure 8c1,d1).
Second, the interaction between two reverse-incident Airy beams at different intervals was
studied. When x0 = 3, the energy of the Airy beams transmitted in the opposite direction
converged to form two breathing solitons near the central position due to the repulsive force.
Meanwhile, the energy of the main lobes of the two beams was symmetrically distributed
on both sides (Figure 8c2). Significantly, the reverse-incident Airy beams displayed multiple
breathing solitons at all values of initial interval x0.
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4. Conclusions

In this paper, the propagation characteristics of Airy beams in an inhomogeneous
medium with periodic potential, and the interaction between two Airy beams with oppo-
site spatial positions were studied. By reasonably selecting the initial parameters of the
inhomogeneous medium and the Airy beams, the latter could exhibit the transmission
characteristics of varying periods, intensities, and deflection directions and sizes, whereas
the two Airy beams with opposite spatial positions exhibited multiple breathing solitons
with periodic changes. First, when a single Airy beam propagated in an inhomogeneous
medium, the beam exhibited localized properties in the spatial distribution direction, and
periodic breathing properties in the propagation direction. When the initial parameters
of an inhomogeneous medium were altered, the breathing period of the Airy breathing
solitons decreased as modulation intensity P and frequency ω increased. The deflection
direction and size, and maximal intensity of the Airy breathing solitons changed with the
initial chirp C and position x0 of Airy beam when its initial parameters were altered. Then,
the propagation characteristics of two Airy beams with different phase ϕ, amplitude A, and
position x0 in inhomogeneous media were investigated. Multiple bundles of breathing soli-
tons with different bound states could be formed, which enriched the morphology of Airy
breathing solitons to perfect the soliton theory. In a word, these research results serve as a
guide for the investigation of laser propagation characteristics in complex physical systems.
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