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Abstract: Chirped X-ray pulse compression is a promising approach for generating ultra-short X-ray
free electron laser (XFEL) pulses. The design of X-ray pulse compressors requires the careful control
of group delay dispersion (GDD), which plays a critical role in achieving optimal compression.
However, the penetration dispersion of crystals and multilayers can induce an extra GDD, which
may result in over-compression or under-compression. In this study, we investigate the penetration
dispersion of crystals and multilayers theoretically and numerically. Our results indicate that the extra
GDD induced by the penetration effect increases as the bandwidth of the rocking curve decreases.
Moreover, the extra GDD is nonlinear and can be mitigated by optimizing the configuration of X-ray
pulse compressors. This work provides insights into the dispersion compensation and configuration
optimization of X-ray pulse compressors, which are essential for generating ultra-short XFEL pulses.

Keywords: free electron laser; chirped pulse compression; dispersion; X-ray optics

1. Introduction

In the past few decades, great achievements have been made in the development of
attosecond light sources, especially techniques based on high-order harmonic generation
(HHG) [1–5]. These attosecond techniques have paved the path for ultrafast science, such
as electronic dynamics in atoms, molecules, and materials [6–9]. Up to now, the covered
radiation wavelength range of HHG has been from 100 nm to a few nanometers [10–13].
Although the spectral range has been extended to the kilo-electron volts level (soft X-ray
region) [11], the harmonic conversion efficiency is very low. Therefore, it is difficult to
extend HHG to a hard X-ray regime. The developments of X-ray free electron laser (XFEL)
user facilities [14–19] around the world have offered another way to produce ultrashort
X-ray pulses. The wavelength range of XFELs is from soft X-rays to hard X-rays. The
existing XFELs usually operate in the self-amplified spontaneous emission (SASE) [20,21]
mode, self-seeding mode [22–24], and external-seeding mode [25–27]. The pulse duration
of XFELs depends on the lasing part of the electron bunch, and the typical pulse duration
is about a few to a hundred femotoseconds.

In order to reduce the pulse duration of XFELs down to the attosecond magnitude,
various schemes have been proposed and investigated [28–38]. These approaches are
mainly based on electron bunch manipulation. Some of these schemes are implemented
by selecting a small portion of the electron bunch for lasing, such as the emittance spoiled
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technique by using a slotted foil [32], the electron bunch tilt control for fresh slice FEL by
adopting a dechirper device [35–37], and the electron bunch slice selecting by employing
the orbit dispersion technique [38]. The other schemes are based on current modulation by
an external laser [28–31], and pulse–train or isolated attosecond pulses can be produced.

Different from the approaches of electron bunch manipulations, there are other
schemes based on chirped X-ray pulse compression. These approaches require a chirped
XFEL pulse which can be realized by the lasing of a chirped electron bunch [39]. For the
case of an up-chirp pulse, the frequency of the pulse tail is larger than that of the pulse
head. Then, after going through a negative group delay dispersion (GDD) compressor,
the pulse head travels a long optical path, while the pulse tail walks through a short path.
Therefore, the pulse tail will catch up with the pulse head, which results in pulse com-
pression. In the soft X-ray regime, diffraction gratings and asymmetric multilayers can
be adopted [40–42]. In the hard X-ray regime, crystal-based compressors are suggested,
such as strained crystals [43] and asymmetric crystals [44,45]. Recently, a scheme toward
a femtosecond–terawatt hard X-ray pulse by using the chirped pulse amplification con-
cept was proposed in FELs [46]. These approaches describe the bright future of pulse
compression in the X-ray regime.

For X-ray pulse compressors, the effect of pulse compression arises from the GDD,
which is induced by angular dispersion and penetration dispersion. The angular dispersion
has been investigated in references [41,44]. However, the penetration dispersion of the
crystals and multilayers has not been studied yet. In this work, we focus on the investigation
of the GDD caused by penetration dispersion. This paper is organized as follows. In
Section 2, we first review the GDD caused by the angular dispersion of asymmetric-cut
crystals and multilayers. Then two typical X-ray pulse compressors with positive GDD and
negative GDD are reviewed. In Section 3, we investigate the dispersion of the penetration
effect of asymmetric-cut crystals and multilayers, and the group delay (GD) and GDD
induced by the penetration effect are studied. In Section 4, the configuration optimization
of X-ray pulse compressors is studied by considering the extra GDD of penetration effect,
and the application of X-ray pulse compressors is discussed by using LCLS-II parameters.

2. GDD Caused by Angular Dispersion

In this section, the GDD arising from the angular dispersion of two typical compressors
is reviewed [40,41,47]. The angular dispersion of asymmetric-cut crystals and multilayers
is reviewed in Section 2.1. Then, we review two typical configurations of X-ray pulse
compressors in Section 2.2. One can produce negative GDD, and it consists of two or
four identical dispersion devices shown in Figure 1. Another one is capable of generating
positive GDD and comprises two identical dispersion devices and two concave mirrors
shown in Figure 2.

Figure 1. Configuration of the negative GDD compressor in Bragg geometry. C1, C2, C3, and C4 are
four identical asymmetric-cut multilayers or crystals.
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Figure 2. Configuration of positive GDD compressor in Bragg geometry. C1 and C2 are two identical
asymmetric-cut multilayers or crystals.

2.1. Angular Dispersion of Asymmetry-Cut Crystals and Multilayers

The angular dispersion of asymmetric-cut crystals was first investigated in [44]. Es-
sentially, the angular dispersion of asymmetric-cut crystals (multilayers) is the refractive
effect at the interface between vacuum and the surface of crystals (multilayers). It is well
known that pulse compressors consist of a couple of dispersive optics, such as gratings and
prisms. Similar to blazed grating, asymmetric-cut crystals and asymmetric-cut multilay-
ers can serve as dispersive devices in the X-ray regime. For asymmetric-cut crystals and
multilayers, the Bragg condition can be equivalently expressed as

D(cos α− cos β) = mλ, (1a)

2D sin η sin θB = mλ, (1b)

where λ, m, and η are the wavelength, diffraction order, and asymmetry angle, respectively.
D = d/ sin|η|, where d is the lattice spacing of crystals or the period of multilayers. The
angles α and β present the angles between the crystal surface vector to the incident vector
and the reflected vector, respectively. More details about the definitions of the angles can be
found in Appendix A. It is obvious that Equation (1a) is similar to the grating equation. The
equation of the angular dispersion of asymmetric-cut crystals and multilayers is given by

∂β

∂λ
= − 1

λB

(
1 +

1
γ

)
tan θB, (2)

where γ is the asymmetry ratio. It should be stressed that there is no angular dispersion in
symmetric-cut geometry (γ = −1), and dispersion only exists in asymmetric-cut geometry
(γ 6= −1). This is the reason why asymmetric-cut crystals and multilayers are adopted as
the dispersion device of X-ray pulse compressors. The derivation process of Equation (2) is
given in Appendix A.

2.2. Two Typical X-ray Pulse Compressors

Figure 1 shows a typical negative GDD X-ray pulse compressor consisting of four
identical dispersion devices, which can be asymmetric-cut crystals or asymmetric-cut
multilayers. Because of the symmetry of the negative GDD compressor, here, we only
discuss the geometry of the two devices (C1 and C2) on the left. Figure 2 shows a typical
positive GDD X-ray pulse compressor. The focal lengths of the two concave mirrors M1 and
M2 are f1 and f2, respectively. The distance between M1 and M2 is f1 + f2. The distance
from the first dispersion device C1 to M1 is f1, while that of the second dispersion device
C2 to M2 is f ′2 ( f ′2 < f2). The optical path of the compressor can be written as

x = ∆ f ± G
sin β

[1− cos(α− β)]. (3)
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For the negative GDD X-ray pulse compressor, ∆ f = 0, and G is the distance between
the two devices. We take the negative sign in Equation (3). For the positive GDD X-ray
pulse compressor, ∆ f = 2( f1 + f2), and G = −( f2 − f ′2) sin β. We take the positive sign in
Equation (3). By differentiating Equation (3) with respect to the wavelength and combining
with Equation (2), we can obtain the path difference for different wavelengths

∆x = ±∆λ

λB

G
sin β

(1 +
1
γ
)2 tan2 θB. (4)

After going through the compressors, the phase change of the pulse is given by

ϕ(ω) = −k(ω) · x± C(ω), C(ω) = −2πG
D cot β, (5)

where k = 2πλ and ω = k/c. The parameter C(ω) is the phase correction factor. The
positive and negative signs in Equations (4) and (5) correspond to the positive GDD
compressor and negative GDD compressor, respectively. The dispersion coefficients of the
X-ray compressors are expressed as

D1 =
∂

∂ω
ϕ(ω)

∣∣∣∣
ω0

= ± G[cos(α− β)− 1]
c sin β

∣∣∣∣
ω0

, (6a)

D2 =
∂2

∂ω2 ϕ(ω)

∣∣∣∣
ω0

= ± 4π2m2cG
ω3D2 sin3 β

∣∣∣∣
ω0

, (6b)

D3 =
∂3

∂ω3 ϕ(ω)

∣∣∣∣
ω0

= ± 12π2m2cG
ω4D2 sin3 β

(
2πmc cos β

ωD sin2 β
− 1
)∣∣∣∣

ω0

, (6c)

where c is the speed of light. In Equation (6a–c), the positive sign corresponds to the nega-
tive GDD compressor, and the negative sign corresponds to the positive GDD compressor.
Here, we need to pay attention to the sign of the angles α and β, and more details can be
found in Appendix A.

3. Dispersion of X-ray Penetration Effect

X-rays can penetrate into the crystal or multilayer, and the penetration depth is
frequency-dependent. We call this effect penetration dispersion. The GDD caused by
the penetration dispersion can lead to over-compression or under-compression. In this
section, we investigate the penetration dispersion effect of asymmetric-cut crystals and
multilayers. The nonlinear dispersion of the penetration effect is studied in Section 3.1. The
quantification of penetration dispersion is analyzed in Section 3.2

3.1. Penetration Dispersion

According to the dynamical theory of X-ray diffraction, the amplitudes of the reflec-
tivity and transmissivity can be obtained theoretically (Appendices B and C). Here, we
rewrite the amplitudes R0H and R00 as

R0H(ω) = |R0H(ω)|eiφh(ω), R00(ω) = |R00(ω)|eiφ0(ω). (7)

Here, we can obtain the dispersion coefficients of the penetration effect

Dp
n =

∂n

∂ωn φ(ω)(n = 1, 2, 3, . . .), (8)

where φ(ω) can be φh(ω) or φ0(ω) in Equation (7). The first-order dispersion coefficient
Dp

1 describes GD. The second-order coefficient Dp
2 is the GDD of the penetration effect.

It is difficult to obtain the mathematical expression of Dp
2 from Equations (A5) and (A9).

Therefore, we numerically investigate the dispersion of the penetration effect. In the
following investigation, we focus the discussion on the Bragg geometry, and the formulas
of amplitude and intensity adopt the thick crystal approximation from Equation (A9).
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The GD describes the time delay of different wavelength components. The GDD
describes the stretching of compression of a pulse. Figure 3a–c present the results of
the GDD for the Mo-Si multilayer, Si(111), and C∗(400), respectively. Figure 3d–f show
the results of the GD for the Mo-Si multilayer, Si(111), and C∗(400), respectively. The
curves in different colors correspond to different asymmetry ratios. The dash lines in the
subfigures are the rocking curves. Here, the period of the Mo-Si multilayer is 2 nm, and
the thicknesses of Mo and Si are 0.5 nm and 1.5 nm. The results show that the curves
of the GDD for the Mo-Si multilayer, Si(111), and C∗(400) are nonlinear. In practice, the
nonlinear characteristic of the GDD for other types of crystals and periodic multilayers is
universal. A small bandwidth of reflectivity is associated with a larger GDD. This nonlinear
dispersion of periodical multilayers and crystals could lead to the over-compression or
under-compression of X-ray pulse compressors.

Figure 3. The GD and GDD of Mo-Si multilayer, Si(111), and C∗(400). Here, the central photon energy
E0 is 10 keV, and the period of Mo-Si multilayer (ζ = 0.25) is 2 nm. The subplots (a–c) represent the
GDD of Mo-Si multilayer, Si(111), and C∗(400), respectively. The subplots (d–f) are corresponding to
the GD of Mo-Si multilayer, Si(111), and C∗(400), respectively. Here, the lines with different colors are
related to different asymmetry ratios. The asymmetry ratios of the dashed rocking curves for Mo-Si
multilayer, Si(111), and C∗(400) are −3.58, −4.11, and −3.96, respectively.

3.2. Intrinsic Pulse Stretching

The nonlinear dispersion of the penetration effect will result in an intrinsic stretching
of an input X-ray pulse. However, it does not mean the nonlinear dispersion will make a
big effect on the X-ray pulse compressors. We need more evaluation in different situations.
Here, we define a characteristic time στ and a characteristic GDD στ′ :

στ =


∫ b

a
(τ − τ̄)2 I(ω)dω∫ b

a
I(ω)dω


1
2

, στ′ = στ/(∆ω), (9)
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where τ = Dp
1 (ω), and I(ω) = γ|R0H(ω)|2. To avoid the overestimation of στ and στ′ ,

the integral interval (a, b) should depend on the bandwidth which corresponds to the
pulse after being reflecting by the crystals or multilayers. For example, if the bandwidth
of the input pulse is broader than the bandwidth of the rocking curve, integration can be
performed in (−∞,∞), and ∆ω corresponds to the bandwidth of the rocking curve. If the
bandwidth of the input pulse is narrower than that of the rocking curve, the bounds of the
integral interval are determined by the bandwidth of the input pulse, and∆ω is equal to
the bandwidth of the input pulse.

The characteristic time στ is the measure of the pulse stretching associated with an
input δ pulse, and this stretching is induced by the dispersion of the crystals or multilayers.
The στ′ is the characteristic GDD, which nominally produces the pulse stretching of στ .
Here, the integration of Equation (9) is carried out in (−∞,∞). Figure 4a–c present the στ ,
bandwidth of the rocking curves, and στ′ of Silicon. Figure 4d–f present the στ , bandwidth
of the rocking curves, and στ′ of diamond. The results indicate that the characteristic time
στ caused by the penetration dispersion for different atomic planes is different, and a larger
στ corresponds to a narrower bandwidth. The characteristic time στ represents the intrinsic
stretching, which could result in the over-compression or under-compression of X-ray pulse
compressors.

Figure 4. Subplots (a–c) and (d–f) illustrate the characteristic time στ , bandwidth, and characteristic
GDD στ′ of silicon and diamond for different atomic planes, respectively. Here, the calculation is
based on the thick crystal model. The lines with different colors correspond to different atomic planes.

In the application of X-ray pulse compressors, it is important to estimate the extra
dispersion caused by the penetration effect and, in particular, calculate the effective στ

and στ′ . We mentioned that the effective στ and στ′ depend on the integral interval of
Equation (9). Figure 5a,b show the effective στ of the Mo-Si multilayer and Ge(111) as a
function of the asymmetry ratio and the normalized range of the integral interval. Here,
the period of the Mo-Si multilayer is 2 nm, and the thicknesses of Mo and Si are 0.5 nm and
1.5 nm. The integral interval is centered around the Bragg photon energy and is normalized
by the Darwin width ED of the rocking curve. When the integral interval is smaller than
Darwin width ED, for a given asymmetry ratio, the effective στ grows as the range increases
for the integral interval. When the integral interval is larger than Darwin width ED, the
effective στ slowly increases until it tends to a constant. To mitigate the impact of nonlinear
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dispersion, we suggest that large bandwidth multilayers or crystals can be adopted in the
design of X-ray pulse compressors. Moreover, it could not be better if the bandwidth of
the chirped input X-ray pulse is within the Darwin width and is away from the strong
nonlinear dispersion region (two edges of the rocking curve).

Figure 5. The effective characteristic time στ as a function of asymmetry ratio and the range of
integral interval. (a) The effective στ of Mo-Si multilayer with 2 nm period. (b) The effective στ of
Ge(111). Here, the central photon energy is 10 keV.

4. Compressor Configuration Optimization

Having understood the dispersion caused by the penetration effect, we investigate the
configuration optimization (dispersion compensation) of X-ray pulse compressors in this
section. We first formulate the optimization method in Section 4.1. Then, we discuss an
example of chirped X-ray FEL pulse compression in Section 4.2.

4.1. Optimization Method

For pulse compression, we must design a compressor whose GDD cancels the second-
order spectral phase of the chirped pulse. Here, we expand the spectral phase of a chirped
pulse in the Taylor series

φ(ω) =
∞

∑
q=0

(ω−ω0)
q

q!
φq. (10)

To compress the linear chirped X-ray pulse, the second-order spectral phase should
satisfy

φ2 ± D2 + nστ′ = 0, (11)

where D2 is the GDD produced by the angular dispersion, as described in Equation (6).
στ′ is the effective characteristic GDD caused by penetration effect. n is the number of
asymmetric-cut crystals (multilayers). For a given duration ∆τ of a linear chirped X-ray
pulse, the optimal distance G is calculated as

G = (∆τ ± nστ)c
λB
∆λ

γ2

(1 + γ)2
sin β

tan2 θB
, (12)

where n is the number of asymmetric-cut crystals (multilayers), and ∆λ is the effective
wavelength range. In this paper, we use ∆λ/λ, ∆ω/ω, and ∆E/E to represent the nor-
malized bandwidth. Note that the negative GDD compressor can be adopted for the case
of linear up-chirp X-ray pulse compression, and Equations (11) and (12) choose the plus
sign. The positive GDD compressor can be used for the linear down-chirp X-ray pulse
compression, and Equations (11) and (12) choose the minus sign. The optimization of the
distance G is the key to realize pulse compression. To find the optimal G, the penetration
effect cannot be neglected, especially for multiple reflection compressors.
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4.2. Application in Chirped XFEL Pulse Compression

In the previous sections, we investigated the penetration dispersion of crystals and
multilayers. By optimizing the distance G, the penetration dispersion can be mitigated.
In this subsection, we numerically investigate chirped X-ray pulse compression based on
LCLS-II-HE parameters.

In our simulation, the central photon energy of the FEL pulse is 10 keV, and we
adopt an asymmetric-cut Mo-Si multilayer compressor and an asymmetric-cut Ge(111)
compressor to compress the chirped XFEL pulse. Table 1 provides the relevant parameters
for these two compressors. The geometry of the compressor is shown in Figure 1. For the
Ge(111) compressor, the asymmetry angle is −10.5◦. The acceptance bandwidth of the
Ge(111) compressor is about 20 eV. For the Mo-Si multilayer compressor, the period d, the
thickness ratio ζ of Mo, and the asymmetry angle are 2 nm, 0.25, and −1◦, respectively.
The acceptance bandwidth is about 120 eV, which is larger than the bandwidth of the
chirped XFEL pulse (70 eV). The relevant parameters of the compressor are listed in Table 1.
The optimized gap G of the asymmetric-cut Ge(111) compressor is larger than that of
the multilayer compressor. This is because the penetration dispersion of G(111) is larger
than that of the Mo-Si multilayer. Therefore, a larger G is needed to compensate for the
dispersion.

Table 1. The parameters of the crystal and multilayer compressors.

d [nm] ζ η [◦] στ [as] Dp
2 [fs2] G [mm] ∆E/EB

Ge(111) 0.3266 - −10.5 31 1.03 × 10−3 28.0 0.2%
Mo-Si 2.0000 0.25 −1.0 2 1.85 × 10−5 27.4 0.7%

In the next step, we apply the two types of compressors to compress the chirped XFEL
pulse. Using the software GENESIS 1.3 [48], three-dimensional FEL simulations are carried
out based on the parameters of LCLS-II-HE as shown in Table 2. When the up-chirped
photon beam passes through the compressor, the photons, selected by the compressor, are
compressed to an ultrashort duration. Figure 6 illustrates the numerical simulation results.
The normalized electron bunch energy chirp is 1.1 ρ/fs (3.34 MeV/fs), and the electron
bunch length is 10 fs. The normalized chirp of the XFEL pulse at saturation is 2.2ρ/fs
(8.36 eV/fs), and the pulse duration is 10 fs, as shown in Figure 6a,d. By optimizing the
distance G of the compressor, the chirped XFEL pulse can be compressed to an unchirped
pulse. Figure 6b,e are the Wigner phase space and power distribution after the Mo-Si
asymmetric-cut multilayer compressor, and the pulse duration is compressed to 0.79 fs.
After going through the asymmetric-cut Ge(111) compressor, the Wigner phase space and
power distribution of the pulse are shown in Figure 6c,f, and we obtain an unchirped pulse
with the duration of 0.70 fs. We can find that the bandwidth of the pulse after the crystal
compressor decreases to 20 eV, which corresponds to the bandwidth acceptance of the
asymmetric-cut Ge(111) compressor. It should be stressed that the pulse duration achieved
in the simulation does not reach the Fourier transform limited pulse duration. Therefore, it
is possible to realize a shorter pulse duration.

Table 2. The relevant parameters of LCLS-II-HE.

Parameter Value Unit Parameter Value Unit

Electron energy 8.0 GeV Undulator period 2.6 cm
Energy spread 0.6 MeV Pulse duration 10 fs
Peak current 800 A Average beta function 20 m

Photon energy 10 keV Normalized emittance 0.35 mm-mrad
FEL parameter ρ 3.8 ×10−4 - Undulator parameter 1.632 -
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Figure 6. (a) The Wigner phase space of the up-chirped XFEL pulse before compression (left is the
bunch head). (b) The Wigner phase space of XFEL pulse after the Mo-Si multilayer compressor.
(c) The Wigner phase space of the XFEL pulse after the crystal compressor. (d) The XFEL pulse with a
flattop distribution and 10 fs duration before compression. (e) The XFEL pulse with 0.79 fs FWHM
duration after the Mo-Si multilayer compressor. (f) The XFEL pulse with 0.70 fs FWHM duration after
the crystal compressor. Here, the black and red curves in (d–f) are the average over 50 simulation
runs and the Gaussian fitting. The purple curves refer to single-shot simulations. The central photon
energy E0 is 10 keV.

It is worth pointing out that there are two situations in the simulation: (a) The band-
width of the chirped XFEL is larger than the acceptance bandwidth of the compressor.
(b) The bandwidth of the chirped XFEL is smaller than or equal to the acceptance bandwidth
of the compressor. For situation (a), only a part of the FEL pulse is selected and compressed.
It can be considered a bandpass compressor which corresponds to the asymmetric-cut
Ge(111) compressor. For situation (b), all the photons of the XFEL pulse are compressed,
except for the absorbed photons. This situation corresponds to the asymmetric-cut Mo-Si
multilayer compressor.

The optimal pulse duration after the compressor of the two cases can be estimated by

∆τout ≈
∆ωintrinsic

Rchirp
, Rchirp = ∆ωin/∆τin, (13)

where ∆ωin and ∆τin are the bandwidth and the duration of the input linear chirped X-ray
pulse, respectively. ∆ωintrinsic is the intrinsic bandwidth of the unchirped FEL pulse. It is
obvious that a larger energy chirp and a smaller intrinsic bandwidth contribute to a shorter
duration of the output pulse. Therefore, the output pulse duration can be optimized by
controlling the intrinsic bandwidth and the energy chirp of the input XFEL pulse.

5. Discussion

Ultrashort pulses are a powerful tool for exploring transient dynamic processes. Using
the chirped pulse compression approach, it is possible to generate attosecond pulses at
XFELs in principle. To achieve chirped pulse compression in the X-ray regime, investigating
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X-ray pulse compressors is crucial. For soft X-rays, diffraction gratings and asymmetric-
cut multilayers are suggested [41,42], while for hard X-rays, asymmetric-cut multilayers,
strained crystals [43], and asymmetric-cut crystals [44,45] are recommended. The principle
behind these devices is based on the angular dispersion. However, the extra dispersion
induced by the penetration effect of X-rays has not been explored.

In this study, we investigated the penetration dispersion of asymmetric-cut multilayers
and asymmetric-cut crystals. By estimating the extra dispersion caused by the penetration
effect, we present the strategy of dispersion compensation which is carried out by the
optimization of the configuration of X-ray pulse compressors. Here, we present two
suggestions: (1) To avoid producing a large extra GDD, broadband crystals, and multilayers
should be adopted. (2) To mitigate the nonlinear dispersion, the effective reflection region
should be in the center of the Darwin width and be away from the two edges of the
rocking curve.

6. Conclusions

In conclusion, this study investigated the penetration dispersion of asymmetric-cut
multilayers and crystals, and defined two important parameters, namely, the intrinsic
characteristic stretching time στ and the effective characteristic GDD στ′ . Our numerical
calculations demonstrate that a narrow bandwidth device induces a large dispersion,
while a broadband device produces a small dispersion. Additionally, we found that the
nonlinear dispersion produced by the penetration effect is strong around the two edges
of the rocking curve and weak in the core of the rocking curve. Based on these results,
we recommend using broadband asymmetric-cut crystals and asymmetric-cut multilayers
in X-ray pulse compressors, with the optimal effective region of reflection being located
in the weak nonlinear region. Furthermore, the effective nonlinear dispersion can be
mitigated by optimizing the configuration of X-ray pulse compressors, and we presented
the optimization method for two typical configurations. Lastly, we discussed the application
in chirped XFEL pulse compression using the parameters of LCLS-II-HE. This research
provides useful insights for the design and optimization of X-ray pulse compressors.
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Appendix A. Notation Convention of Angles

In this work, we follow the sign convention of angles adopted by Authier [49]. The
reciprocal crystal lattice vector is H, and the trace of the lattice planes is s. The directions of
the incident beam and diffracted beam are given by the unit vectors s0 and sh, respectively.
The directions of H, s, s0, and sh are oriented in Figure A1. N is defined as the normal
directed into the crystal surface. The asymmetry angle η is defined by η = (N,−H), which
describes the angle between the crystal surface and the parallel reflecting atomic planes.
Ψ0, Ψh, and Ψn are the angles between N and the incident vector, the reflection vector, and
the lattice trace, respectively: Ψ0 = (N, s0), Ψh = (N, sh), Ψn = (N, s). The Bragg angle θB
is the included angle between the reflecting atomic plane and the incident vector. Here, we
define (s, s0) = +θB, (s, sh) = −θB. Eventually, we have the following relations:
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Ψ0 = Ψn + θB, Ψh = Ψn − θB, Ψn = η − π/2. (A1)

The parameters α, β are the angles between the crystal surface vactor a to the incident
vector s0 and the reflected vector sh, respectively: (a, s0) = α, (a, sh) = β:

α = Ψ0 + π/2, β = Ψh + π/2. (A2)

Figure A1. Orientation of angles in Bragg geometry (left) and Laue geometry (right).

To describe the asymmetric geometry, we set γh = cos Ψh and γ0 = cos Ψ0. Then the
asymmetry ratio can be defined as

γ =
γh
γ0

=
cos Ψh
cos Ψ0

=
cos(Ψn − θB)

cos(Ψn + θB)
. (A3)

The asymmetry ratio γ is always negative for Bragg geometry(−θB < η < θB), while
it is all positive for Laue geometry (θB < η < π − θB). For symmetric Bragg geometry,
η = 0 and γ = −1. For symmetric Laue geometry, η = π/2 and γ = 1. In this paper,
we focus the investigation on Bragg geometry. Differentiating Equation (1a) leads to the
equation of angular dispersion:

∂β

∂λ
= − 1

λ

cos β− cos α

sin β
= − 1

λ

sin Ψ0 − sin Ψh
cos Ψh

= − 1
λ

sin(Ψn + θB)− sin(Ψn − θB)

cos(Ψn − θB)

= − 1
λ

2 tan θB
1 + tan Ψn tan θB

= − 1
λ

(
1 +

1− tan Ψn tan θB
1 + tan Ψn tan θB

)
tan θB

= − 1
λ

[
1 +

cos(Ψn + θB)

cos(Ψn − θB)

]
tan θB = − 1

λ

(
1 +

1
γ

)
tan θB

(A4)

Appendix B. Dynamical Theory of X-ray Diffraction

The dynamical theory of X-ray diffraction is a graceful model to mimic the multiple
diffractions of X-rays inside a perfect crystal [49,50]. By solving Maxwell’s equations inside
the periodic materials, the amplitudes of the reflected and refracted beams can be obtained.
According to the dynamical theory of X-ray diffraction, for a thick crystal with thickness l,
the diffraction amplitude of the reflected beam (R0H) and the refracted beam (R00) in Bragg
geometry can be expressed as

R0H = R1R2
1− e−i(ℵ1−ℵ2)l

R2 − R1e−i(ℵ1−ℵ2)l
, R00 = e−iℵ1l R2 − R1

R2 − R1e−i(ℵ1−ℵ2)l
, (A5)

and the intensities of the reflected and refracted beams are expressed as

I0H = γ|R0H |2, I00 = |R00|2. (A6)
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ℵj and Rj (j = 1, 2) in Equation (A5) are expressed as

Rj =
S(γh)√
|γ|

√
χhχh̄
χh̄

[
y±

√
y2 + S(γh)

]
, (j = 1, 2)

ℵj =
kχ0

2γ0
+

S(γh)

2Λ0

[
y±

√
y2 + S(γh)

]
, (j = 1, 2)

y =
kΛ0

2γh

[
−4

Ω
ωB

sin2 θB + χ0(γ− 1)
]

,

(A7)

and

Λ0 =
λ
√

γ0|γh|
P√χhχh̄

. (A8)

Here, Ω = ω−ωB, which is the angular frequency deviation from the Bragg condition.
S(γh) is the sign of γh. The amplitude and intensity of the reflected beam in Bragg geometry
for the thick crystal are given by

R0H =
S(γh)√

γ

√
χhχh̄
χh̄

[
y− S(yr)

√
y2 − 1

]
, (A9a)

I0H = γ|R0H |2 =

∣∣∣∣χh
χh̄

∣∣∣∣∣∣∣∣y− S(yr)
√

y2 − 1
∣∣∣∣2, (A9b)

where S(yr) denotes the sign of the real part of y. The dynamical diffraction theory gives
the angular width of the Bragg reflection, which is called the Darwin width

θD = θ
(s)
D

√
|γ|, θ

(s)
D =

2|P|√χhχh̄
sin 2θB

, (A10)

where θ
(s)
D denotes the Darwin width in symmetric diffraction geometry. Expressing the

Darwin width in the units of photon energy by using the differential equation of Bragg
condition 2d sin θB = λ, the spectral acceptance of crystal can be written as

ED
EB

=
θD

tan θB
=

θ
(s)
D

√
|γ|

tan θB
, (A11)

where EB is the Bragg photon energy. The acceptance of the input bandwidth ED is
proportional to the square root of |γ|. The asymmetric crystal (|γ| > 1) can increase the
incident spectral acceptance.

Appendix C. Asymmetry-Cut Multilayer

For multilayers, there are two approaches to calculate the diffraction, including optical
matrix theory [51–53] and the dynamical theory. Although the optical matrix theory can
describe the diffraction by arbitrary nonperiodic multilayer, this method is only valid for
symmetric Bragg geometry (γ = −1). In this work, we focus the discussion on periodic
asymmetric-cut multilayer, so the dynamical diffraction theory model is adopted. In
the following, dynamical diffraction theory will be briefly introduced. The difference
between crystal and multilayer is the calculation of the Fourier coefficients of the electric
susceptibility. For crystal, we have

χh =
1
V

∫
χ(r) exp(−ih · r)dr, (A12)

where h (|h| = 2π/d) is a reciprocal vector. Equation (A12) can be further expressed as

χh = − reλ2

πVc
Fh, (A13)
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where Fh, Vc and λ are the structure factor, the volume of unit cell and the wavelength of
incident wave, respectively. re = e2/4πε0mc2 is the classical radius of the electron.

The multilayer can be regarded as a two-dimensional crystal. Therefore, we need to
reconstruct the Fourier coefficients of the electric susceptibility, and Equation (A12) can be
modified as

χh =
1
d

∫
χ(z) exp(−ihz)dz, (A14)

where d is the period of the structure of the multilayer. The electric susceptibility within
each layer in real space can be written as

χ = − reλ2

π
· ρNA

A
·∑

j

(
f j + f ′j + f ′′j

)
, (A15)

where ρ, A, NA are the density, molar mass, and Avogadro’s number, respectively. f j is the
form factor of atom j, and f ′j and f ′′j are the anomalous dispersion corrections.

For the case of the multilayer model with two materials, let us assume that the material
interfaces are sharp, which means there is no interdiffusion between the two materials. The
electric susceptibility can be expressed as

χ(z) = χ1rect
(

z + ζd/2
ζd

)
+ χ2rect

(
z− κd/2

κd

)
(A16)

where ζ, κ are the ratios of the thickness of the two layers to the period. According to the
definition in Equation (A14), we can easily obtain

χh =
1
π

[
χ1 sin(ζπ)eiπζ + χ2 sin(κπ)e−iπκ

]
,

χh̄ =
1
π

[
χ1 sin(ζπ)e−iπζ + χ2 sin(κπ)eiπκ

]
,

√
χhχh̄ =

1
π
[χ1 sin(ζπ)− χ2 sin(κπ)],

χ0 = ζχ1 + κχ2.

(A17)

The reflectivity and transmissivity of the multilayer can be calculated by substituting
Equation (A17) into Equation (A5) or Equation (A9). If the structure of the multilayer is
extended to more than two layers within one period, we can similarly calculate the electric
susceptibility. It is needed to point out that the limitation of dynamical diffraction theory
requires strict periodicity.
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