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Abstract: In this work, a prior-training-free and low-complexity modulation format identification
(MFI) scheme, based on amplitude histogram distributions, was proposed and demonstrated, both
numerically and experimentally, for autonomous digital coherent receivers. In the proposed scheme,
after having performed power normalization, incoming polarization division multiplexed (PDM)
signals were classified into QPSK, 8QAM, 16QAM, 32QAM and 64QAM signals, according to their
ratios. Ratios were defined according to specific features of their amplitude histograms. The proposed
MFI scheme used only amplitude information. As such, it was insensitive to carrier phase noise.
Furthermore, the proposed scheme did not require any prior information, such as optical signal-to-
noise ratio (OSNR). The performance of the proposed MFI scheme was numerically verified using
28GBaud PDM-QPSK/-8QAM/-16QAM/-32QAM/-64QAM signals. The numerical simulation
results showed that the proposed scheme was able achieve a 100% correct identification rate for all
five modulation formats when their OSNR values were higher than the thresholds corresponding to
the 20% FEC correcting bit error rate (BER) of 2.4 × 10−2. To further explore the effectiveness of the
proposed MFI scheme, proof-of-concept experiments in 28GBaud PDM-QPSK/-8QAM/-16QAM,
and 21.5GBaud PDM-32QAM transmission systems were also undertaken, which showed that the
proposed scheme as robust against fiber nonlinearities. To explore the scheme’s feasibility for use in
practical transmission systems, the computational complexity analysis of the proposed scheme was
conducted. It showed that, compared with relevant MFI schemes, the proposed MFI scheme was able
to significantly reduce the computational complexity.

Keywords: modulation format identification; coherent optical communications; amplitude
histogram distributions

1. Introduction

To meet the growing demand for support for diverse data services, such as the Internet
of Things, Big Data, cloud computing and video streaming, spectrum-sliced elastic optical
networks (EONs) [1] were proposed. These have attracted considerable interest from
the telecommunications R&D community worldwide [2]. A key focal point has been
addressing the developing trend, in optical networks, of evolving from fixed network
architectures to flexible and elastic ones [3,4]. According to different transmission link
conditions and various quality of service requirements, transceivers involved in EONs
have to be capable of dynamically adjusting their operation parameters—including, for
example, modulation formats, symbol rates and transmission power—in order to maximize
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their signal transmission capacities and spectral/power utilization efficiency. In traditional
optical networks, these parameters are delivered to the corresponding receivers by the
supervisory control layer of the optical networks. However, if the supervisory channel is
disrupted and/or does not respond to the dynamic traffic demands with sufficient speed,
the digital coherent receivers may fail to work appropriately [5–7]. In addition, both the
cross-layer communications and end-to-end handshaking have been regarded as major
factors limiting the flexibility of next-generation optical networks. Therefore, it is highly
desirable that digital coherent receivers be able to autonomously identify these transmission
parameters without assistance from the supervisory control layer.

Of the aforementioned parameters, the modulation format is one of the most important.
It is crucial to identify and monitor the modulation format in real time in communication
scenarios with timing-varying channel characteristics, where adaptive signal modulation
format variations must be implemented. The use of MFI techniques would eliminate the
transmissions of signal modulation format information between the transceivers, thus con-
siderably reducing unwanted overhead. The MFI algorithm could be applied before mod-
ulation format-dependent algorithms, including polarization demultiplexing, frequency
offset compensation and carrier phase recovery [8], ensuring optimal system performance.

The previously-reported MFI schemes for optical fiber communications were roughly
classified into the following three categories: (1) data-aided schemes [9–11], in which
additional pilot information is introduced and the computational complexity of the MFI
scheme is low (at the cost of reduced spectral efficiency); (2) schemes based on Stokes
space [7,8,12–23], which are not sensitive to carrier phase noise, frequency offset or polar-
ization mixing; (3) schemes based on signal characteristics arising from constant modulus
algorithm (CMA) equalization [24–33], which are based on CMA-equalized signals and
do not require any space mapping. Meanwhile, CMA can also compensate for resid-
ual chromatic dispersion (CD) and polarization mode dispersion (PMD). However, these
schemes face a significant challenge, in that modulation format features are ambiguous
under the effects of noise and other transmission impairments. In recent years, due to the
power of ambiguous information identification, machine learning technologies have been
widely employed for the identification of CMA equalized signals. These have included
convolutional neural networks (CNN) [2], binarized neural networks (BNN) [3], support
vector machine learning (SVM) [5], random forest methods [6], and deep neural networks
(DNN) [34,35]. Assisted by the powerful properties of machine learning, these schemes
have been able to achieve high MFI performances. However, in order to obtain the desired
optimal performances, these schemes require a large number of training samples, high
computational resources and a complex training process. Meanwhile, if link conditions,
such as distance, or other parameters change, machine learning models may need to be
retrained [29]. Therefore, a prior-training-free and low-complexity MFI scheme is highly
desirable for practical deployment.

In this paper, a prior-training-free MFI scheme, based on amplitude histogram distribu-
tions, was proposed for autonomous digital coherent receivers. Since there are different am-
plitude levels for QPSK, 8QAM, 16QAM, 32QAM and 64QAM, the amplitude histograms
of CMA-equalized signals were applied to extract key features required for identification
of different modulation formats. The proposed scheme mainly focused on identifying
effective local features of amplitude histograms, rather than global features [6,20,34,36].
In the proposed MFI scheme, after having normalized the signal power, the ratios of spe-
cific parts of the amplitude histograms were calculated, based on which five modulation
formats could be identified. The proposed scheme did not require any prior-training or
information, such as OSNR, and was also insensitive to carrier phase noise. The perfor-
mance of the proposed MFI scheme was first explored by numerical simulation, using
28GBaud PDM-QPSK/-8QAM/-16QAM/-32QAM/-64QAM signals. The simulation re-
sults showed that the proposed scheme was able to achieve 100% of the correct MFI rate for
all five modulation formats when the OSNR values were higher than their corresponding
theoretical 20% forward error correction (FEC) limit (BER = 2.4 × 10−2). For 28GBaud
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PDM-QPSK/-8QAM/-16QAM, and 21.5GBaud PDM-32QAM systems subject to back-to-
back and long-haul fiber transmission link conditions, proof-of-concept experiments were
undertaken to further verify the effectiveness of the proposed MFI scheme. The experi-
mental results showed that the proposed scheme was robust against fiber nonlinearities
and suitable for use in long-haul transmission links. Finally, the computational complex-
ity of the proposed scheme was also discussed. It was considerably lower than relevant
MFI schemes. The proposed scheme demonstrated a good tradeoff between identification
performance and computational complexity, and could therefore be regarded as a good
candidate for use in EONs with improved flexibility.

2. Operating Principle

The digital signal processing (DSP) procedure of the autonomous digital coherent
receiver considered herein is depicted in Figure 1, where the proposed MFI scheme has
been highlighted. Before conducting the MFI operation, modulation format-independent al-
gorithms (shown in the purple area) were employed to compensate for the CD impairments
and timing-jitter and to achieve preliminary polarization demultiplexing. It should be noted
that mPSK signals can be completely polarization-demultiplexed by CMA. CMA is also
capable of compensating residual CD and PMD for different modulation formats [2,5,28,31].
However, for mQAM (m > 4) signals, further polarization demultiplexing algorithms may
also be required. After having performed the modulation format-independent operations,
the proposed MFI scheme could then be applied. Its outputs were provided to the subse-
quent modulation format-dependent algorithms (shown in the pink box), which consisted
of the multi-modulus algorithm (MMA), frequency offset compensation and carrier phase
recovery to compensate for various transmission impairments experienced by the signals.
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Figure 1. The DSP architecture with the proposed MFI scheme for autonomous digital coherent receivers.

As illustrated in Figure 1, the proposed MFI scheme consisted of three steps: first, the
CMA equalized signals were power normalized. Then, the amplitude histograms of the
signals were obtained, and calculations of the ratios (defined below) were subsequently
undertaken. It should be noted that CMA-equalized signals of only one polarization
were required to acquire the amplitude histogram. Finally, based on the thresholds of
the ratios H1, H2, H3 and H4, five commonly-adopted modulation formats, including
PDM-QPSK/-8QAM/-16QAM/-32QAM/-64QAM, were identified.

As shown in Figure 2, there were one, two, three, five, and nine amplitude levels for
QPSK, 8QAM, 16QAM, 32QAM, and 64QAM, respectively. For each level of these five
modulation formats, the amplitude value and its associated probability are presented in
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Table 1. Without loss of generality, the symbols of each modulation format were assumed
to have a unit average power [37]:

m

∑
n=1

pn · Z2
n = 1 (1)

where Zn is the amplitude value, pn is the associated probability for the n-th level, and
m is the number of total levels for the considered modulation format. The amplitude
levels of the different modulation formats can be clearly seen in Figure 2. However, in
practical transmission systems, the distributions of the amplitude levels may be indistinct,
even if CD, timing-jitter, and partial polarization mixing are compensated for using the
modulation format independent algorithms. As such, it could be difficult to identify high-
order modulation formats, especially in low OSNR cases. To address this challenge, the
amplitude histogram of the CMA-equalized signals was employed to identify these five
modulation formats over a considerably widened OSNR range.
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Figure 2. Constellation diagrams of five widely-employed modulation formats: (a) QPSK, (b) 8QAM,
(c) 16QAM, (d) 32QAM and (e) 64QAM. There are one, two, three, five and nine amplitude levels for
QPSK, 8QAM, 16QAM, 32QAM and 64QAM, respectively.

Table 1. Amplitude value and associated probability for each level of the five modulation formats.

QPSK 8QAM 16QAM 32QAM 64QAM

1/100% 0.577/50%
1.291/50%

0.447/25%
1/50%

1.342/25%

0.316/12.5%
0.707/25%

0.949/12.5%
1.140/25%
1.304/25%

0.218/6.25%
0.488/12.5%
0.655/6.25%
0.787/12.5%
0.900/12.5%

1.091/18.75%
1.175/12.5%
1.327/12.5%
1.528/6.25%

The amplitude histograms of these five modulation formats are shown in Figure 3,
where the OSNR values for the PDM-QPSK/-8QAM/-16QAM/-32QAM/-64QAM signals
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were fixed at 13 dB, 18 dB, 20 dB, 24 dB and 25 dB, respectively. For all of the amplitude
histograms illustrated in Figure 3, the total number of symbols N was 6000. The same
N value was also utilized, as shown in Figures 4 and 5, and the bin number of all of the
amplitude histograms was 40. The first partition operation was employed for the sake of
separation between 8QAM and four other modulation formats. The amplitude histograms
were divided into two parts based on the number of symbols, which was N/2 in both
part A and B. Since 8QAM included two amplitude levels, as mentioned in Table 1, the
signal amplitudes for part A concentrated around 0.577 while, for part B, the amplitudes
concentrated around 1.291, even in the presence of noise. In other words, the average signal
amplitude for part B was approximately doubled, compared to part A. The corresponding
ratio for the 8QAM signals was the largest among the five modulation formats. In this case,
the ratio H1 was defined as

H1 =
HB1

HA1
(2)

where:
HA1 = m1 × c1 + · · ·+ mi × ci + (N

2 −
i

∑
x=1

mx)× ci+1

HB1 = (
i+1
∑

x=1
mx − N

2 )× ci+1 + mi+2 × ci+2 + · · ·+ mnbins × cnbins

,
i

∑
x=1

mx ≤ N
2 ,

i+1
∑

x=1
mx > N

2 . mi denotes the number of symbols in the i-th bin, ci represents the cen-

tral amplitude value of the i-th bin, N indicates the total number of symbols and nbins is the
total number of bins. In order to accurately divide the amplitude histogram into two parts,

the symbols in the i + 1 bin were divided into two different parts, N
2 −

i
∑

x=1
mx symbols were

divided into part A and
i+1
∑

x=1
mx − N

2 symbols were divided into part B.
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Figure 3. The first partition operation for the amplitude histograms of QPSK, 8QAM, 16QAM,
32QAM and 64QAM. The amplitude histograms are divided into two parts based on the number of
symbols, which is N/2 in both part A and part B.
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and C. The number of symbols in part A, B and C are N/4, N/2 and N/4, respectively.
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Figure 5. The third partition for the amplitude histograms of 16QAM, 32QAM and 64QAM. The first
N/4 symbols are divided into three parts. The numbers of the symbols in part A, B and C are N/16,
N/8 and N/16, respectively.

Since 8QAM could be distinguished based on the ratio H1, the purpose of the second
partition operation was to identify QPSK from other three modulation formats. As shown
in Figure 4, the amplitude histograms of the remaining four modulation formats were
divided into parts A, B and C. The numbers of the symbols in parts A, B and C were N/4,
N/2 and N/4, respectively. Due to the constant amplitude, the distribution of amplitudes
for QPSK still concentrated around 1, even in the presence of noise. As a result, compared
with the three other modulation formats, the amplitude distribution of the QPSK signals
in part A and C was much closer. However, because of the influence of noise, such a
distribution feature gradually grew less obvious for low OSNR cases. To address this
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problem, we conducted a square operation of the number of symbols in each individual
bin, and the corresponding ratio H2 was defined as

H2 =
HC2

HA2
(3)

where
HA2 = m2

1 × c1 + · · ·+ m2
i × ci + (N

4 −
i

∑
x=1

mx)
2

× ci+1

HC2 = (
j+1
∑

x=1
mx − 3N

4 )

2

× cj+1 + m2
j+2 × cj+2 + · · ·+ m2

nbins × cnbins

,

i
∑

x=1
mx ≤ N

4 ,
i+1
∑

x=1
mx > N

4

j
∑

x=1
mx ≤ 3N

4 ,
j+1
∑

x=1
mx > 3N

4

.

Due to the closer amplitude distributions of parts A and C, the ratio H2 for QPSK
was smaller than those of the three remaining modulation formats. Thus, QPSK could be
identified. After that, the partition of the amplitude histogram remained unchanged. The
difference was that only part B and C were taken into consideration. The ratio H3 was
introduced, calculated as

H3 =
HB3

HC3
(4)

where HB3 = (
i+1
∑

x=1
mx − N

4 )
2

× ci+1 + m2
i+2 × ci+2 + · · ·+ ( 3N

4 −
j

∑
x=1

mx)

2

× cj+1,
i

∑
x=1

mx ≤

N
4 ,

i+1
∑

x=1
mx > N

4 ,
j

∑
x=1

mx ≤ 3N
4 ,

j+1
∑

x=1
mx > 3N

4 , HC3 = HC2.

Due to the square operation of the number of symbols in each bin, the distributions in
part B and/or part C were more concentrated. Thus, the values of HB3 and/or HC3 were
greater. As shown clearly in Table 1, for 32QAM, all of the symbols in part C concentrated
around the fifth amplitude level, while the symbols in part B spread over three different
amplitude levels. Thus, the ratio H3 for 32QAM was small. Unlike 32QAM, the symbols
for 64QAM, in part C, spread over three different amplitude levels. HC3 of 64QAM was
much smaller than that of 32QAM. For 16QAM, the symbols in part B and part C were
concentrated around the second and third amplitude levels, respectively. HB3 of 16QAM
was much greater than that of 32QAM. Without considering noise and/or any other
transmission impairments, the theoretical values of H3 for 16QAM, 32QAM and 64QAM
were 2.98, 1.19 and 2.21, respectively. Nevertheless, as the effects of noise increased for
the low OSNR cases, the symbols of 32QAM in part C were dispersed, which resulted in
an increased value of H3. Incorrect decisions could thus be made between H3 of 16QAM
for high OSNR cases and H3 of 32QAM for low OSNR cases. Therefore, while relying
solely on a single ratio H3, one could not accurately distinguish 32QAM from 16QAM over
a wide OSNR range. To address this problem, an additional ratio was also required, as
detailed below.

As seen in Figure 5, the third partition of the amplitude histogram divided the first
N/4 symbols into three parts. The numbers of symbols in part A, B and C were N/16,
N/8 and N/16, respectively. As listed in Table 1, the first N/4 symbols in the amplitude
histogram corresponded to only one amplitude value for 16QAM, while the symbols for
32QAM and 64QAM corresponded to two and three amplitude values, respectively. Even
under the effects of noise, for 16QAM, the distribution of amplitudes in part A and C still
concentrated around 0.447. By comparison, the distributions of part A and C spread more
widely for 32QAM and 64QAM. Therefore, the ratio H4 was introduced and defined as

H4 =
HC4

HA4
(5)
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where
HA4 = m1 × c1 + · · ·+ mi × ci + ( N

16 −
i

∑
x=1

mx)× ci+1

HC4 = (
j+1
∑

x=1
mx − 3N

16 )× cj+1 + mj+2 × cj+2 + · · ·+ (N
4 −

k
∑

x=1
mx)× ck+1

,

i
∑

x=1
mx ≤ N

16 ,
i+1
∑

x=1
mx > N

16

j
∑

x=1
mx ≤ 3N

16 ,
j+1
∑

x=1
mx > 3N

16 ,
k
∑

x=1
mx ≤ N

4 ,
k+1
∑

x=1
mx > N

4

.

Due to the more concentrated distribution, HA4 of 16QAM was relatively larger than
those related to 32QAM and 64QAM, while HC4 was relatively smaller than those related
to 32QAM and 64QAM, resulting in a smaller H4. As a direct result, 16QAM and 32QAM
could be identified over a wide OSNR range by making use of both H3 and H4. Meanwhile,
although 16QAM and 64QAM could be distinguished by relying on H4 only, as seen in
Figure 6, the utilization of both H3 and H4 was necessary for identifying 16QAM.

As mentioned above, the different modulation formats gave rise to different ratios.
Figure 6 shows the values of H1, H2, H3 and H4 for the five modulation formats in different
OSNR cases. The number of symbols was 6000, and the bin number of the amplitude
histogram was 40. By selecting appropriate thresholds, the incoming PDM signals could
be identified as QPSK, 8QAM, 16QAM, 32QAM or 64QAM signals. The corresponding
thresholds of H1, H2, H3 and H4 were 1.984, 2.64, 2.02 and 2.4/2.637, respectively, as
indicated by the dotted red lines in Figure 6. It should be noted that there were two
thresholds of H4 for distinguishing 16QAM from 32QAM (2.4) and 64QAM (2.637). The
thresholds for H1, H2, H3 and H4 were determined to balance the optimal identification
performance of each identified modulation format. Figure 7 illustrates a flow chart of the
proposed MFI scheme. If H1 of the incoming signals was greater than 1.984, the signals
were recognized as 8QAM signals, otherwise, if H2 of the incoming signals was less than
2.64, the signals were identified as QPSK signals. The remaining 16QAM, 32QAM and
64QAM signals could be further distinguished by making use of both H3 and H4.
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separating 16QAM and 32QAM); (e) H4 (for separating 16QAM and 64QAM). The dotted red lines
indicate the corresponding thresholds.
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Figure 7. Flow chart of the proposed MFI scheme.

3. Numerical Simulation Results

VPI Transmission Maker 9.8 was utilized to undertake a series of numerical simulations
and extensively verify the proposed MFI scheme. The length of the pseudo-random bit
sequence (PRBS) was 215 − 1. Then, 28 GBaud PDM-QPSK/-8QAM/-16QAM/-32QAM/-
64QAM signals were generated in the transmitter. The sample rate was 56 GSa/s, and the
roll-off factor of the square root raised cosine (SRRC) filter was 0.1. The wavelength and
linewidth of the laser were 1550 nm and 100 kHz, respectively. The modulated signals were
then passed through an additive Gaussian white noise (AWGN) channel with adjustable
OSNRs, calculated at a 0.1 nm ASE noise bandwidth. These PDM signals were finally
detected, and their modulation formats were identified by a coherent receiver utilizing an
off-line DSP module based on the proposed MFI scheme, as shown in Figure 1. The OSNR
ranges of the PDM-QPSK/-8QAM/-16QAM/-32QAM/-64QAM signals were 5–26 dB,
5–31 dB, 14–33 dB, 16–37 dB and 16–38 dB, respectively, with an OSNR incremental of 1 dB.
In order to evaluate the performance of the proposed scheme, for each modulation format,
100 independent simulations were conducted for each OSNR value.

For an MFI scheme, the minimum required number of symbols (corresponding to the
lowest OSNR required for the considered modulation format) is one of the most important
factors, because it determines the response speed and computational complexity of the MFI
algorithm [28,32]. The minimum required OSNR values, versus the numbers of symbols for
the five modulation formats, are shown in Figure 8, wherein the symbol variation ranged
from 1000 to 7000 at intervals of 1000. For QPSK, 8QAM, 16QAM and 32QAM, when
the number of symbols was greater than or equal to 2000, the minimum required OSNR
value to achieve a correct identification rate of 100% remained almost constant. Meanwhile,
since 64QAM was the highest order of modulation format, with more amplitude levels,
an efficient feature extraction required more symbols to be employed. If the number of
symbols was lower than 6000, the minimum required OSNR value increased substantially.
Since the required number of symbols for the proposed MFI scheme was determined by
the highest order modulation format, the numbers of symbols for all of the considered
modulation formats were set at 6000 in the following numerical simulations and proof-of-
concept experiments. It should be noted that, when the number of symbols was lower than
2000 or 5000, for 8QAM or 64QAM respectively, a correct identification rate of 100% could
not be obtained.

The number of histogram bins was another factor that determined the computational
complexity of the proposed MFI scheme. Similar to the number of symbols, an optimal
number of the histogram bin was also identified, as it gave rise to the minimum required
OSNR value, as shown in Figure 9. If the number of histogram bins was less than 40,
the minimum required OSNR values increased gradually, especially for 64QAM. As a
result, in order to achieve an optimum tradeoff between computational complexity and
MFI performance, the numbers of histogram bins for the five modulation formats were all
taken to be 40 in the following numerical simulations and proof-of-concept experiments.
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In order to analyze the influence of carrier phase noise on the performance of the
proposed MFI scheme, simulations (i.e., correct identification rate versus OSNR value under
different linewidths) were undertaken, as shown in Figure 10a,b, respectively. Compared
with Figure 10a, when the linewidth of the laser was 100 kHz, the constellation of 16QAM
rotated, as shown in Figure 10b, due to the existence of carrier phase noise. However, since
the amplitude histogram depended on amplitude information only, the effect of carrier
phase noise on the amplitude histogram was almost negligible. Therefore, as shown in
Figure 10a,b, when the value of the linewidth was increased from 0Hz to 100 kHz, the
minimum required OSNR values to achieve a correct identification rate of 100% for the five
modulation formats remained unchanged. In conclusion, the proposed MFI scheme was
insensitive to carrier phase noise.

To explore the OSNR-dependent correct identification performance rates of the pro-
posed MFI scheme under typical values of linewidth, for different signal modulation
formats, their numerically-simulated correct identification rates, as a function of OSNR,
are shown in Figure 10b. The simulation results showed that 100% accurate identifica-
tion could be obtained for 8QAM even when the OSNR values were very low (5 dB). For
QPSK, 16QAM, 32QAM and 64QAM, the minimum OSNR values for achieving the correct
identification rate of 100% were 7 dB, 16 dB, 18 dB and 19 dB, respectively. As seen in
Figure 10b, the proposed MFI scheme achieved a correct identification rate of 100% for
all five modulation formats when the OSNR values were higher than their thresholds
(indicated by vertical dash lines), corresponding to 20% FEC correcting BER of 2.4 × 10−2.



Photonics 2023, 10, 472 11 of 21
Photonics 2023, 10, x FOR PEER REVIEW 11 of 21 
 

 

 

Figure 10. Simulation results of correct identification rate versus OSNR value under different lin-

ewidths: (a) 0 Hz; (b) 100 kHz. The illustrations are the constellation diagrams and amplitude his-

tograms of PDM-16QAM when the linewidth is 0 Hz or 100 kHz, respectively. The vertical dash 

lines indicate the OSNR thresholds, corresponding to 20% FEC correcting BER of 2.4 × 10−2. 

To explore the OSNR-dependent correct identification performance rates of the pro-

posed MFI scheme under typical values of linewidth, for different signal modulation for-

mats, their numerically-simulated correct identification rates, as a function of OSNR, are 

shown in Figure 10b. The simulation results showed that 100% accurate identification 

could be obtained for 8QAM even when the OSNR values were very low (5dB). For QPSK, 

16QAM, 32QAM and 64QAM, the minimum OSNR values for achieving the correct iden-

tification rate of 100% were 7dB, 16dB, 18dB and 19dB, respectively. As seen in Figure 10b, 

the proposed MFI scheme achieved a correct identification rate of 100% for all five modu-

lation formats when the OSNR values were higher than their thresholds (indicated by 

vertical dash lines), corresponding to 20% FEC correcting BER of 2.4 × 10−2. 

By making use of incoming signals identical to those presented above, the performance 

of the proposed scheme was further evaluated in comparison with schemes using DNN, 

SVM, modified particle swarm optimization (M-PSO) [20] and principal component analy-

sis of Stokes parameters (PCASP) [8]. The SVM and DNN schemes also adopted the ampli-

tude histogram as the proposed scheme. The numbers of symbols and histogram bins were 

fixed at 6000 and 40, respectively. To ensure the optimal performance, a large training data 

set for DNN was required. The training set comprised 9200 (18 × 100 + 23 × 100 + 15 × 100 + 

17 × 100 + 19 × 100) amplitude histograms. In this work, a four-layer DNN was employed, 

in which the number of neurons in the input, first hidden, second hidden and output layer 

were 40, 40, 10 and 5, respectively. The activation functions of the hidden layer and output 

layer were ReLU and softmax, respectively [6]. On the other hand, since the complexity of 

SVM was related to the number of support vectors, by considering the tradeoff between the 

identification performance and the computational complexity for SVM, the training set of 

SVM comprised 3640 (18 × 40 + 23 × 40 + 15 × 40 + 17 × 40 + 18 × 40) amplitude histograms. 

For SVM, the kernel function was the default radial basis function (RBF) kernel [38]. 

The minimum required OSNR comparisons between the proposed scheme and these 

four schemes are shown in Figure 11. The scheme based on M-PSO only identified three 

modulation formats, including QPSK, 8QAM and 16QAM, and the minimum required 

OSNR for identifying QPSK and 8QAM was much higher than that of the proposed 

scheme. The minimum required OSNRs of the proposed scheme, in order to identify each 

modulation format, were both lower than that of the schemes based on PCASP, except for 

32QAM. For QPSK, 16QAM and 32QAM, the minimum required OSNR values for the 

proposed scheme were lower than those corresponding to DNN and SVM. For 8QAM and 

64QAM, the proposed scheme offered minimum required OSNRs identical to DNN and 

SVM. The proposed scheme improved the performances because it primarily focused on 

identifying effective local features, while the MFI abilities of DNN and SVM came at the 

cost of higher complexity, focused on identifying global features. Furthermore, DNN and 

(a) (b)

Figure 10. Simulation results of correct identification rate versus OSNR value under different
linewidths: (a) 0 Hz; (b) 100 kHz. The illustrations are the constellation diagrams and amplitude
histograms of PDM-16QAM when the linewidth is 0 Hz or 100 kHz, respectively. The vertical dash
lines indicate the OSNR thresholds, corresponding to 20% FEC correcting BER of 2.4 × 10−2.

By making use of incoming signals identical to those presented above, the perfor-
mance of the proposed scheme was further evaluated in comparison with schemes us-
ing DNN, SVM, modified particle swarm optimization (M-PSO) [20] and principal com-
ponent analysis of Stokes parameters (PCASP) [8]. The SVM and DNN schemes also
adopted the amplitude histogram as the proposed scheme. The numbers of symbols
and histogram bins were fixed at 6000 and 40, respectively. To ensure the optimal per-
formance, a large training data set for DNN was required. The training set comprised
9200 (18 × 100 + 23 × 100 + 15 × 100 + 17 × 100 + 19 × 100) amplitude histograms. In this
work, a four-layer DNN was employed, in which the number of neurons in the input,
first hidden, second hidden and output layer were 40, 40, 10 and 5, respectively. The
activation functions of the hidden layer and output layer were ReLU and softmax, respec-
tively [6]. On the other hand, since the complexity of SVM was related to the number
of support vectors, by considering the tradeoff between the identification performance
and the computational complexity for SVM, the training set of SVM comprised 3640
(18 × 40 + 23 × 40 + 15 × 40 + 17 × 40 + 18 × 40) amplitude histograms. For SVM, the
kernel function was the default radial basis function (RBF) kernel [38].

The minimum required OSNR comparisons between the proposed scheme and these
four schemes are shown in Figure 11. The scheme based on M-PSO only identified three
modulation formats, including QPSK, 8QAM and 16QAM, and the minimum required
OSNR for identifying QPSK and 8QAM was much higher than that of the proposed
scheme. The minimum required OSNRs of the proposed scheme, in order to identify each
modulation format, were both lower than that of the schemes based on PCASP, except
for 32QAM. For QPSK, 16QAM and 32QAM, the minimum required OSNR values for the
proposed scheme were lower than those corresponding to DNN and SVM. For 8QAM
and 64QAM, the proposed scheme offered minimum required OSNRs identical to DNN
and SVM. The proposed scheme improved the performances because it primarily focused
on identifying effective local features, while the MFI abilities of DNN and SVM came at
the cost of higher complexity, focused on identifying global features. Furthermore, DNN
and SVM also required more detailed amplitude histograms to complete the automatic
feature extraction. Thus, 6000 symbols and 40 bins were not sufficient, giving rise to
slower response speeds and increased computational complexity, as mentioned above.
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Figure 11. Minimum required OSNR for identifying different modulation formats for five MFI
schemes. * indicates the modulation format is not identified by this scheme.

In order to evaluate the effects of residual CD and PMD on the identification per-
formance of the proposed MFI scheme, numerical simulation was employed. It should
be noted that, as shown in Figure 1, the proposed MFI scheme was placed after CMA
equalization. The CMA could compensate residual CD and PMD. Therefore, the toler-
ance, with respect to residual CD and PMD of the proposed scheme, embedded in such
DSP architecture, was enhanced. The tolerance values, with respect to residual CD and
DGD of the proposed scheme, are shown in Figure 12a,b, respectively. The OSNR values
of PDM-QPSK/-8QAM/-16QAM/-32QAM/-64QAM were 12 dB, 17 dB, 19 dB, 22 dB
and 24 dB, respectively. The range of residual CD for PDM-QPSK/-8QAM/-16QAM/-
32QAM signals was from −1920 ps/nm to 1920 ps/nm, while the range of residual CD
for PDM-64QAM was −720 ps/nm~720 ps/nm. The steps for all modulation formats
were 120 ps/nm. As shown in Figure 12a, the proposed MFI scheme was able to toler-
ate a relatively wide range of residual CDs for PDM-QPSK (−1920 ps/nm~1920 ps/nm),
PDM-8QAM (−1920 ps/nm~1920 ps/nm), PDM-16QAM (−1440 ps/nm~1320 ps/nm)
and PDM-32QAM (−1680 ps/nm~1680 ps/nm) signals. Because of the greater amplitude
levels, for PDM-64QAM, the proposed scheme was able to tolerate residual CD from
−240 ps/nm to 240 ps/nm.
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Figure 12. The tolerance with respect to (a) residual CD and (b) DGD of the proposed scheme.

The range of DGD for PDM-QPSK/-8QAM/-16QAM/-32QAM/-64QAM signals was
from 0 ps to 34 ps, with a step size of 2 ps. Analogous to residual CD, the tolerable DGD
for PDM-64QAM was much lower than the other four modulation formats. The proposed
scheme was able to achieve a 100% correct identification rate for PDM-64QAM when the
DGD was 8 ps. For PDM-16QAM and PDM-32QAM, the tolerable DGDs were 22 and 20 ps,
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respectively. The correct identification rate of PDM-QPSK and PDM-8QAM remained at
100% over the whole DGD range.

In order to analyze the relationship between MFI performance and baud rate, VPI
Transmission Maker 9.8 was utilized to undertake numerical simulations for 10 GBaud and
20 GBaud transmission systems. The numerical simulation setup remained unchanged,
except for baud rates. Simulated correct identification rates for the five modulation formats
used in the 10 GBaud and 20 GBaud systems are shown in Figure 13a,b, respectively. These
figures showed that, compared with the 28GBaud case, shown in Figure 10b, the MFI
performances were relatively better because the tolerance to noise was improved for the
lower baud rate cases.
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Figure 13. Simulation results of correct identification rate versus OSNR value, under different baud
rate: (a) 10 GBaud; (b) 20 GBaud.

To discuss the scalability of the proposed scheme, the MFI performance for prob-
abilistic shaping (PS) of QAM signals was also investigated. The amplitude value and
associated probability values for each level of the PS-QAM signals, including PS-16QAM
(3 bit/symbol) and PS-64QAM (5 bit/symbol), are shown in Table 2. Since the probability
distribution feature of the PS-QAM signals differed from those of the traditional QAM
signals, the procedure and corresponding thresholds of the proposed scheme needed to be
modified accordingly, as detailed below.

Table 2. Amplitude value and associated probability for each level of PS-16QAM and PS-64QAM signals.

PS-16QAM (3 Bit/Symbol) PS-64QAM (5 Bit/Symbol)

Amplitude Value Probability Amplitude Value Probability

0.731 79.40%

0.363 28.70%

0.812 34.68%

1.09 10.38%

1.634 19.40%

1.31 12.50%

1.498 7.35%

1.817 4.11%

2.193 1.20%

1.957 1.65%

2.21 0.58%

2.543 0.05%

The numerical simulation setup remained unchanged, except for the process used in
generating the PS-16QAM and PS-64QAM signals. After power normalization, the first
partition operations for the amplitude histograms of QPSK, 8QAM, PS-16QAM, 32QAM
and PS-64QAM were employed. As shown in Figure 14a, the number of symbols was N/2
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in both part A and part B. Since part A of PS-64QAM concentrated around low amplitude
values (the associated probability for 0.363 was 28.7%), and the amplitude distribution
range of part B as wide, as shown in Figure 14c, the ratio H1 (mentioned in Equation (2))
of PS-64QAM was greater than that of 8QAM over a wide OSNR range. Therefore, two
thresholds for H1 were set: Th1 was 2.23 and Th2 was 2.04. Based on these two thresholds
of H1, 8QAM as not only distinguishable from QPSK, PS-16QAM and 32QAM, but also
from PS-64QAM. The second partition operation for the amplitude histograms of the rest
of these modulation formats (QPSK, PS-16QAM and 32QAM) is shown in Figure 14b. The
numbers of symbols in part A, part B and part C were N/4, N/2 and N/4, respectively.
The distribution of PS-16QAM in part B was more concentrated than those of QPSK and
32QAM, while the distribution of PS-16QAM in part C was dispersed. Therefore, as shown
in Figure 14d, the value of H3 (mentioned in Equation (4)) for PS-16QAM was greater
than those for QPSK and 32QAM. QPSK was also distinguishable from 32QAM based on
another threshold of H3. The two thresholds of H3 were 4.12 (Th3) and 2.3 (Th4). The correct
identification rates for identifying QPSK, 8QAM, PS-16QAM, 32QAM and PS-64QAM are
shown in Figure 14e. The proposed MFI scheme was still able to achieve a 100% correct
identification rate for all of these five modulation formats over a wide OSNR range. The
scalability of the proposed scheme was verified by the simulation results. It should also
be noted that if the information entropy changed, the probability distribution features
of PS-QAM also changed. As such, when PS-QAM (with different information entropy)
needed to be identified, corresponding modifications needed to be made to the procedure
of the proposed MFI scheme and their relevant thresholds. The proposed scheme was
suitable for application scenarios wherein the set of the modulation formats that needed to
be identified were made known before applying the MFI scheme.
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Figure 14. Operating principle and simulation results for identifying five modulation formats,
including PS-QAM. (a) The first partition operation and (b) second partition operation for the
amplitude histograms of QPSK, 8QAM, PS-16QAM, 32QAM and PS-64QAM; (c) H1 and (d) H3 vary
with the OSNR of the back-to-back optical transmission system, and (e) the correct identification rate
for identifying these five modulation formats.
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4. Experimental Setup and Results

To experimentally verify the effectiveness of our proposed MFI scheme, a series
of proof-of-concept experimental demonstrations were undertaken. The setup for
these is shown in Figure 15. In the transmitter, a PRBS with a word length of 215 − 1
was generated by offline DSP and mapped onto different modulation formats with
2 samples/symbol. A SRRC filter with a roll-off factor of 0.1 was employed to shape
the up-sampled signals. In addition, a pre-distortion operation was also applied to
compensate for the frequency roll-off effect associated with digital-to-analog converters
(DACs). An external cavity laser (ECL) produced a continuous wave optical carrier with
a wavelength of ~1550 nm and a linewidth of ~100 kHz, which was then modulated by
an integrated LiNbO3 polarization-multiplexing I/Q modulator. The DACs, operating
at 64 GSa/s and 25 GHz analog bandwidth, drove four branches of the modulator
to generate 28 GBaud PDM-QPSK/-8QAM/-16QAM and 21.5 GBaud PDM-32QAM
optical signals. The transmission links included back-to-back and long-haul fiber
transmissions. The long-haul transmission link was composed of multi-span single
mode fiber (SMF), whose dispersion parameter, attenuation, and nonlinear coefficient
were D = 16.9 ps/nm/km, α = 0.2 dB/km, and γ = 1.27 km−1·W−1, respectively. To
completely compensate for the fiber loss, an erbium-doped fiber amplifier (EDFA)
with a noise figure of ~5 dB was applied in each span. An optical spectrum analyzer
(OSA ANRITSU MS9740A) was used before the receiver to measure the OSNR in
back-to-back case, and an optical band-pass filter (OBPF), whose bandwidth was
200GHz, was employed to suppress out-of-band ASE noise. After passing through
the link, the received signals were detected by an integrated coherent receiver and
then sampled by a real-time digital oscilloscope with 80 GSa/s and 33 GHz electrical
bandwidth. Finally, these signals were processed by an offline DSP module, where the
proposed MFI scheme was embedded. The frame synchronization was achieved by
the auto-correlation detection of synchronization codes. The OSNR dynamic ranges
for PDM-QPSK/-8QAM/-16QAM/-32QAM signals in the back-to-back links were
10–17 dB, 15–28 dB, 16–28 dB and 18–35 dB, respectively. The step of variable OSNR is
1 dB. In all of the proof-of-concept experiments, 100 samples of independent data were
applied for each OSNR or launch power value.
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Figure 15. Proof-of-concept experimental setup of the proposed scheme. PC: polarization controller,
PBS: polarization beam splitter, PBC: polarization beam coupler, VOA: variable optical attenuator,
LO: local oscillator.

The performance of the proposed MFI scheme was first experimentally verified
in back-to-back links. As shown in Figure 16, the proposed scheme achieved a 100%
correct identification rate for both QPSK and 8QAM over all OSNR ranges considered
in the experiments. The minimum OSNR values required by 16QAM and 32QAM
for achieving a correct identification rate of 100% were 19 dB and 20 dB, respectively.
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Compared with the numerical simulation results, the minimum required OSNR values
for these two modulation formats increased slightly. This could have been due to
the unwanted effects associated with the signal generation of high-order modulation
formats in the experiments. The four modulation formats could still be identified
with a 100% correct identification rate when their OSNR values were higher than
the thresholds (indicated by the vertical dash lines), corresponding to the 7% FEC
correcting BER of 3.8 × 10 −3.
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Figure 16. Correct identification rates under different OSNR values in back-to-back experiments.
The vertical dash lines indicate the OSNR thresholds corresponding to 7% FEC correcting BER of
3.8 × 10−3.

The performance of the proposed scheme, subject to nonlinear impairments of
long-haul transmission links, was experimentally explored, and the results are pre-
sented in Figure 17. As shown, the launch powers of the PDM-QPSK signals over a
2000 km link, the PDM-8QAM signals over a 2000 km link, the PDM-16QAM signals
over a 1040 km link and the PDM-32QAM signals over a 400 km link were varied
in the ranges of −4~6 dBm, −3~6 dBm, −3~8 dBm, and −2 ~7 dBm, respectively.
In Figure 17, EVM, as a function of launch power, was also plotted to evaluate the
system’s overall performances with respect to different modulation formats. Note that,
in comparison with other modulation formats, the EVM variation for 32QAM over the
whole optical launch powers range was reduced because of the relatively short link
length. As seen in the figure, when the launch power was higher than 2 dBm, all the
transmission systems operated at the nonlinear region, where the system performance
was dominated by fiber nonlinearity. Over such a region, the correct identification
rates of 100% were still achievable for the four modulation formats. On the other hand,
when launch powers were decreased to −4 dBm and −3 dBm for the PDM-QPSK and
PDM-16QAM signals, respectively, as a direct result of the resulting reductions in
OSNR, the correct identification rates for the PDM-QPSK and PDM-16QAM signals
were reduced with decreasing launch power. The experiment results indicated that the
proposed MFI scheme was robust against fiber nonlinearities and suitable for long-haul
transmission links.
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Figure 17. Correct identification rates (blue triangles) of the four modulation formats with differ-
ent launch powers in long-haul transmission experiments. (a) PDM-QPSKsignals over a 2000 km
link; (b) PDM-8QAM signals over a 2000 km link; (c) PDM-16QAM signals over a 1040 km link;
(d) PDM-32QAM signals over a 400 km link. Green dots indicate the error vector magnitudes (EVM).

5. Complexity Analysis

To evaluate the feasibility of the proposed MFI algorithm for use in practical systems,
its computational complexity had to be examined. The detailed complexity analysis of
the proposed scheme was thus undertaken. The results are presented in Table 3, where
the complexities of the five operations involved in the proposed MFI scheme are shown.
For the proposed scheme, the required real multipliers, real adders and comparators were
N + 6 × (nbins + 1), N + 7 × nbins + 6 and 2 × N + (2 × N + 10) × nbins + 1, respectively;
here, N is the number of symbols (6000), and nbins is the number of histogram bins (40).

Table 3. Computational complexity of the proposed MFI scheme.

Operation Multipliers Adders Comparators

Power normalization N N-1 0
Generation of amplitude

histograms 0 2 × nbins 2 × nbins × N + 2 × N − 3

Partition operation 0 nbins-1 10×nbins
Calculation of ratios 6 × (nbins + 1) 4 × nbins + 8 0

Comparing with threshold 0 0 4
Total N + 6 × (nbins + 1) N + 7 × nbins + 6 2 × N + (2 × N + 10) × nbins + 1

A complexity comparison between the proposed MFI scheme and schemes using DNN,
PCASP and M-PSO is shown in Figure 18. Without considering the complexity of power
normalization and amplitude histogram generation, in the testing stage of SVM, O(Ns·d·N)
operations were required when RBF kernel was applied [38], where Ns, d and N are the
number of support vectors, the dimension of the input data and the number of testing
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samples, respectively. Since the support vector cannot be fully quantified, the complexity
of SVM was not considered, as shown in Figure 18. In the numerical simulations, Ns
and d were 805 and 40, respectively. As shown in Figure 18, the required multiplications,
additions and comparisons for the M-PSO scheme were much higher than those of the
proposed scheme. In addition, 16,000 look-up table (LUT) operations were also required
for the M-PSO scheme. When the number of symbols N equaled 2048, the PCASP scheme
needed calculations of 131,143 real multiplications, 108,612 real additions, 14 comparisons
and 22 LUT operations. For the proposed scheme, the required real multiplications, real
additions and comparisons were 6246, 6286 and 492,401, respectively. It should be noted
that the complexity of the comparators was much lower than those related to multipliers
and adders [29]. The proposed scheme and the scheme using DNN were both based on
amplitude histogram. Without considering the complexities of power normalization and
amplitude histogram generation, the required real multipliers, real adders and comparators
for the identification process in the proposed scheme were 6 × (nbins + 1), 5 × nbins + 7
and 10 × nbins + 4, respectively. The identification process in DNN, however, required
N1N2 + N2N3 + N3N4 + C-1 multipliers, (N1-1)N2 + (N2-1)N3 + (N3-1)N4 + C-1 adders and
N2 + N3 + C-1 comparators, respectively [6]; here, N1, N2, N3 and N4 are the numbers of
neurons in the input, first hidden, second hidden and output layer, respectively, and C is
the number of identified modulation formats. In this paper, N1, N2, N3, N4 and C were
taken to be 40, 40, 10, 5 and 5, respectively. In addition, the training processes for DNN and
SVM could also require considerable computational resources and long processing times.
Even though the training process could be accomplished offline, the training procedure
could still be regarded as a major factor limiting the flexibility of EONs.
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Figure 18. The complexity comparison between the proposed scheme and schemes using DNN,
PCASP and M-PSO.

6. Discussion

In Section 3, we discussed the scalability of the proposed scheme. The precondition
under which the proposed scheme could still identify PS-QAM would require that the rele-
vant statistical features of the PS-QAM to be identified remain constant. If the information
entropy changes, the probability distribution features of PS-QAM will also change. As such,
when PS-QAM with different information entropy needs to be identified, corresponding
modifications to the procedure of the proposed MFI scheme and their relevant thresholds
must be made. The proposed scheme was suitable for application scenarios wherein the
set of the modulation formats that need to be identified from are made known before
applying the MFI scheme. The authors would like to highlight the fact that such a condition
also holds for machine learning MFI algorithms, since they also need training samples to
contain the modulation formats to be identified in their training process. In other words, if
the modulation formats of an incoming signal are not known before the training process
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is applied, the machine learning algorithm will also fail to work properly. Furthermore,
the proposed scheme cannot identify higher-order modulation formats, such as 128QAM
and 256QAM, because of its low tolerance to noise. Under the influence of noise, the
corresponding amplitude features of these higher-order modulation formats will not be
highlighted in the histogram, resulting in increased difficulty of identification. Future work
will determine methods by which to identify the higher-order modulation formats.

7. Conclusions

In this paper, an MFI scheme, based on amplitude histogram distributions waw
proposed for use in autonomous digital coherent receivers in EONs. The feasibility of
the proposed scheme was verified by numerical simulations for 28 GBaud PDM-QPSK/-
8QAM/-16QAM/-32QAM/-64QAM signals over a wide range of OSNRs. Following the
numerical simulations, to further demonstrate the effectiveness of the proposed scheme,
proof-of-concept experiments were undertaken in 28 GBaud PDM-QPSK/-8QAM/-16QAM,
and 21.5 GBaud PDM-32QAM systems under back-to-back and long-haul fiber transmission
links. Simulation and experimental results showed that the proposed scheme was robust
against both linear and nonlinear noise. Equally importantly, such performances were
obtained with significantly reduced complexity. The proposed scheme was dependent on
amplitude features only, and was, therefore, insensitive to carrier phase noise. In addition,
the proposed MFI scheme was also capable of identifying PS-QAM signals when slight
modifications to the procedure and corresponding thresholds were made. According to
the tradeoff between the identification performance and computational complexity, the
proposed MFI scheme may have good potential for implementation in future EONs.
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