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Abstract: Transmission spectra of a symmetric microresonator structure, with dielectric Bragg mirrors,
are obtained. The working cavity of the structure is partially filled by a layer of a quarter-wave
thickness of finely layered “graphene–semiconductor” medium, with material parameters controlled
by external electric and magnetic fields. It is shown, that the transformation of the spectra is achieved
both by changing the energy state of the graphene layers and by changing the external magnetic field.
The spectral characteristics for the inverted and doped states of graphene layers are established.
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1. Introduction

Photonic crystal microresonators (MCRs) have attracted the close attention of re-
searchers in recent years, largely due to their wide use in various optical devices [1–9].
One of the important research directions, is the selective extraction and amplification of an
optical signal, based on the interaction of optical modes in a microresonator and resonances
in the active medium filling its cavity. For many practical applications, it is important to be
able to tune the resonant frequency of a microresonator, by changing the external parame-
ters. Efficient rearrangement of the transmission and reflection spectra of a microresonator,
can be achieved by introducing a medium into the cavity between the mirrors, the material
parameters of which depend on easily changed external factors [9,10]. The use of resonant
photonic crystals, in which the interaction of optical and, for example, exciton resonances,
requires the correct selection of both geometry and materials for the Bragg mirrors (BMs)
and cavity.

One-dimensional MCRs, represent a structure in which, as a rule, plane layered
dielectric Bragg reflectors are used as mirrors. The formation of a symmetric MCR requires
two identical dielectric Bragg mirrors separated from each other by a certain distance along
their axis, and a symmetrical order of the layers relative to the cavity in one of the BMs. The
area between the mirrors (the working cavity), as a rule, is filled with an active medium.
Due to the multiple reflection of radiation between the mirrors, standing waves (resonator
modes) are formed. In plane-parallel resonators, only those modes are supported for which
the distance between the mirrors is a multiple of half the wavelength of the propagating
radiation. In this case, transmission resonances are observed in the photonic band gaps
(PBGs). Their number, position, and amplitude are determined by the width of the cavity
and the reflection coefficient of the mirrors.

Rearrangement of the resonant frequency of a microresonator by changing external
parameters, is an important possibility for many practical applications [11–14]. Efficient re-
arrangement of the transmission and reflection spectra of a microresonator can be achieved,
by introducing into the cavity between the mirrors a medium whose material parameters
depend on easily changed external factors [15–20]. One of the most promising materials
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for photonics is graphene, and various planar structures based on it. Graphene can be
in both passive and active (doped or inverted) states. We will call graphene doped if it
is in an equilibrium state with a nonzero chemical potential (Fermi energy), and we will
call it inverted if it is in a nonequilibrium state, i.e., in the presence of an inverse band
population. Graphene’s parameters can be controlled by changing its chemical potential
(Fermi energy) [21–28].

Thus, the above features of graphene-containing structures, make it possible to design
tunable multichannel filters with the desired number of channels and ultra-narrow bands,
in such a structure [29]. A graphene-containing photonic crystal can be used as a miniature
biosensor for cancer cell recognition [30]. The presence of an effective graphene medium in
the microcavity structure, can lead to partial or complete suppression of the defect mode,
as well as to a significant dependence of the character of the spectra on the energy state of
the graphene. Variation of the Fermi energy (quasi-energy), makes it possible not only to
rearrange the photon spectra, by changing the reflection, transmission, and absorption of
the radiation incident on the structure over a wide range, but also to create conditions for
amplifying the radiation interacting with the structure [31].

In this paper, we study the features of the transmission spectra of a symmetric mi-
croresonator with dielectric BMs, in the working cavity of which, a layer of a quarter-wave
thickness of finely layered “semiconductor–graphene” medium, with material parameters
controlled by external electric and magnetic fields, is placed. It is proposed to use it as a
material for semiconductor layers n− InSb. The paper presents the frequency dependences
of the transmission coefficient of the eigen-TM wave at different static magnetic fields and
different types of excitation of the graphene layers, as well as different order of the layers
in the BMs.

2. Material Parameters of the Structure

Let us consider a symmetrical microresonator formed by two BMs, and a cavity
separating them. We assume that the period of the BMs consists of two layers of isotropic
dielectrics, these are SiO2 and ZrO2, with permittivity ε1 = 2.1 and ε2 = 4.16, respectively,
and the same optical thicknesses L0 = L1

√
ε1 = L2

√
ε2 = λ/4. Here, λ0 = 2πc/ω0,

where the operating frequency is ω0 = 5× 1013 s−1. The real thicknesses of the layers
are L1 = 4.62 µm and L1 = 6.5 µm, the period is L1 + L2 = 11.12 µm, and the number of
periods in each of the BMs is a = 5. The transverse dimensions of the layers must be much
greater than the operating wavelength λ0, and also be greater than the transverse dimension
of the optical beam introduced into the microresonator (as a rule, these dimensions are
several millimeters). The cavity has a length L3 and a permittivity ε3 = 1. Let us first
consider the distribution of the wave field over the structure with an unfilled cavity, in
order to reveal the spectral features of the microcavity that arise when the cavity is filled
with an effective medium.

Figure 1 shows the distribution of the permittivity along the structure (layer interfaces
are perpendicular to the OZ axis), and the squared modulus of the electric field strength of
the wave for the resonator structure under consideration (thin and thick lines, respectively),
obtained with two orderings of layers in the BMs: 1212 . . . 2121 (hereafter referred to as
structure D), and 2121 . . . 1212 (hereafter referred to as structure F). The distribution of
the electric field corresponds to the frequency ω0, and the permittivity of the cavity ε3 = 1
and L3 = λ0/2

√
ε3 = 18.84 µm. It can be seen that the amplitude of the electric field

reaches a maximum at the center of the cavity for structure D (the cavity is limited by
layers with a higher permittivity), and is minimal at the lateral boundaries (in this case,
the magnetic field amplitude at the center of the cavity is minimal, and at its boundaries it
is a maximum). The cavity is bounded by layers with a low dielectric permittivity in the
BMs, for a structure with a changed order of the layers, while the electric field amplitude is
minimal in the center and maximal at the lateral boundaries of the cavity, for a magnetic
field, the amplitude is maximum in the center and minimal at the cavity boundaries.
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Figure 1. The distribution of the modulus of the electric field strength of the wave and the permittivity
(thick and thin lines, respectively) in a microresonator, with a cavity thickness L3 = λ0/2

√
ε3 and

ε3 = 1, at ε1 = 2.1, ε2 = 4.16. (a) structure D-type, ε1 = 4.16, ε2 = 2.1; (b) structure F-type.

The transfer matrix connecting the wave field at the input and output of the structure,
for a microresonator with a free resonator cavity, has the form G0 = (N1N2)

aN3(N2N1)
a

(the view of the transfer matrices of individual layers is presented in Section 3). The
transmission spectra of the considered structures are shown in Figure 2. There is a photonic
band gap (PBG) in the operating frequency region, which is wider for the D structure than
for the F structure. The defect mode is a narrow peak of almost complete transmission,
associated with a violation of the periodicity of the structure; it is observed in the center of
the forbidden region in both cases.

Figure 2. Frequency transmission spectra of a microresonator, with a cavity thickness L3 = λ0/2
√

ε3

and ε3 = 1, at ε1 = 2.1, ε2 = 4.16. (a) structure D-type, ε1 = 4.16, ε2 = 2.1; (b) structure F-type.

Let us estimate the value of the quality factor of the resonant structure under study. To
do this, we use the definition that relates the value of the resonant frequency to the width
of the resonant curve at its half-height, i.e., Q ' ω0/∆ω [32]. Using the above spectra to
determine the width of the central mode curve for the two types of structures, we obtain:
Q1 ≈ 100 and Q2 ≈ 140. Thus, for the same number of periods in the BMs, the quality
factor of the resonator depends on the order of the layers in them. The quality factor of
the microresonator increases with an increase in the number of periods in the BMs and the
optical contrast in neighboring layers of the mirror period.

Next, we will fill the cavity with an active plane-layered structure, composed of
alternating layers of semiconductor and graphene, with thicknesses `s and `g. The material
parameters of each layer in the studied frequency range are scalar-tensor quantities, i.e., for
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graphene and the semiconductor, εg and εs, the magnetic permeability of the layers in the
studied range can be considered to be equal to unity. Such a one-dimensional structure,
even in the absence of an external magnetic field, has the properties of a uniaxial crystal,
with a symmetry axis perpendicular to the interfaces between the layers (axis OZ).

An external static magnetic field applied in the layer plane, leads to the anisotropy
of the optical properties of the semiconductor layers. For a field H0 oriented along the
OX axis, the nonzero components of the semiconductor permittivity tensor εyy = εzz = ε,
εxx = ε‖, εyz = −εzy = iεa depend on the frequency and the external magnetic field, as
follows [33]:

ε = ε l

(
1−

ω2
pων

ω(ω2
ν −ω2

c )

)
, ε‖ = ε l

(
1−

ω2
p

ωων

)
, εa =

ε lω
2
pωc

ω(ω2
ν −ω2

c )
, (1)

where the plasma and cyclotron frequencies of the semiconductor are introduced:
ωp =

√
4πe2n0/m∗ε l and ωc = eH0/m∗c, ε l is the lattice part of the permittivity, e is

the electron charge, n0 and m∗ are the concentration and the effective mass of the carriers,
respectively, ων = ω + iν, ν is the relaxation parameter. Resonance absorption in the

semiconductor layer is realized at a frequency ωres ≈
√

ω2
p + ω2

c for the above orientation
of the magnetic field and transverse (with respect to H0) propagation of an electromagnetic
wave.

A planar magnetic field does not affect the electronic subsystem of graphene, due to
its 2D geometry, i.e., monolayer. In this case, the effective permittivity tensor of the finely
layered Gr/InSb graphene medium, has nonzero components: εxx = εyy = ε

e f
⊥ , εzz = ε

e f
‖ .

The eigenwaves of the effective medium in the case of transverse propagation of the wave
(k ⊥ H0), are TE and TM waves. We will carry out further analysis for a TM-type wave,
because this type of wave is controlled by an external magnetic field. The propagation

constant of this wave is kTM
3 = k0

√
ε

e f
⊥ . Where k0 = ω/c, and ε

e f
⊥ is the effective permittivity

for the considered problem geometry. In the long-wave approximation (`g + `s << λ), the
effective permittivity can be represented as

ε
e f
⊥ =

ε⊥`s + εg`g

`g + `s
=

ε⊥ + θεg

θ + 1
=

1
θ + 1

(
ε⊥ −

4πσ
′′

ω`s
+ i

4πσ
′

ω`s

)
, (2)

where ε⊥ = ε − ε2
a/ε, and the parameter θ = `g/`s. When writing ε

e f
⊥ , it was taken

into account that for graphene, the permittivity εg is related to its surface conductivity
σ = σ

′
+ σ

′′
by the relation εg = i4πσ/ω`g. In real structures, `g << `s (since

`g ∼= 0.335 nm) and the parameter θ << 1.
Graphene layers can be in both unexcited and active states. In unexcited graphene, the

Fermi energy (chemical potential) is at the Dirac point, and is equal to zero. In this case, the
valence band is completely filled, the conduction band is completely free, and the band gap
is absent. The chemical potential can be shifted to the conduction band or the valence band,
the charge density on the graphene sheet can be changed, and thus the surface conductivity
can be changed by applying a voltage of different polarity between the graphene sheet and
the substrate.

Doped and inverted graphene are distinguished, for which the filling of the conduction
and valence bands is different, and the expressions for surface conductivity are different.
The frequency dependences of the dynamic surface conductivity of doped and inverted
graphene, within the framework of the Kubo model, are determined, respectively, by the
following expressions [34,35]:
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σdop

σ0
=

8kBTτ

πh̄(1− iωτ)
ln

[
2 cosh

(
EF

2kBT

)]
+ G

(
h̄ω

2
, EF

)
− R(ω),

σinv
σ0

=
8kBTτ

πh̄(1− iωτ)
ln

[
1 + exp

(
EF

kBT

)]
+ tanh

(
h̄ω− 2EF

4kBT

)
− R(ω),

(3)

G(α, β) =
sinh(α/kBT)

cosh(α/kBT) + cosh(β/kBT)
, R(ω) =

4h̄ω

iπ

∞∫
0

G(E, EF)− G(h̄ω/2, EF)

(h̄ω)2 − 4E2 dE.

Here, σ0 = e2/4h̄ is the fundamental (static) conductivity of graphene, e is the charge of
an electron, h̄ is Planck’s constant, kB is the Boltzmann constant, T is the temperature, τ
is the carrier scattering time, and EF is the Fermi energy (for doped graphene) and the
quasi-Fermi energy (for inverted graphene). Both expressions at EF = 0, lead to the same
dependence σ(ω) for passive (i.e., unexcited) graphene.

Figure 3a,b show the frequency dependence of the real part of the conductivity of
inverted and doped graphene, obtained at T = 300 K, τ = 1 ps (hereafter) and values of
the Fermi energy (quasi-energy) EF = E

′
F = 0, 50, 100, 150, and 200 meV (curves 1–5). It

can be seen that the real part of the conductivity for doped graphene, takes only positive
values in the entire frequency range and for all values of the Fermi energy, while negative
values are realized for inverted graphene in the frequency range f = ω/2π ≈ (5− 50) THz.
The imaginary part of the conductivity, according to (3), remains positive over the entire
frequency range and has a monotonically decreasing character of the hyperbolic type for
both types of graphene.

Figure 3. Frequency dependence of the real part of the conductivity of inverted and doped graphene
(a,b) for EF = E

′
F = 0, 50, 100, 150, and 200 meV (curves 1–5); and frequency dependence of the

imaginary part of the medium’s effective permittivity for inverted and doped graphene (c,d) for
H0 = 5 kOe, EF = E

′
F = 0, 100, and 200 meV (curves 1–3).

Figure 3c,d show the frequency dependences of the imaginary part of the effective
permittivity of a finely layered Gr/InSb medium with inverted and doped graphene,
obtained for the parameters θ = 0.011, m∗ = 0.014 me, me is the mass of a free electron,
ν = 1010 s−1 (hereafter), EF = E

′
F = 0, 100, 200 meV (curves 1–3), and H0 = 5 kOe. A

significant dependence of this value on the degree of excitation of graphene is visible,
i.e., dependence of the value on the Fermi energy (quasi-energy). It is important that for
inverted graphene, at frequencies where the real part of the conductivity is negative, the
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imaginary part of the effective permittivity is also negative. In this region, an increase in
the waves transmitted and reflected from the structure should be observed; with increasing
quasi-Fermi energy, this region expands significantly. In a narrow region near the frequency

ωres ≈
√

ω2
p + ω2

c , a resonant increase in the imaginary part of the effective permittivity
of a fine-layered medium is observed. Increasing the magnetic field, shifts the resonance
peak to higher frequencies and increases the amplitude of the resonance peak. Thus, the
effective permittivity of the layer filling the resonant cavity of the microresonator, can be
controlled using both electric and magnetic fields.

3. Microresonator Spectra with a Partially Filled Cavity

Let us consider the transformation of the transmission spectrum of a TM wave when
a layer of an effective medium is placed in the center of the microresonator cavity. For a
microresonator structure with a resonator cavity partially filled with an effective medium,
the transfer matrix connecting the wave field at the input and output of the structure has
the form G = (N1N2)

aN3N4N3(N2N1)
a. The transfer matrices of individual layers, written

in the plane wave approximation (valid for the above transverse dimensions of the layers),
have the form [19,33]:

Nj =

(
cos k jLj i√ε j sin k jLj

(i/√ε j) sin k jLj cos k jLj

)
, (4)

where j = 1− 4, k j = k0
√

ε j are the propagation constants in the respective layers, k0 = ω/c,

ω and c are the frequency and speed of the wave in a vacuum, respectively, ε4 = ε
e f
⊥ .

The amplitude transmission and reflection coefficients for the entire microresonator
structure, are determined in terms of the matrix elements of the transfer matrix [19,35]:

r =
G11 + G12 − G21 − G22

G11 + G12 + G21 + G22
, t =

2
G11 + G12 + G21 + G22

. (5)

The energy transmission and reflection coefficients, in the case of a symmetrical environ-
ment (we assume that the structure is in a vacuum), have the form R = |r|2, T = |t|2. When
absorption in layers is taken into account, the fraction of energy absorbed by the structure
is determined by the quantity A = 1− R− T. This relation is valid for equilibrium states;
therefore, its use for inverted graphene is incorrect.

The character of the spectra essentially depends on both the energy state of graphene
in a finely layered medium and the magnitude of the applied magnetic field. Figure 4
shows the frequency dependence of the transmittance T, for a microresonator with different
layer order in BMs (D, F − a, b) and a partially filled cavity. We assume that a layer of an
effective medium, with a thickness L4 = λ0/4 (in this case when L4 = λ0/4 = 9.42 µm),
with unexcited graphene (EF = E

′
F = 0), is placed in the center of the cavity. We note that

the difference between the spectra T(ω), for structures with a different order of layers in
BMs, manifests itself in the position of resonance lines inside the photonic band gap and in
the form of the spectrum envelope outside the band gap. With increasing field strength,
these changes in the spectra become more noticeable. This is due to the fact that the optical

thickness of the insert from the effective medium Lopt
4 = L4Re(

√
ε

e f
⊥ ), in the process of

tuning, is not constant, but depends not only on the frequency, but also on the external
field. Consequently, the phase-matching conditions and, accordingly, the character of the
spectrum, also depend on the field. It can be seen from the spectral dependences shown
in series (a), that when the layer of the effective medium is placed at the maximum of
the electric wave field, already at H0 = 0, the resonant line of the microresonator with
an empty cavity (dashed line) is partially suppressed, and shifted to the low-frequency
region. At the side peak at the low-frequency boundary of the photonic band gap, splitting
occurs. The shift of the defective mode to the region of higher frequencies, as well as a
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separate splitting of the peak from the low-frequency part of the spectrum and its shift to
the high-frequency region, is observed with increasing magnetic field.

Figure 4. Frequency dependence of the transmittance, for a microresonator, with a D-type (a) and
F-type (b) insert, for EF = E

′
F = 0 meV.

When the layer of the effective medium is placed in the minimum of the electric
field (b), a similar transformation of the spectrum occurs, however, the quantitative charac-
ter of the transformation differs from case (a). The main difference, lies in the significant
rearrangement of the spectrum at the high-frequency boundary of the photonic band gap,
where, already at H0 = 0, two sharp peaks are split off from the high-frequency boundary
of the band gap and shifted to lower frequencies. The separate splitting of the peak from
the low-frequency part of the spectrum, and its shift to the high-frequency region, occurs
with increasing magnetic field, along with a shift of these peaks. As the field increases
further, their significant suppression is observed. The transmittance cannot exceed unity
for a microcavity with an insert containing unexcited graphene.

An analysis of the obtained spectra, shows that their transformation for the D and F
structures, although it has quantitative differences, is qualitatively similar, therefore, below
we consider only the spectra for the D-type structure (with the order of the layers in the
BMs 1212 . . . 2121). Figure 5 shows the transmission spectra for a microcavity structure
corresponding to inverted (a) and doped (b) graphene, with excited graphene layers
(EF = E

′
F = 100 meV), in an effective medium. Note the change in the character of the

transmission spectra in the case of excited and unexcited graphene. First of all, such changes
are associated with the appearance of amplification in the spectrum of a microresonator
with an inverted graphene insert. In this case, the amplification at the frequency of the
defective mode, is much greater than that away from it. A significant dependence of the
structure’s transmittance on the external magnetic field is also seen. As the field increases,
additional peaks appear in the photonic bandgap, which are shifted to the high-frequency
region.
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Figure 5. Frequency dependence of the microresonator transmittance, with a D-type insert, with
inverted and doped (a,b) graphene, for EF = E

′
F = 100 meV; and frequency dependence of the mi-

croresonator reflection coefficient with a D-type insert, with inverted graphene, for EF = 100 meV (c)
and H0 = 15 kOe (d).

Along with the rearrangement of the transmission spectrum, under the influence
of a magnetic field and a change in the excitation energy of graphene, the reflection
and absorption spectra are also rearranged. Figure 5 shows the reflection spectra for a
microcavity with a D-type insert with inverted graphene, in the case of two control modes:
at a fixed value EF = 100 meV and various values of the magnetic field (c), and also at a
fixed value of the field H0 = 15 kOe and various values EF (d). The transformation of the
spectra, and the presence of amplification for the structure with inverted graphene, are
visible for both control modes. Note that the appearance of narrow peaks with R(ω) > 1,
takes place at the same frequencies, where T(ω) > 1, however, not all values R(ω) > 1
correspond to an excess of unity by the reflection coefficient. If T(ω) does not exceed unity
by much, then the coefficient R(ω) does not exceed unity.

Figure 6 shows the reflection R(ω) and absorption A(ω) spectra for a type D mi-
crocavity structure with doped graphene, constructed on the basis of relations (5), and
corresponding to the Fermi energy EF = 200 meV and two field values H0 = 0, 5 kOe. As
expected, in this case, the law of conservation of energy is satisfied at all frequencies, and
R(ω) does not exceed unity. The absence of reflection, and weak absorption A(ω) ≤ 0.3,
are observed near the operating frequency ω0 = 5× 1013 s−1 (at the center of the PBG) and
at the low-frequency edge of the zone, in the absence of an external field. The presence of
the field leads to a change in the reflection and absorption coefficients in the low-frequency
region. In particular, a frequency appears in the interval ω = (3.5÷ 4)× 1013 s−1, at which
there is no reflection, and the absorption reaches the value A = 0.5. In the high-frequency
region, absorption is also practically absent.



Photonics 2023, 10, 449 9 of 11

Figure 6. Frequency dependence of the microresonator reflection and absorption coefficients, with a
D-type insert, with doped graphene, for EF = 200 meV.

4. Discussion

Achievements in computer technology, make it possible to carry out numerical ex-
periments without expensive costs for the production and obtaining of materials, by
investigating and selecting the structure parameters for specific tasks. In this paper, when
describing the parameters of a fine-layered “semiconductor–graphene” medium, we use
indium antimonide, with an electronic type of conductivity, as a semiconductor. It has
the highest electron mobility (about 78,000 cm2/V · s) and the longest electron free path
(up to 0.7 µm at 300 K) among all known semiconductor materials. Modern technologies
make it possible to form photonic crystals based on InSb, with specified geometric and
physical parameters. Graphene in the active state, can be obtained using optical or current
(electrical) pumping [36–38]. The approximation of an effective medium (or fine-layered),
can be used under the condition `g + `s << λ0. In our case, the operating wavelength of
the radiation is λ0 = 2πc/ω0 = 37.68 µm, and the total thickness of the active layer in our
case is L4 = λ0/4 = 9.42 µm. Assuming the number of periods in the “semiconductor–
graphene” structure to be equal to N = 10, we arrive at the period of the structure being
`g + `s ' 0.942 µm << λ0, which indicates the correctness of using the approximation of a
finely layered medium. Note that we have not considered the transformation of the spectra,
which is possible when the doping of the semiconductor is changed. However, the given
expressions for the semiconductor permittivity components take into account changes in
the material parameters, which can be taken into account in calculations based on the given
relationships.

5. Conclusions

This paper presents the frequency dependences of the transmission, reflection, and
absorption coefficients for a TM wave propagating in a symmetric microresonator structure
with dielectric BMs. The working cavity of the resonator is partially filled with an active
layer of a quarter-wave thickness, which is a periodic “graphene–semiconductor” structure,
with controlled material parameters of individual layers. It is shown that the transformation
of the spectra can be achieved both by changing the chemical potential of graphene layers
and its conductivity, under the action of an external electric field, and by changing the
dielectric constant of the semiconductor layers under the action of an external magnetic
field.

The approximation of an effective (fine-layered) medium is used in modeling the
photon spectra of a microcavity structure, to describe the optical properties of the active
layer. The operating frequency range of the microresonator from the terahertz to the
optical region, can be changed by choosing the material of the semiconductor layers, their
thickness, type, and concentration of carriers, as well as by choosing the period of the
BMs. The creation of amplification in graphene layers largely depends on the possibility of
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maintaining a long-lived inverse population on them, with the help of optical pumping.
The character of the spectra for a microresonator structure, in which the active material
contains layers of graphene in an inverted and doped state, has been established.
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