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Abstract: The studies of the interband electron transition energy in multiple Hg1-xCdxTe/Hg1-yCdyTe
quantum wells (MQWs) at room temperature were carried out. The MQWs were grown on the (013)
GaAs substrate by molecular beam epitaxy, with the layer composition and thickness being measured
by the in-situ ellipsometric parameters measurement at the nanometer level. The Hg1-xCdxTe barrier
composition and width were x = 0.69 and 30 nm, respectively. The Hg1-yCdyTe well composition was
y = 0.06–0.10, and the width varied in the range of 2.7–13 nm. The experimental data of the interband
electron transition energy were determined by the absorption spectral analysis. The calculation of the
interband electron transition energy was carried out on the basis of the four-band Kane model. A good
agreement between the experimental and calculated data was obtained. It was shown that MQWs
may be used as a photosensitive material for creating infrared optoelectronic devices operating in
different modes in the range of 3–10 µm at room temperature.
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1. Introduction

A solid mercury and cadmium telluride (MCT, HgCdTe) solution, due to its unique
physical properties, such as the band gap change in a wide energy range, the large absorp-
tion coefficient, and the high carrier mobility and lifetime, has taken the leading position
among the photosensitive materials for high-quality infrared (IR) detectors [1–3]. The
numerical research and development of epitaxial technologies such as LPE, MOVPE, and
MBE have made it possible to obtain high-quality HgCdTe layers and cooled IR detectors
in the wide spectral range of 1 to 20 µm.

However, the growing process needs the development of MOVPE and MBE growth
on large-diameter, low-cost GaAs and Si substrates [4–6] instead of high-cost CdZnTe
substrates [4,7]. Now IR detectors based on HgCdTe/GaAs(Si) have parameters that are
comparable to the similar ones based on HgCdTe/CdZnTe in the 1–3 µm and 3–5 µm
ranges at 77 K. However, for a long IR detector wavelength over 10 µm, it is necessary to
cool HgCdTe/GaAs(Si) IR detectors to temperatures lower than 50 K. The fundamental
requirement of large area HgCdTe layers for long IR detector wavelength is composition
uniformity over the substrate area. This problem becomes practically unsolvable with the
increase in the long wavelength cutoff.

The quantum nanostructures with layer thicknesses from several to tens of nanometers,
such as HgTe/CdTe superlattices (SLs) and HgTe/HgCdTe quantum wells (QWs), are
considered alternative materials for creating IR detectors that can be used in a wide spectral
range at elevated temperatures [8–11].

It was shown that the IR detector sensitivity on the basis of HgTe/CdTe SLs is deter-
mined by the thickness relationship of the CdTe and HgTe layers [12]. That can essentially
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increase the wavelength cutoff uniformity over a large area. The first HgTe/CdTe SLs
were grown by MBE because this method is most preferable due to the low growth tem-
perature [13]. Nevertheless, there are no positive results in using HgTe/CdTe SLs for
developing high-quality IR detectors, in spite of the significant progress in the HgCdTe
alloy growth technology. This may be connected with the absence of control over the layer
thickness accuracy and their stability during the CdTe/HgTe SL growth. The CdTe and
HgTe thickness relation determines the interband electron transition energy (IBETE) and,
as a result, the IR detector spectral range sensitivity. A small layer width change in the very
narrow CdTe and HgTe layers may lead to IBETE blurring and an essential change in the
spectral characteristics, magneto-transport, and magneto-optical phenomena [14–16].

The spectral sensitivity of multiple quantum wells (MQWs) of Hg1-xCdxTe/Hg1-yCdyTe
is determined only by the Hg1-yCdyTe well composition y and width (dw) at the large barrier
composition x and width (db). The electron interband transition in Hg1-xCdxTe/Hg1-yCdyTe
MQWs allows one to realize a highly sensitive IR detector [10]. For this, it is necessary
to grow high-quality Hg1-xCdxTe/Hg1-yCdyTe MQWs with very precise layer control
composition and width. The MBE technique is the preferred method to satisfy such a
requirement. We developed the MBE technology of the HgCdTe alloy, different periods of
Hg1-xCdxTe/Hg1-yCdyTe QWs growth, and single-wave ellipsometry (SWE) monitoring of
layer composition and thickness in situ. The SWE has obviously the following advantages:
high speed and precision, which are very important for growing a nanometer-thick layer;
they do not affect growth processes; and the interpretation of measurements can be carried
out in real time during growth without the interactive participation of an operator.

This work presents a complex study of the Hg1-xCdxTe/Hg1-yCdyTe MQWs via the
MBE growth and absorption spectra. The MQWs were grown by MBE on (013) GaAs sub-
strates with ellipsometric control in situ to provide high precision of the layer composition
and width repetition. The absorption spectra were extracted from the optical measurements
of the transition and reflection spectra. The analyzed data of the MQWs parameters allowed
calculating the band structures of MQWs of different well widths. The experimental and
calculated interband electron transitions in Hg1-xCdxTe/Hg1-yCdyTe MQWs depended on
the Hg1-yCdyTe well composition and width. The obtained data confirm the possibility of
fabricating optoelectronic IR devices in a wide spectral range at room temperature.

2. Materials and Methods

The Hg1-xCdxTe/Hg1-yCdyTe MQWs were grown by MBE on (013)CdTe/ZnTe/GaAs
alternative substrates with ZnTe (50 nm thick) and CdTe (5–7 µm thick) buffer layers sequen-
tially in the multi-chamber UHV MBE set “Ob-M,” without removal to the atmosphere [17].
The special design of Te, Cd, and Hg molecular beam sources and their arrangement rela-
tive to the substrate in the technological growth chambers provides HgCdTe composition
uniformity over the layer surface no worse than 0.0002 cm−1 along 4 inches in diameter
without substrate rotation [18]. All technological chambers are equipped with stable, high-
speed, and very precise laser ellipsometers (λ = 632.8 nm) [19,20], which allow monitoring
the growth process in situ [21]. The composition and thickness measurement accuracy are
∆x(y) = 0.0005 and ∆d = 0.5 nm, respectively.

The HgCdTe layer composition is determined by the optical constants n and k. The
optical constant data at typical HgCdTe growth of 180–190 ◦C were obtained from the
measurement of the ellipsometric parameters ψ and ∆ of thick layers with different compo-
sitions and are described by the following expression [22]:

n(x, y) = 3.967 − 0.92(x, y) (1)

k(x, y) = 1.327 − 2.819(x, y) + 4.432(x, y)2 − 4.375(x, y)3 + 1.7(x, y)4 (2)

The HgCdTe layer thickness at MQW growth is determined from the ψ and ∆ mea-
surements in ψ-∆ plane, as described in [23]. The behavior of ψ and ∆ during the growth
of CdTe/HgTe SL was theoretically predicted in [24].



Photonics 2023, 10, 430 3 of 12

The determination of the composition distribution throughout the MQW layer thick-
ness was carried out by dividing the entire thickness into fractions of nanometer fragments
(FNF) with a subsequent calculation of their optical constants by solving the inverse el-
lipsometry problem [25] using the developed method of the “effective” substrate [26].
The highly stable laser ellipsometer [24] provides the random errors of the ellipsometric
parameters δΨ ≈ 0.003◦ and δ∆ ≈ 0.01◦. At the typical fragment layer thickness of 0.3 nm,
the composition measurement accuracy is ∆y = 0.01 and ∆x~0.03 near the QW bottom and
top, respectively.

The well widths (dw) and numbers of periods (N) of the investigated
Hg1-xCdxTe/Hg1-yCdyTe MQWs are presented in Table 1. The barrier composition and
width were x = 0.62 and 30 nm, respectively.

Table 1. The Hg0.38Cd0.62Te/Hg1-yCdyTe well width under the growth and study.

Sample,
No #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16 #17 #18

dw, nm 2.7 3.2 3.6 4.0 4.4 4.4 5.4 5.9 6.1 6.9 7.4 7.8 8.1 8.4 9.4 11.0 12.3 12.8
N, un. 10 10 5 5 5 5 5 5 5 5 5 5 5 5 10 10 10 10

The IBETE were determined by analysis of the absorption (A) spectra. The experi-
mental A values were extracted from the transmission (T) and reflection (R) spectra using
the relation A = log (1/(T + R)). The T and R spectra were measured at 300 K using the
FTIR spectrometer “FT-801” (Simex Ltd., Novosibirsk, Russia) equipped with a special
attachment in the wave number range 470–8500 cm−1 (21 µm–1.2 µm) with an accuracy of
not worse than 0.5 cm−1.

The calculation of the IBETE was provided on the basis of a developed four-band
Kane model (8 × 8 Hamiltonian) taking into account deformation effects. An explicit form
of the Hamiltonian for a structure grown on the (013) plane is given in [27]. To solve the
Schrödinger equation, an approach similar to that proposed in [28] was used, but not
polynomials, but the Fourier series [27,29] were used as the basis for the expansion of the
wave function. The essence of the method is that the electronic states are calculated not in a
structure with a single quantum well but in a superlattice with wide tunnel-nontransparent
barriers. The advantage of this approach is that the inconvenient boundary condition for
the wave function to vanish at infinity for a structure with a single quantum well is replaced
by a convenient calculation condition for the wave function periodicity over the superlattice
period. The band gap dependence on the composition of the solid solution and temperature
was taken from [1], and other Kane Hamiltonian parameters were taken from [30]. To
describe the deformation contribution to the Hamiltonian, the parameters were taken from
ref. [31]. Due to the small spin splitting, the subbands are arranged in pairs.

3. Results
3.1. MQWs Growth

It is clear that 100 MQW periods can ensure the fabrication of highly sensitive IR
detectors [10]. To implement this, it is necessary to ensure the following over time: optimal
growth conditions when very thin layers with large differences in composition x and y must
have a good crystallinity; high reproducibility of the barrier and well-defined composition
x and y and their width. Such requirements were successfully realized by our numerous
basic studies of the HgCdTe alloy growth on the (013) GaAs substrate together with the
development of the high speed and accuracy SWE control in the UHV MBE unit without
substrate rotation.

In Figure 1, the typical dependence of the ellipsometric parameters ∆ and ψ variation
on time for the growth of 40-period MQW HgTe/Hg0.3Cd0.7Te is shown. At the initial stage,
50 nm thick Hg0.3Cd0.7Te layers were grown on the (013)CdTe surface of the alternative
substrate CdTe/ZnTe/GaAs (see Section 2) before the beginning of growing 40 period
HgTe/Hg0.3Cd0.7Te MQW with 5.2 nm well width and 8 nm barrier width, respectively.
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Then the large variation of ∆ and ψ is observed during the growth of the first 10 periods.
After this, ∆ andψ parameter variations decrease and practically disappear after the growth
of the 20th period. In spite of behavior variations at the growth and parameter levels, the
composition and thickness of each HgTe and Hg0.3Cd0.7Te layer in their pairs are constant.
The analogous ∆ and ψ variations must be observed at the nanostructure’s growth based
on HgCdTe or any matched materials with large differences in optical constants.
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Figure 1. The change of the ellipsometric parameter ∆ (red) and ψ (blue) measured in situ vs. time
during 40 periods of the MQW growth. The numbers show the period of the barrier and well
pair growth.

A detailed composition distribution throughout the thickness in the first 20 periods of
the HgTe/Hg0.3Cd0.7Te MQW is shown in Figure 2.
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The composition variations were restored for 20 initial periods in the MQW by using
the method of the “effective” substrate on the basis of the experimental ellipsometric data ∆
and ψ measured at the growth. Excellent repetition and composition variation throughout
the thickness are seen. This means that the growth conditions were very stable and the
ellipsometric parameters were measured with high precision.

As a result, the MQW growth technology is very reproducible. At the HgTe growth
between Hg0.3Cd0.7Te barriers, the composition is decreased from y = 0.7 to y = 0.0 at
the thickness of 2 nm, becomes constant at the thickness of 3 nm, and is increased at the
thickness of 1 nm to x = 0.7. We evaluated the quantum well thickness of 5.2 nm from
the close to open cadmium molecular beam. Such composition distribution throughout
the thickness was determined by the specificity of the technology process and an error
when restoring the composition. The last reason is connected with the relative error of
ellipsometric measurements and the FNF thickness. The accuracy of composition recovery
is greater with increasing FNF thickness, whose determination accuracy decreases, and vice
versa: if the spatial resolution is increased by decreasing the FNF thickness, this will lead
to an increase in the scatter of the determined composition. In our case, the typical FNF
thickness is 0.3 nm, and the composition measurement accuracy is ∆y = 0.01 and ∆x~0.03
near the QW bottom and top, respectively.

Additionally, to determine the IBETE, 5–10 period Hg1-xCdxTe/Hg1-yCdyTe MQWs
were grown (see Table 1). The barrier provided a tunnel-like, opaque layer between wells.
The well width was determined by the closing and opening of the Cd molecular beam
source shutter. In Figure 3, the composition distribution in 5 periods of MQWs with
dw = 3.6 nm (a) and dw = 8.1 nm (b) is shown.

After closing the shutter, the composition in the wells sharply decreases from y = 0.62
to y = 0.2 and then slightly to y = 0.05. When the shutter opens, the well composition sharply
increases to y = 0.6. Such results attest to the good composition distribution throughout
the well’s width. The observed composition change was determined by the specific Cd
molecular beam source operation that allows supporting a constant molecular flux of not
worse than 1% over a long time and to provide a large number of MQW growth processes.
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3.2. Band Structure

In Figure 4, the calculated band structure of two samples (#3 (a) and # 13 (b)) for
room temperature is shown, and the cadmium content was obtained by averaging the
composition distribution throughout the well width shown in Figure 3. The calculation
showed that MQWs #3 and #13 are semiconductors with normal band structures. It can
be seen from this data that the band structure for sample #3 has one electron band (red
curve), three heavy hole subbands HH(1–3), and a light hole LH1. For sample #13, the band
structure is more complex. There are two electron subbands, E1 and E2, six heavy spin-orbit
splittings, HH1–6 (only five shown for room temperature), and one light hole subband.

Table 2 shows the energy of the allowed electronic interband transition between
subbands made at room temperature.

In the samples, the minimal IBETE for the fundamental E1-HH1 (values highlighted
in red) is decreasing with the well width. It is necessary to note the change of heavy and
light hole subbands in the energy position and their rearrangement with the change in well
width. In sample #3, the LH1 energy is higher than that of HH2. In sample #13, the LH1
energy is lower than that of HH2. It is clear that the band structure for samples with some
Cd content in the well changes with the well width approaching the critical value, but more
slowly than in the case of pure HgTe. The fundamental E1-HH1 IBETE determines the
wavelength cutoff for the IR detector or the laser wavelength radiation emission, which
corresponds to 4.35 µm and 7.75 µm, respectively.

Table 2. The energy of the allowed electronic transition between the conduction and valence sub-
bands for different samples #3 and #13 at room temperature. The fundamental electronic transition
energy for samples #3 and #13 is represented by the red color.

Sample
No

IBETE, meV

E1-HH1 E1-LH1 E1-HH3 E1-HH5 E2-HH2 E2-HH4

#3 285 363 468 - - -
#13 160 212 248 359 412 525



Photonics 2023, 10, 430 7 of 12
Photonics 2023, 10, x FOR PEER REVIEW 7 of 13 
 

 

 
(a) 

 
(b) 

Figure 4. Band structure Hg1-xCdxTe/Hg1-yCdyTe QW with different well width values: (a) sample #3 
(well width 3.7 nm); (b) sample #13 (well width 8.1 nm). E1–red; E2–brown; HH1–blue; HH2–pink 
for #3 and yellow for #13; HH3–brown; HH4–green; HH5–orange; LH1–yellow for #3 and pink for 
#13. The arrows represent the allowed electronic transition. 

Table 2 shows the energy of the allowed electronic interband transition between sub-
bands made at room temperature. 

Figure 4. Band structure Hg1-xCdxTe/Hg1-yCdyTe QW with different well width values: (a) sample
#3 (well width 3.7 nm); (b) sample #13 (well width 8.1 nm). E1–red; E2–brown; HH1–blue; HH2–pink
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3.3. Absorption Spectra

The absorption spectra demonstrate quite a few steps at the absorption edges between
the conduction and valence subbands. The absorption edge is defined as the energy at
the maximum value of the first derivative of the absorption. In Figure 4, the absorption
spectra and their first derivatives for samples #2 (a) and #15 (b) at room temperature are
shown. The parasitic maxima in the absorption curves are due to interference effects that
are observed in the transmission and reflection spectra.

The first derivative curve showed two maxima (electronic transitions E1-HH1 and
E1-LH1) for sample #2 (Figure 5a) and four maxima (electronic transitions E1-HH1, E1-LH1,
E2-H2, and E2-H4) for sample #15 (Figure 5b), which corresponded to the absorption of
photons with different energies. It is clear that we can reveal more IBETE when the well
width increases because of the decrease in the energy gap between the conductance and
valence subbands. The full width at a half maximum is 40–50 meV and is determined by
the temperature.
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4. Discussion

The band structure of the Hg1-xCdxTe/Hg1-yCdyTe QW depends on barrier (x) and
well (y) composition and their widths [32,33]. When the HgTe (y = 0) thickness increases, the
QW band structure changes from a normal to an inverted one with a zero-band gap at the
critical thickness of 6.3 nm [34,35]. The critical thickness increases with the increasing Cd
composition in the well (y) and reaches 8 nm and 17 nm at y = 0.05 and y = 0.1 [36]. It means
that all the grown MQWs in this study are semiconductors with a normal band structure.
It was shown that SLs with a normal band structure are the more promising material for
long-wavelength and very long-wavelength IR detectors [12]. So, we can conclude that the
MQWs with the Cd composition y = 0.1–0.15 in the well are a normal-band semiconductor
for developing different photonic devices at wide infrared and terahertz wavelength ranges
and temperatures. The barrier width of 30 nm in MQWs was enough to exclude the
interaction between carriers in neighboring wells and ensure the fundamental IBETE
was independent of the well width, as shown for the Sls in [9]. The precisely developed
repetition of barriers and well parameters during the large periods of MQW growth on
the (013) orientation can ensure the same band structure in each well and, thereby, a good
quantum efficiency and sensitivity.

In Figure 6, the IBETEs dependences on well width in Hg1-xCdxTe/Hg1-yCdyTe MQWs
are extracted from the band structure calculation and experimental absorption spectra.
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Figure 6. IBETE’s dependences on well width in MQWs. The solid and open circles are the experi-
mental and calculated IBETEs values. The solid and dashed curves are the calculated data for MQWs
with constant Cd composition x = 0.1 and x = 0.06: black curve–E1-HH1; red curve–E1-LH1, blue
curve–E2-HH2. The green solid circles are for E2-HH4 IBETEs.

It is seen that IBETE’s values decrease with increasing well thickness. The experimental
and calculated IBETEs data for the investigated MQWs are in good agreement with the
calculated data for ideal MQWs with rectangular walls obtained by fitting with the help
of well composition as a parameter. Most of the investigated MQWs have a composition
distribution throughout their thickness that is the same as in ideal MQWs with the constant
well composition x = 0.1 (solid curves). The four MQWs have a different composition
distribution throughout the thickness that is the same as in ideal MQWs with constant well
composition x = 0.06 (dashed curves). The change in composition distribution throughout
the well thickness is determined by different Cd molecular beam source control operations.
That allows MQWs to grow with the required IBETEs and, thereby, the fundamental edge,
which determines the basic wavelengths of devices. The green circles, which corresponded
to IBETEs, determine the MQWs with a well thickness of more than 8 nm.
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In Table 3, the experimental and calculated fundamental E1-HH1 IBETEs values for
investigated MQWs and the proposed device wavelength (λ) at 300 K are collected. There
is a good agreement between experimental and calculated data for fundamental interband
electron transition.

Table 3. Fundamental IBETE E1-HH1 and wavelength values for the proposed devices.

Sample, No #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16 #17 #18

dw, nm 2.7 3.2 3.7 4.0 4.4 4.4 5.4 5.9 6.1 6.9 7.4 7.8 8.1 8.4 9.4 11.0 12.3 12.8
E1-HH1exp.,

meV 454 375 288 260 253 242 234 218 203 205 180 173 168 163 157 138 131 128

E1-HH1calc.,
meV 480 403 285 253 266 - 180 163 233 163 177 116 160 168 131 105 75 105

λexp., µm 2.73 3.31 4.31 4.77 4.90 5.12 5.30 5.69 6.11 6.05 6.89 7.17 7.43 8.00 7.90 8.99 9.47 9.69

As shown for HgTe (4.15 nm)/Hg0.05Cd0.95Te (8.95 nm) SL, which have a normal band
structure, the E1-HH1 IBETE at room temperature is ~180–200 meV [14]. This value is lower
than for our MQW (sample #4) with the same well width. Such a difference is determined
by the presence or absence of Cd content in wells. In our case, the Cd content of the well is
x = 0.06. For the HgTe/Hg0.05Cd0.95Te SL, there is no Cd content in wells. It is clear from
our results (see Figure 6) that the IBETEs for our MQWs decrease with the decreasing Cd
content in wells and will reach the analogous values in the absence of Cd in wells (i.e., pure
HgTe) as for the HgTe/Hg0.05Cd0.95Te SL at room temperature.

The Hg1-xCdxTe/Hg1-yCdyTe MQWs with the normal band structure are a good
choice for developing different IR photonic devices. The detector sensitivity and laser
efficiency will be determined by the fundamental E1-L1 IBETE values. It is clear that
Hg1-xCdxTe/Hg1-yCdyTe MQWs with x > 0.6 and y < 0.1 may be used for developing
electronic devices in the wavelength range 3–10 µm at room temperature and provide
precise control of the required spectral range by changing the Cd content and well width.

The results of the practical use of Hg1-xCdxTe/Hg1-yCdyTe MQWs observation of the
optically pumped stimulated emission (SE) in the 2.5–3.0 µm wavelength range at room
temperature were published in [37].

5. Conclusions

The interband electron transition energy and its dependence on the well width and
Cd content in multiple semiconducting Hg1-xCdxTe/Hg1-yCdyTe quantum wells were
investigated at room temperature.

The MQW growth with different well periods on the (013) GaAs substrate by MBE
with the precise ultra-speed ellipsometric control in situ was demonstrated. The high
repeatability of the Cd composition distribution throughout the well thickness in 40-period
MQWs was shown.

The experimental IBETE positions were extracted from the absorption spectra obtained
from the measurement of the transition and reflection spectra of the 5–10 period MQWs,
with the well width in the range of 3–13 nm.

The theoretical model for IBETE positions of the MQW’s on (013) orientations for the
real Cd profile was developed. The calculated IBETE’s for MQWs are in good agreement
with the experimental data for the MQWs with a constant Cd content in wells. It was found
that the experimental IBETE values depended on the Cd content of MQWs.

The MQWs with the Cd content in wells have a normal band structure in the wider
range of well width, different from that for pure HgTe. That allows fabricating material with
planned IBETE positions, especially for the fundamental E1-H1 transition. The variation of
the fundamental E1-H1 transition in the range 450–130 meV in MQWs with well widths of
3–13 µm will be used to determine the operation wavelength of the optoelectronic devices
in the range 3–10 µm at room temperature.
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