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Abstract: Fringe projection profilometry (FPP) has been broadly applied in three-dimensional (3D)
measurements, but the existing multi-shot methods, which mostly utilize phase-shifting techniques,
are heavily affected by the disturbance of vibration and cannot be used in dynamic scenes. In this
work, a single-shot 3D measurement method using a deep neural network named the Fringe Analysis
Network (FrANet) is proposed. The FrANet is composed of a phase retrieval subnetwork, phase
unwrapping subnetwork, and refinement subnetwork. The combination of multiple subnetworks
can help to recover long-range information that is missing for a single U-Net. A two-stage training
strategy in which the FrANet network is pre-trained using fringe pattern reprojection and fine-tuned
using ground truth phase maps is designed. Such a training strategy lowers the number of ground
truth phase maps in the data set, saves time during data collection, and maintains the accuracy of
supervised methods in real-world setups. Experimental studies were carried out on a setup FPP
system. In the test set, the mean absolute error (MAE) of the refined absolute phase maps was
0.0114 rad, and the root mean square error (RMSE) of the 3D reconstruction results was 0.67 mm. The
accuracy of the proposed method in dynamic scenes was evaluated by measuring moving standard
spheres. The measurement of the sphere diameter maintained a high accuracy of 84 µm at a speed of
0.759 m/s. Two-stage training only requires 8800 fringe images in data acquisition, while supervised
methods require 96,000 fringe images for the same number of iterations. Ablation studies verified the
effectiveness of two training stages and three subnetworks. The proposed method achieved accurate
single-shot 3D measurements comparable to those obtained using supervised methods and has a
high data efficiency. This enables the accurate 3D shape measurement of moving or vibrating objects
in industrial manufacturing and allows for further exploration of network architecture and training
strategy with few training samples for single-shot 3D measurement.

Keywords: 3D measurement; fringe projection; structured light; deep learning; single-shot

1. Introduction

Three-dimensional (3D) optical measurement has been broadly applied in various
fields, such as biomedicine, computer vision, and industrial manufacturing, due to its
non-contact feature, low cost, and high efficiency. Structured light techniques are the most
popular 3D measurement methods, due to their accuracy and versatility. Fringe projection
profilometry (FPP) utilizes a structured light system to project sinusoidal fringe patterns
onto the measured objects and capture modulated patterns to calculate the height maps.
Most fringe analysis methods retrieve the phase from a set of phase-shifting fringe patterns
and perform temporal phase unwrapping using multi-frequency fringe patterns [1,2].

Research on FPP has mostly focused on the improvement of phase-shifting techniques
and temporal phase unwrapping. Yu et al. [3] proposed a 3D measurement method based
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on the unequal-period combination of shifting Gray code and dual-frequency phase-shifting
fringes. This method adopts a strategy of additionally projecting a set of low-frequency
phase shifting fringe patterns to effectively correct the period jump error. The experimental
results show that the proposed method can effectively reduce the period jump error, and
can measure multiple isolated objects, as well as objects with drastic changes in surface
height, such as plaster heads. Peng et al. [4] produced sinusoidal fringes for high-speed
three-dimensional shape measurement using a phase-shifting algorithm. In this method,
the sinusoidal fringes are generated by expanding the inverted image of a filled binary
sinusoidal pattern in a specified direction, and the phase shift is realized by switching the
backlight sources of a set of binary sinusoidal patterns formed on a slide. Hu et al. [5]
adopted a multi-frequency phase-shifting scheme for the microscopic 3D measurement
of shiny surfaces. The multi-frequency phase-shifting scheme can improve the integrity
of the final phase map of the shiny surface, on which basis a complete and high-accuracy
3D reconstruction combined with a microscopic telecentric stereo system can be achieved.
Wu et al. [6] utilized a phase-shifting profilometry (PSP) to realize temporal phase unwrap-
ping simultaneously with the lowest number of fringe patterns. This method does not
use other additional structural patterns to achieve full field phase unwrapping and can
measure discontinuous surfaces or multiple isolated objects simultaneously. Li et al. [7]
proposed a high-accuracy temporal phase unwrapping method based on super-grayscale
multi-frequency grating projection by using the time-division multiplexing characteris-
tic of a projector and the integral characteristic of a CCD camera. In this method, the
super-grayscale grating is designed instead of the traditional 256 grayscale multi-frequency
gratings to reduce the digital error. Li et al. [8] adopted a dynamic 3D reconstruction frame-
work based on a modified three-wavelength phase unwrapping algorithm and phase error
compensation method to acquire a sufficient number of 3D results, ensure the continuity
of the dynamic 3D shape measurement, and reduce the phase error and measurement
error introduced by object motion. Li et al. [9] used redundant data for self-correction
in multi-frequency phase unwrapping. Pistellato et al. [10] proposed to eliminate phase
ambiguity using probabilistic consensus where phase values were modeled from Wrapped
Gaussian distribution. Lilienblum and Michaelis [11] derived a phase unwrapping method
by applying pattern sequences and reduced calculation errors caused by discontinuity,
occlusion, and reflection.

As deep learning techniques evolve, the deep convolutional neural network (CNN) has
been applied to 3D measurements. Qi et al. [12] proposed an absolute phase measurement
method with limited patterns. The proposed method combines the object reflectivity
correction and the half-period gray-coded phase unwrapping algorithm and can obtain
a large number of codewords for a fringe order without reducing the intensity level of
each stair. Yao et al. [13] first proposed a multi-purpose neural network combined with
code-based patterns to recover the absolute phase. The multi-purpose network can learn
the principle of extracting absolute phase from a small number of patterns and greatly
decrease the number of patterns with a high accuracy.

These abovementioned methods require multi-shot phase-shifting fringe images in
multiple frequencies. Therefore, 3D measurements based on these methods are time-
consuming and inaccurate when applied to dynamic scenes. Although multi-shot methods
provide highly accurate measurement data for static objects by capturing multiple fringe
pattern images, the accuracy may be decreased due to the disturbance from vibration and
movement between the gaps in the image shots, rendering these methods vulnerable to
temporal noises.

Single-shot methods extract phase maps from one fringe image and are robust against
movement. Thus, single-shot methods are desirable for dynamic 3D measurement. Tra-
ditional single-shot 3D measurement methods utilize spatial demodulation, including
Fourier transform profilometry (FTP), windowed Fourier transform profilometry (WFTP),
and wavelet transform profilometry (WTP) [14–16]. Single-shot methods using specifically
designed patterns have also been proposed. In addition to the methods with complex
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patterns, Kawasaki et al. [17] utilized a simple grid pattern to achieve dense shape recon-
struction. Single-shot methods based on deep learning are more accurate and robust than
traditional methods, thus being more viable for practical applications. These methods were
first introduced into FPP to retrieve phase maps. Feng et al. [18] demonstrated that deep
learning can improve the accuracy of phase demodulation from a single fringe pattern.
They used twelve-step phase-shifting techniques to generate ground truth and trained
two convolutional neural networks (CNNs) for fringe analysis, where CNN1 predicted
the background image and CNN2 predicted the numerator and denominator for phase
calculation. Their results were superior to those of FTP and WFTP. Qiao et al. [19] presented
a single-shot phase retrieval method that can reconstruct the phase distribution of specular
objects by using deep learning. The deep networks are built on ideas of deep separable
convolution and inverted residual. The method can estimate result closer to ground truth
and effectively retain details on the measured surface. Yu et al. [20] designed the FPTNet
for fringe transformation rather than setting phase maps as the output. The network only
requires a single fringe as the input, and the FPTNet transformed one fringe image into mul-
tiple phase-shifting fringe images, and phase retrieval was achieved through phase-shifting
techniques. Nguyen et al. [21] integrated a fringe-to-phase network with single-shot FPP
to achieve 3D reconstructions. The proposed fringe-to-phase network has an architecture
similar to that of U-Net and can directly retrieve three wrapped phase maps from a color
image comprising three fringe patterns with designated frequencies. Zhang et al. [22] de-
signed a convolutional neural network to accurately extract phase information in both the
low signal-to-noise ratio (SNR) and saturation situations and increased the dynamic range
of 3D measurement. Qian et al. [23] proposed a single-shot absolute 3D shape measure-
ment method with deep-learning-based color FPP. Through learning on extensive data
sets, the trained neural network can predict a high-resolution, motion-artifact-free, and
crosstalk-free absolute phase directly from a single-color fringe image. Qian et al. [24]
presented deep-learning-enabled geometric constraints and a phase unwrapping approach
for the single shot absolute 3D shape measurement. This method generated more accurate
absolute phase maps than spatial phase unwrapping.

End-to-end networks can also directly predict height maps from a single-shot fringe
image. Van der Jeugh and Dirckx [25] designed an end-to-end neural network for single-
shot measurement. They randomly generated a large number of height maps and collected
fringe images using simulated fringe projection. These images, with the corresponding
height maps as ground truth, compose the data set for network training. Nguyen et al. [26]
adopted a four-step phase-shifting technique to produce ground truth height maps using a
real-world FPP system. The input of the technique is a single fringe-pattern image, and
the output is the corresponding depth map for 3D shape reconstruction. They compared
different network architectures, including FCN, AEN, and U-Net, in terms of perfor-
mance. U-Net obtained the most impressive results on their fringe projection data set.
Machineni et al. [27] introduced an end-to-end deep-learning-based framework for FPP
that does not require any frequency domain filtering or phase unwrapping. The framework
reconstructs the depth profile of the object from the deformed fringe itself through multi-
resolution similarity evaluation using a convolution neural network. Nguyen et al. [28]
presented a 3D shape reconstruction technique that employs an end-to-end deep convolu-
tional neural network to transform a single speckle-pattern image into its corresponding
3D point cloud. The deep network predicted the height map from the single-shot speckle
image using the ground truth height map measured by FPP.

However, deep learning methods usually require large data sets to facilitate training.
Data insufficiency results in overfitting and hinders performance. As in the case of FPP,
the commonly used supervised learning methods require the ground truths of height
maps or phase maps for training, which are measured using phase-shifting and temporal
phase unwrapping. To produce training samples with accurate ground truth, twelve-step
phase-shifting techniques with fringe patterns at four frequencies were adopted in some
research, in which 48 fringe images were captured for one training sample. This is a
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highly time-consuming process and is inconvenient for practical applications. To generate
more training samples, previous works utilized computer graphics to generate synthetic
data sets for supervised training or re-project fringe patterns for unsupervised training.
Zheng et al. [29] proposed constructing a digital twin of the FPP system and conducting
virtual scanning, which generated 7200 fringe images and 800 corresponding 3D scenes
in 1.5 h. Wang et al. [30] presented a single-shot fringe projection profilometry method
based on deep learning and computer graphics. They built a virtual FPP system and tested
different parameters to construct a sufficient data set. To estimate the depth image from
only one fringe image, a new loss function was designed and two network architectures,
U-Net, and pix2pix, were compared. Fan et al. [31] developed an unsupervised training
method for 3D reconstruction with dual-frequency fringe projection profilometry that does
not require ground truth in the training set. They reprojected fringe patterns using the
height maps predicted by the network and calculated the loss between the reprojected
fringe images and real fringe images. The methods mentioned above that use computer
graphics to generate synthetic data sets are less time-consuming in the data set preparation
stage but cannot avoid accuracy loss when applied to real-world FPP systems. Synthetic
data sets or reprojection processes are unable to account for various textures and noises in
real-world fringe images. Thus, the domain discrepancy has a negative influence on the
network performance.

To solve the dependence on static scenes and the time-consuming property of multi-
shot methods, as well as the high data requirements of single-shot methods based on
deep learning, in this work, we propose a single-shot 3D measurement method using a
deep neural network named Fringe Analysis Network (FrANet). The FrANet consists of
three subnetworks for fringe analysis, including the phase retrieval subnetwork, phase
unwrapping subnetwork, and refinement subnetwork, replacing phase retrieval and phase
unwrapping in traditional FPP. Phase unwrapping or height map prediction that integrates
phase unwrapping in it is regarded as an ill-posed task that requires long-range information
for the accurate prediction of absolute phase maps. U-Net is capable of extracting features
and recovering the image resolution, thus being efficient in processing high-resolution
images. However, generic CNN or a single U-Net cannot process long-range information
due to the limitation of the small receptive field. Therefore, instead of using a single
U-Net, in this work, we adopt two subnetworks to conduct phase unwrapping, where the
phase unwrapping subnetwork with additional layers extracts long-range information, and
the refinement subnetwork provides further refinement. Specifically, the phase retrieval
subnetwork extracts wrapped phase maps from single-shot fringe images. The phase
unwrapping subnetwork analyzes predicted wrapped phase maps and fringe images to
yield absolute phase maps. The refinement subnetwork takes the wrapped phase maps,
fringe images, and the primary prediction of absolute phase maps as inputs. Refined
absolute phase maps are the final output of the FrANet. To solve the problems of overfitting
and poor performance caused by insufficient samples, the FrANet is pre-trained using an
unsupervised data set with fringe pattern reprojection and fine-tuned using a supervised
data set with ground truth phase maps. Such a training strategy lowers the number of
ground truth phase maps in the data set, saves time during data collection, and maintains
the accuracy of supervised methods in real-world setups.

The contribution can be summarized as follows: A single-shot 3D measurement
method based on deep learning is proposed, which enables accurate 3D measurements in
dynamic scenes; A deep network named the FrANet with three subnetworks for fringe
analysis is designed to improve the accuracy of 3D measurements; A two-stage training
strategy for the FrANet is developed to reduce the number of supervised samples, which
enables the efficient deployment of the proposed method in practical applications.

The rest of this paper is organized as follows: Section 2 describes the detailed architec-
ture and training strategy of the FrANet; Section 3 presents the analysis of the experiments
and the results; Section 4 presents the discussion, followed by the conclusion in Section 5.
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2. Fringe Analysis Network for Single-Shot 3D Measurement

The proposed method utilizes the Fringe Analysis Network (FrANet) for single-shot
3D measurements. The FrANet consists of a phase retrieval subnetwork, phase unwrap-
ping subnetwork, and refinement subnetwork. The phase unwrapping and height map
prediction, which essentially involves phase unwrapping, are ill-posed tasks that require
long-range information to remove phase ambiguity. A single U-Net cannot guarantee
the acquisition of long-range information. The combination of multiple subnetworks can
solve this problem by providing the phase unwrapping subnetwork with a large receptive
field and the refinement subnetwork with a small receptive field, which renders both long-
range and short-range information accessible. All subnetworks have an improved U-Net
architecture. The phase retrieval subnetwork extracts the wrapped phase map from the
single-shot fringe image. The phase unwrapping subnetwork generates the absolute phase
map from the wrapped phase map and fringe image. The refinement subnetwork analyzes
the wrapped phase map, fringe images, and the primary prediction of the absolute phase
map to output the final refined absolute phase map. To solve the problem of insufficient
samples for supervision training, in this work, we designed a two-stage training strategy
where the FrANet is pre-trained using fringe pattern reprojection and fine-tuned using
ground truth phase maps. The well-trained FrANet can process single-shot fringe images
and predict accurate absolute phase maps, which can be converted into coordinates of mea-
sured objects for 3D reconstruction. We elaborate on the details of the network architecture
and the training strategy in the following subsections.

2.1. Network Architecture

The FrANet replaces phase retrieval and phase unwrapping in traditional FPP. An
architecture diagram of the FrANet is shown in Figure 1. The FrANet consists of three
subnetworks, namely, the phase retrieval subnetwork, the phase unwrapping subnetwork,
and the refinement subnetwork. All the subnetworks adopt an improved U-Net architecture.
U-Net features an encoder–decoder structure, which increases the receptive field through
down-sampling and recovers the resolution of the input through up-sampling. The previous
layers are concatenated to up-sampled layers of the same resolution in order to avoid
information loss in the up-sampling process. U-Net has also been proven effective in
fringe analysis. Most fringe analysis networks adopt one U-Net or generic CNN to fulfill a
task, such as phase retrieval, phase unwrapping, or height map prediction. Among these
tasks, phase unwrapping is regarded as an ill-posed problem and requires long-range
information to remove phase ambiguity. Height map prediction also integrates phase
unwrapping into end-to-end networks. Thus, instead of using a single subnetwork, in this
work, we adopted three subnetworks to conduct fringe analysis, where the phase retrieval
subnetwork extracts the wrapped phase maps from single-shot fringe images, and the
phase unwrapping subnetwork analyzes the predicted wrapped phase maps and fringe
images to yield absolute phase maps. Finally, the refinement subnetwork takes wrapped
phase maps, fringe images, and the primary prediction of the absolute phase maps as
inputs. Refined absolute phase maps are the collective output of the FrANet.

The subnetwork used in the FrANet adopts an improved U-Net architecture, as shown
in Figure 2. In the encoder part, down-sampling layers (orange) and convolutional layers
(dark blue) are applied to extract features of the input at low resolutions in order to increase
the computation efficiency. The down-sampling layers consist of convolutions with kernel
size k = 2 and stride s = 2, batch normalization, and leaky ReLU as the activation function.
The convolutional layers adopt convolutions with kernel size k = 3 and stride s = 1, batch
normalization, and leaky ReLU. The numbers of filters are set to be identical for each
subnetwork at the same resolution, being 16, 24, 24, 32, 32, and 48, corresponding to 1,
1/2, 1/4, 1/8, 1/16, and 1/32 of the input resolution. The residual blocks operate at the
lowest resolution using four convolutional layers with skip connections. The number of
filters is 48 for these layers. In the decoder part, the up-sampling layers (pink) utilize
transposed convolutions with kernel size k = 2 and stride s = 2 to recover the features at a



Photonics 2023, 10, 417 6 of 22

high resolution, followed by batch normalization and leaky ReLU. The number of filters
for each resolution are 16, 24, 24, 16, and 8 from left to right. The up-sampled features are
concatenated to the output of the convolutional layers at the same resolution in the encoder
part. After that, concatenated layers (bright blue) that include convolutions with kernel size
k = 1 and stride s = 1, batch normalization, and leaky ReLU are designed to decrease the
number of channels. These layers are followed by convolutional layers to conduct further
feature extraction. The output layer (green) uses convolution and sigmoid functions to
convert the features into the output dimension and value range of each subnetwork.
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In addition, to improve the accuracy of single-shot 3D measurements by FrANet,
some special improvements were made according to the functions of each subnetwork.
Since phase retrieval does not require long-range information to the same extent as phase
unwrapping, residual blocks are removed from the phase retrieval subnetwork. The phase
unwrapping subnetwork generates an absolute phase map which requires a large receptive
field. Additional layers are added to the phase unwrapping subnetwork so as to down-
sample the image into a 1/256 input resolution, and the number of filters is kept at 48. The
refinement subnetwork takes absolute phase maps, whose values vary between different
image coordinates, as part of the input. Thus, batch normalization is omitted for all the
convolutions of the refinement subnetwork to maintain the value scale.

2.2. Training Strategy

Deep networks are known for the high demand for training data, and the insuffi-
cient number of training samples leads to overfitting and poor network performance.
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Reducing the complexity of training data sets with insufficient data could boost the per-
formance of deep networks [32,33]. However, in the case of fringe analysis, critical infor-
mation is contained in the intensity of fringe images, and it is extremely hard to lower the
image complexity.

In this work, a two-stage training method combining unsupervised training and
supervised training was designed to maintain the accuracy of the FrANet for single-shot
3D measurements while reducing the cost of obtaining supervised samples. Two-stage
training has been applied in computer vision [34] and natural language processing [35].
Networks are pre-trained using self-supervised or supervised learning on large data sets
and fine tuned using supervised learning on small data sets to complete different tasks or
the same tasks in different domains. In the case of FPP, there has been little emphasis on
two-stage training for deep neural networks. Therefore, here, a two-stage training method
was designed to tackle the data requirement problem of deep learning methods. The two
stages are an unsupervised pre-training stage followed by a supervised fine-tuning stage.
Unsupervised training based on fringe pattern reprojection is used to calculate the loss
between predicted and real single-shot fringe images. Supervised training utilizes phase
shifting and temporal phase unwrapping to generate real phase maps as ground truth.
Most training samples belong to the unsupervised data set without ground truth, being
easier and faster to acquire. The supervised data set only contains a few samples with
which to finetune the network with prior knowledge. This training strategy reduces the
time required for data acquisition and bridges the gap between re-projected images and
real-world fringe images to ensure high accuracy. The proposed two-stage training method
can be viewed as a semi-supervised [36] approach that conducts training using both labeled
and unlabeled data. In computer vision, a common semi-supervised method utilizes
deep networks to produce pseudolabels for unlabeled data, which improves the network
performance trained on labeled data only. Another semi-supervised method adopts an
autoencoder for representation learning so that unlabeled data can also contribute. In
contrast to these methods, we simply adopted two-stage training without pseudolabels
or autoencoders.

2.2.1. Unsupervised Training

An overview of the unsupervised training process of the FrANet is shown in Figure 3.
In the unsupervised training stage, fringe patterns at two frequencies are projected onto
the measured objects, and fringe images are captured using a real-world FPP system. A
large number of images are collected to form the unsupervised data set, which meets the
data requirements of deep learning algorithms and avoids overfitting in training. Since
unsupervised training does not rely on real phase maps or height maps as ground truth and
only needs two fringe images for each training sample, which are single-shot fringe images
without phase shifting at each frequency. Thus, time-consuming phase-shifting techniques
are avoided in data collection, and the memory required for data storage is reduced.

During training and testing, only high-frequency fringe images are taken as the input
of the FrANet. The network output, including predicted wrapped and absolute phase
maps, is used for fringe reprojection. The loss between real and re-projected fringe images
at both frequencies is calculated, and the network parameters are updated. High-frequency
fringe images are adopted to guide the network into generating accurate phase maps. On
the other hand, low-frequency fringe images are necessary for the evaluation of absolute
phase maps and ensuring proper phase unwrapping.
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In FPP, captured fringe patterns can be expressed as:

I f (x, y) = A(x, y) + B(x, y) cos[ϕ f (x, y)] = A(x, y) + B(x, y) cos[Φ f (x, y)], (1)

where A is the background intensity, B is the fringe amplitude, (x, y) is the coordinates of
the fringe image, ϕ is the wrapped phase, Φ is the absolute phase, and f is the frequency.
The background intensity and fringe amplitude of each pixel are simply estimated using
maximum and minimum intensity values within a 21 × 21 window in the high-frequency
fringe image. Since the unsupervised learning process only aims to pre-train the FrANet,
the accuracy loss due to the reprojection error caused by this estimation will be compensated
after supervised finetuning. Having determined the wrapped and absolute phase maps of
high-frequency fringe images predicted by the network, fringe patterns can be reprojected
using Equation (1). Absolute phase maps of high-frequency and low-frequency fringe
images have the following relationship:

Φh(x, y)
fh

=
Φl(x, y)

fl
, (2)

where h is the high frequency and l is the low frequency. Low-frequency fringe images are
reprojected using Equations (1) and (2) to ensure proper phase unwrapping. In contrast
to the method developed by Fan et al. [31], our FrANet predicts phase maps instead
of height maps, and thus, the configuration of the FPP system is not required in fringe
pattern reprojection.

After the reprojection process, the unsupervised loss between the real and re-projected
fringe images is calculated:

Lunsup = L(Ih, Ih(ϕh)) + L(Ih, Ih(Φh)) + L(Ih, Ih(Φ
r
h)) + L(Il , Il(Φl)) + L(Il , Il(Φ

r
l )), (3)

where L denotes the L1 loss function,
−
I is the reprojected fringe image,

−
ϕ is the predicted

wrapped phase map, and
−
Φ and

−
Φ

r
are the predicted primary and refined absolute phase

maps, respectively. Since the gradient scales of the five loss terms are similar, we apply
the same weight to each loss term. The FrANet is trained using unsupervised loss until
convergence is achieved.

The pseudocode for training the FrANet using an unsupervised data set is given in
Algorithm 1.



Photonics 2023, 10, 417 9 of 22

Algorithm 1. The pseudocode for training the FrANet using an unsupervised data set.

Input: Unsupervised data set X, max_epoch n, batch size m;
Output: Updated parameters of the FrANet θ (weight W, and bias b);

1. Initialize parameters of the FrANet θ (weight W, and bias b) randomly;
2. for epoch = 1 to n do
3. Split unsupervised data set into N/m groups {X1, X2, . . . , XN/m} randomly;
4. for t = 1 to N/m do
5. Use a group of sin gle-shot high-frequency fringe images from Xt as network input;

6. Predict the wrapped phase map
−
ϕ
(t)

h using phase retrieval subnetwork;

7. Predict the absolute phase map
−
Φ
(t)

h using phase unwrapping subnetwork;

8. Refine the absolute phase map
−
Φ

r(t)

h using refinement subnetwork;

9. Calculate the absolute phase map
−
Φ
(t)

l ,
−
Φ

r(t)

l for low-frequency fringe images;

10. Reproject high− frequency fringe image
−
I
(t)

h (
−
ϕh) using

−
ϕ
(t)

h ;

11. Reproject high− frequency fringe image
−
I
(t)

h (
−
Φh) using

−
Φ
(t)

h ;

12. Reproject high− frequency fringe image
−
I
(t)

h (
−
Φ

r

h) using
−
Φ

r(t)

h ;

13. Reproject low− frequency fringe image
−
I
(t)

l (
−
Φl) using

−
Φ
(t)

l ;

14. Reproject low− frequency fringe image
−
I
(t)

l (
−
Φ

r

l ) using
−
Φ

r(t)

l ;
15. Compute the unsupervised network loss Lunsup;
16. Updateθ by using unsupervised loss and Adam gradient descent algorithm;
17. end(for)
18. end(for)
19. returnθ (weight W, and bias b)

2.2.2. Supervised Training

An overview of the supervised training process of the FrANet is shown in Figure 4.
The supervised training stage starts after the network is pre-trained using the unsupervised
data set. Supervised training enables the network to directly learn from ground truth phase
maps, which are prepared using phase-shifting profilometry. Twelve-step phase shifting
fringe patterns are projected onto measured objects at four frequencies, also using the real-
world FPP system. These 48 fringe images are captured to obtain a ground truth phase map
of one training sample. Compared to fully supervised methods, fewer training samples are
needed to finetune the network with prior knowledge. Thus, less time is required to collect
additional fringe images for the computation of ground truth phase maps.

Object-height-modulated phase shifting patterns can be described as:

In(x, y) = A(x, y) + B(x, y) cos[ϕ(x, y) +
2πn

N
], (4)

where n denotes the n-th phase shifting pattern, and N is the number of phase-shifting
steps. The wrapped phase can be retrieved using the following equation:

ϕ(x, y) = arctan

N−1
∑

n=0
In(x, y) sin

( 2πn
N
)

N−1
∑

n=0
In(x, y) cos

( 2πn
N
) . (5)



Photonics 2023, 10, 417 10 of 22

After temporal phase unwrapping, absolute phase maps are obtained. The wrapped
phase maps and absolute phase maps at the highest frequency are used as the ground truth
of training samples. Supervised loss is computed as:

Lsup = L(ϕ, ϕ) + L(Φ, Φ) + L(Φ, Φr
). (6)

After two training stages, the fringe analysis network FrANet can predict absolute phase
maps from single-shot fringe images and achieve 3D measurement through triangulation.
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The pseudocode for training the FrANet using a supervised data set is given in
Algorithm 2.

Algorithm 2. The pseudocode for training the FrANet using the supervised data set.

Input: Supervised data set X, max_epoch n, batch size m, parameters of the FrANet θ (weight W,
and bias b) after unsupervised training;
Output: Updated parameters of the FrANet θ (weight W, and bias b);

1. Initialize parameters of the FrANet θ (weight W, and bias b) using unsupervised training result;
2. Calculate the ground truth wrapped phase map ϕ;
3. Calculate the ground truth absolute phase map Φ;
4. for epoch = 1 to n do
5. Split supervised data set to N/m groups {X1, X2, . . . , XN/m} randomly;
6. for t = 1 to N/m do
7. Use a group of sin gle-shot fringe images from Xt as network input;

8. Predict the wrapped phase map
−
ϕ
(t)

using phase retrieval subnetwork;

9. Predict the absolute phase map
−
Φ
(t)

using phase unwrapping subnetwork;

10. Refine the absolute phase map
−
Φ

r(t)
using refinement subnetwork;

11. Compute the supervised network loss Lsup;
12. Update θ by using supervised loss and Adam gradient descent algorithm;
13. end(for)
14. end(for)
15. return θ (weight W, and bias b)
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3. Experiments

To verify the effectiveness of the proposed method, an FPP system consisting of a blue
light projector from TengJu and digital cameras from DaHeng Mercury was built. The sys-
tem is shown in Figure 5a. Only the left camera was adopted in the experiments. Figure 5b,c
displays the samples for 3D measurement, including some automotive parts. The industrial
part in Figure 5b belongs to the test set for evaluation, while the part in Figure 5c is used
in the two-stage training. The schematic of the experimental setup is shown in Figure 6.
The camera and projector are connected to the computer for coding fringe patterns and
triggering data acquisition. The camera captures images of a resolution of 1296× 964 pixels
with three channels, and the resolution of the projector is 1280× 720 pixels. During data
acquisition, the projector projects vertical blue fringe patterns onto the measured objects.
The air temperature during the experiments was around 20 degrees Celsius. In the unsu-
pervised training stage, 2000 groups of fringe images are collected. Each group contains
fringe images of the same scene at two frequencies. The frequency is defined as the entire
number of fringes in the projected fringe pattern. The high frequency and low frequency
were set to 64 and 9, respectively. In the supervised training stage, only 120 groups of
twelve-step phase-shifting fringe images were captured at four frequencies of 64, 16, 4,
and 1. The test set with 20 groups of fringe images was split from the supervised data
set. In the following sections, the implementation details of the fringe analysis network
FrANet are first provided. Then, the accuracy of the results predicted by the FrANet
network is evaluated, the ablation studies on the training stages and FrANet architecture is
undertaken, and lastly, the data efficiency of the proposed method is analyzed.
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3.1. Implementation Details

The proposed method was implemented with PyTorch, and the device used for train-
ing is one RTX 2070 SUPER GPU. The Adam optimizer was used with the parameters
β1 = 0.9 and β2 = 0.999. These parameters were set as default since default parameters
are generally adopted in deep network optimization except in rare cases, for instance,
Generative Adversarial Network with the parameter β1 = 0.5. The Adam optimizer is
not as strict with the initial learning rate as the SGD optimizer. The initial learning rate
was selected from 1× 10−2, 1× 10−3, 1× 10−4, and 1× 10−5 according to the results after
one epoch of training. In addition, the learning rate was adjusted when the network loss
stopped decreasing after five epochs of training. During pre-training, the initial learning
rate was set to 1× 10−3, and was decreased to 1× 10−4 after 30 epochs. The whole pre-
training process took 60 epochs. The images were cropped to a size of 1280× 768. During
finetuning, the initial learning rate was initially set to 1× 10−4 for 200 epochs and then
5× 10−5 for another 200 epochs. The batch size of two and multiple data augmentations
were adopted. After training, the FrANet network was used for single-shot measurements
with a run time of 0.87 s using the same setup. All deep networks used for comparison had
the same hyperparameter for training.

The network loss of the training set and test set in the unsupervised and supervised
training stage is shown in Figure 7. The network loss converged after both training stages,
and the network loss in the test set was just slightly larger than the loss in the training set,
which indicated that the proposed training strategy avoided the problem of overfitting.
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3.2. Accuracy Evaluation

After the two-stage training, the accuracy of the FrANet network based on the su-
pervised data set was evaluated. The test set, including 20 sets of fringe images, was fed
into the FrANet network. The error between the predicted phase maps and ground truth
obtained by using twelve-step phase-shifting techniques was calculated. The fringe images
in the test set did not contain any object that appeared in the training set, thus displaying
the capacity of the FrANet network for generalization.

Figure 8 displays results for one fringe image in the test set, where (a) shows the
original fringe image, (b) and (c) show ground truth phase maps, and (d)–(f) show the
network results, including predicted wrapped phase map, predicted absolute phase map,
and refined absolute phase map. The FrANet network predicts an accurate wrapped phase
map from the fringe image and performs phase unwrapping. In the first predicted absolute
phase map, the shape of the measured object is less clear than in the refined phase map,
which verifies the effectiveness of the refinement subnetwork. The refined absolute phase
map is similar to the ground truth in the valid region, which means the FrANet network
prediction effectively accounts for the shape of the measured object and provides similar
results to phase-shifting profilometry for most of the parts.

To visualize the accuracy of the proposed method, error maps of the predicted wrapped
phase map, predicted absolute phase map, and refined absolute phase map are shown in
Figure 9. The error maps are calculated using the exact results in Figure 7 except that the
background is eliminated in this experiment to focus on the measured objects. The absolute
error between predicted and ground truth phase maps of each pixel is displayed in the
error maps. In addition to the error maps, the mean absolute error (MAE) in the entire
test set is also calculated, as shown in Table 1. Since the phase unwrapping subnetwork
predicts an absolute phase map instead of fringe orders, it can refine the retrieved wrapped
phase map. Unlike in classic FPP, where the maximum accuracy of absolute phase maps is
determined by the accuracy of wrapped phase maps, FrANet retains the information of
fringe images after wrapped phase maps are predicted and further refinement in hidden
layers is conducted throughout the network. There is a relatively large error in the primary
wrapped phase map, and the error is reduced after the process of phase unwrapping. The
refinement subnetwork further improves the performance and eliminates fringe-shaped
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errors in the phase maps. The MAE of the final output is 0.0114 rad. These results indicate
that the proposed method can perform high-accuracy 3D measurements and avoids the
overfitting problem.
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Photonics 2023, 10, 417 15 of 22

Table 1. MAE of predicted wrapped phase maps, predicted absolute phase maps, and refined absolute
phase maps in the entire test set.

Network output Predicted Wrapped
Phase Maps

Predicted Absolute
Phase Maps

Refined Absolute
Phase Maps

MAE (rad) 0.3204 0.0200 0.0114

After the absolute phase maps were yielded, the 3D shapes of the measured objects
were reconstructed using both the ground truth phase maps and phase maps predicted by
the network. The 3D coordinates were compared to calculate the error in the 3D measure-
ments. The results for the test set have a root mean square error (RMSE) of 0.67 mm. For a
data set with various industrial parts, this accuracy is desired in single-shot measurement.

To test the generalization ability of the proposed method, the single-shot 3D shape
reconstruction data set proposed by Nguyen et al. [26] was used for finetuning and evalua-
tion. After unsupervised learning using our dataset, the pre-trained model was finetuned
using the dataset in the literature. The fringe image and wrapped phase map calculated
using the proposed method are shown in Figure 10. To adapt to the end-to-end format of
this data set, a convolutional layer was added to transform the phase maps into height
maps. Using the proposed method, the RMSE of the test set was 0.94 mm compared to
1.62 mm in the original paper [26].
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the proposed method.

3.3. Dynamic Scene

Since only one fringe image is required and used as the network input, the proposed
method can be applied to dynamic measurements. For the evaluation of dynamic scenes,
the object formed a pendulum, and fringe images were captured near the bottom part when
the object reached the highest speed, which was estimated using a simple pendulum model.
To measure the absolute error without using the phase-shifting results as a reference,
standard spheres were adopted for evaluation. A diagram and dynamic scene of the
standard sphere pendulum are shown in Figure 11. The diameter of the spheres is 30 mm
within an error of 2 µm. The uncertainty of reference diameter is claimed by the sphere
manufacturer of DS-DCB-D30L100. The length of the pendulum is L = 69.5 cm. Standard
spheres that are released at a horizontal deviation of l will reach the estimated maximum

speed of v =
√

2g(L−
√

L2 − l2), where g is the gravitational acceleration.
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Figure 11. Diagram and dynamic scene of the standard sphere pendulum: (a) Diagram of the standard
sphere pendulum for dynamic measurement; (b) Dynamic scene of the standard sphere pendulum
for 3D measurement.

The results of the measurements of dynamic scenes are shown in Figure 12. The
spheres were released at horizontal deviations of 10.0 cm, 15.0 cm, 20.0 cm, 25.0 cm, and
40.0 cm, corresponding to the highest speeds of 0.376 ± 0.004 m/s, 0.567 ± 0.004 m/s,
0.759 ± 0.004 m/s, 0.955 ± 0.004 m/s, and 1.580 ± 0.005 m/s. The predicted wrapped
phase maps and absolute phase maps were accurate without motion blur. The measured
diameters were 30.078 mm, 29.946 mm, 29.916 mm, 30.152 mm, and 30.354 mm, with
errors of 78 µm, 54 µm, 84 µm, 152 µm, and 354 µm, respectively. The measured diameters
were calculated using sphere fitting on the reconstruction results. The RMSEs between
3D coordinates in the reconstruction results and fitted spheres were 49 µm, 32 µm, 56 µm,
88 µm, and 197 µm, respectively. The results show that the proposed method has a high
accuracy for dynamic scenes when measuring objects below the speed of 1 m/s.

3.4. Ablation Study

To provide a clear view of the contributions of each technique, we conducted ablation
studies of the two training stages and three subnetworks. The results of ablation studies on
the training stages are shown in Table 2. We selected the RMSE between prediction and
ground truth height maps on the test set as the metric. In unsupervised learning, the pre-
trained model without fine-tuning was evaluated. In supervised learning, the FrANet was
trained from scratch using the supervised training set which had an insufficient number
of training samples. Supervised learning yielded the worst result due to overfitting. The
proposed method reached the lowest RMSE and improved the accuracy of unsupervised
methods by 68%, which verifies that two-stage training is effective in achieving a high
accuracy for the given data sets.

Since the FrANet network consists of multiple subnetworks, we evaluated the con-
tribution of each subnetwork on the test set individually, as shown in Table 3. For the
experiments without the phase retrieval subnetwork, WFTP was utilized to extract the
wrapped phase map. Spatial phase unwrapping was adopted when testing without the
phase unwrapping subnetwork. The refinement subnetwork does not affect the form of
the output, and thus there is no need for replacement. The results show that all the sub-
networks of the proposed network contributed, and the integration of these subnetworks
yielded the best performance.
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Figure 12. Results of measurements of dynamic scenes. The speeds are 0.376 m/s, 0.567 m/s,
0.759 m/s, 0.955 m/s, and 1.58 m/s from top to bottom: (a) Fringe images of standard spheres in
dynamic scenes. (b) Predicted wrapped phase maps of the left sphere piece. (c) Predicted absolute
phase maps of the left sphere piece. (d) 3D reconstruction of the left sphere piece.

Table 2. Results of ablation study on the training stages.

Method Unsupervised Learning Supervised Learning
(With Insufficient Data) The Proposed Method

RMSE (mm)
Accuracy improvement

2.12
68%

6.38
89%

0.67
/
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Table 3. Results of ablation studies of the subnetworks.

Subnetwork PR PU RF PR + PU PR + RF PU + RF PR + PU + RF

Relative RMSE 3.89 3.37 5.90 1.15 3.78 2.95 1.00

PR: Phase retrieval; PU: Phase unwrapping; RF: Refinement.

3.5. Comparison with Other Methods

There are different methods for single-shot 3D measurement, such as traditional FTP,
WFTP, and deep learning methods. In the experiments using traditional methods, fringe
images were captured at four frequencies, 1, 4, 16, and 64. Temporal phase unwrapping
was conducted to obtain absolute phase maps. Deep learning methods include end-to-end
networks and networks used for phase retrieval. The U-Net architecture proposed by
Nguyen et al. [24] as an end-to-end network was adopted for comparison. Note that we
switched only the network architecture and still used two-stage training for the end-to-end
network, in which fringe patterns were re-projected according to the predicted height
maps in the unsupervised stage. Networks used for phase retrieval were also compared,
including the convolutional network proposed by Feng et al. [18], the FPTNet [20], and the
fringe-to-phase network [21]. These networks were also trained in two stages. The results
of the proposed method were superior to those of traditional methods, deep networks for
phase retrieval, and end-to-end deep learning methods, as shown in Figure 13. The result
of each single-shot method was computed using the RMSE between 3D coordinates of
reconstruction results and ground truth in the test set, where the ground truth was obtained
using twelve-step phase-shifting and temporal phase unwrapping. The FPTNet yielded
the second-best performance, but the input of the FPTNet had an additional low-frequency
fringe image for phase unwrapping. The proposed method achieved the highest accuracy
when processing one single-shot fringe image.
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Figure 13. Comparison with different single-shot methods.

The 3D reconstruction results using different single-shot methods are shown in
Figure 14. Methods with the highest accuracy, namely, WFTP [15] in traditional methods
and FPTNet [20] in deep-learning-based methods, were adopted for qualitative comparison.
The result of WFTP contained rough edges and notable shape distortion, which indicated a
large phase error. FPTNet recovered the shape of the object well but lost a small portion of
pixels for reconstruction due to phase unwrapping errors. The proposed method yielded
the most accurate 3D reconstruction result.
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(b) result of the FPTNet [20]; (c) result of the proposed method.

3.6. Data Acquisition Efficiency

We compared the efficiency of the proposed method with unsupervised and super-
vised methods. To ensure a fair comparison, the other methods were assumed to have
the same number of training samples as the unsupervised data set used in this work.
Unsupervised methods require one to collect 4000 fringe images in data acquisition, while
supervised methods require 96,000 fringe images, and the proposed method requires
8800 fringe images. The results suggest that the proposed method has a comparable data
efficiency to the unsupervised methods and is superior to the supervised methods.

4. Discussion

Single-shot methods extract phase maps from one fringe image and are robust against
movement. Traditional Fourier transform, wavelet transform, and other frequency domains
transform single-shot methods are sensitive to noise, which results in low accuracy, espe-
cially when measuring objects with strong textures. The RMSEs of 3D reconstruction results
using traditional FTP [14] and WFTP [15] methods are 3.12 mm and 2.87 mm, respectively,
which are significantly larger than that of the proposed method. Single-shot methods based
on deep learning are more accurate and robust than traditional methods. However, these
methods mostly adopt network architectures without subnetworks that focus on either
phase unwrapping or height map prediction. Fringe-to-phase networks mostly use generic
CNNs or U-Net for phase unwrapping, while end-to-end networks adopt variations of
U-Net architecture to directly predict the height map. These tasks are ill-posed tasks that
require long-range information to remove phase ambiguity, and a single convolutional
network cannot process long-range information due to the small receptive field of the con-
volutions. The FrANet retains long-range information in the predicted phase map by using
the combination of three subnetworks. The proposed method achieved high accuracy with
an RMSE of 0.67 mm in 3D reconstruction, which exceeds other methods based on deep
learning, including U-Net [26], Feng et al. [18], the FPTNet [20], and the Fringe-to-phase
network [21]. Despite the high accuracy of deep learning methods, the time-consuming
nature of data acquisition is a significant limitation for practical applications. Methods
using computer graphics to tackle this problem have not been thoroughly evaluated in
real-world setups. The difference between synthetic and real-world domains remains a
problem. The proposed method utilizes two-stage training to bridge the gap between the
domains and achieve high accuracy while preserving high data efficiency using a real-world
FPP system. The proposed method only requires 8800 fringe images to facilitate training,
while supervised methods require fringe images. Other two-stage training methods could
also be explored in further research. For instance, pre-training using a synthetic data set
and fine-tuning using a real-world data set might also offer solutions. Variations of the
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proposed network, in which the U-Net architecture of subnetworks can be adjusted, could
also be further explored.

5. Conclusions

Multi-shot methods that mostly adopt phase-shifting techniques provide highly ac-
curate measurement data for static objects by capturing multiple fringe pattern images.
However, the performance may be degraded due to disturbance from vibration. Moreover,
these methods are time consuming and inaccurate when applied to dynamic scenes. In this
work, a single-shot 3D measurement method using a deep neural network named FrANet
was proposed. The FrANet consists of three subnetworks for fringe analysis: a phase
retrieval subnetwork, a phase unwrapping subnetwork, and a refinement subnetwork.
This system renders long-range information accessible, which is necessary for accurate
phase unwrapping or height map prediction. Generic convolutional networks have small
receptive fields and cannot extract long-range information. The phase unwrapping sub-
network in the FrANet acquires long-range information using additional down-sampling
layers, and the refinement subnetwork conducts further refinement. All the subnetworks
in the FrANet adopt the improved U-Net architecture, which is efficient in processing high-
resolution images. To reduce the number of supervised training samples required, in this
work, a two-stage training strategy was designed. The two stages included pre-training
using unsupervised learning and fine-tuning using supervised learning. Re-projected
fringe images were obtained using network predictions to construct unsupervised loss.
Twelve-step phase-shifting techniques were adopted to acquire ground truth for supervised
learning. We also explored the network architecture for efficient fringe analysis. The pro-
posed network consists of a phase retrieval subnetwork, phase unwrapping subnetwork,
and refinement subnetwork. The experimental results obtained using a real-world FPP
system indicate that the proposed method achieves accurate single-shot 3D measurements
with an RMSE of 0.67 mm on the test set. The measurements of the moving standard
spheres verify the effectiveness of the method for dynamic scenes. The measurement errors
of sphere diameter were 78 µm, 54 µm, 84 µm, 152 µm, and 354 µm corresponding to
speeds of 0.376 ± 0.004 m/s, 0.567 ± 0.004 m/s, 0.759 ± 0.004 m/s, 0.955 ± 0.004 m/s,
and 1.580 ± 0.005 m/s. Standard sphere diameters at most speeds were measured with an
error of around 100 µm, which is considered high accuracy in single-shot 3D measurement.
Two-stage training with 8800 fringe images saves time during data acquisition compared
to supervised methods. The ablation studies verify the effectiveness of using two training
stages and three network subnetworks, as two-stage training reduces the error in unsuper-
vised training by 68%, and the network comprising all the subnetworks achieves the highest
accuracy. The results of the proposed method are superior to those of FTP, WFTP, and end-
to-end networks. The proposed method achieves a high data efficiency comparable to that
of unsupervised methods and high accuracy in real-world setups. Future work includes
reducing the complexity of the training strategy and using light-weighted networks to
further accelerate the measurement process. Variations of the network architecture utilizing
multiple subnetworks could be explored and other two-stage training strategies could also
be attempted.
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