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Abstract: We demonstrate the damage-free delivery of nearly diffraction-limited picosecond laser
pulses at 1064 nm with a maximum peak power of 3.5 MW in a 5 m air-filled anti-resonant hollow-
core fiber (AR-HCF). In the air-filled AR-HCF, the transmission efficiency of picosecond pulses is
degraded due to stimulated Raman scattering for the incident peak power above 3.59 MW. The
temporal compression of pulses is also observed in the air-filled AR-HCF, where the self-phase
modulation plays a key role in the anomalous dispersion region. By vacuuming the air in the core, a
nearly constant coupling efficiency of 77% is achieved through the 5 m AR-HCF free of nonlinear
effects, with M2 of the output beam less than 1.17.

Keywords: anti-resonant hollow-core fiber; laser delivery; stimulated Raman scattering; self-phase
modulation; fiber dispersion

1. Introduction

High energy ultrashort laser pulse is widely used in industrial micromachining/
modification [1], laser surgery [2], and defense technology [3]. Despite the rapid devel-
opment of high energy pico- and femtosecond laser technologies, the flexible delivery of
ultrashort laser pulses via optical fiber remains a challenge [4]. Optical nonlinearities in
traditional solid-core fibers, including the Kerr effect (mainly self-phase modulation, SPM),
four-wave mixing, and stimulated Raman scattering (SRS), inevitably bring in nonlinear
wavelength conversion, which degrades the spectral brightness of ultrashort pulses effec-
tively. Although a shorter fiber length and a large core design are favorable to mitigate the
impact [5], the fiber dispersion giving rise to the pulse distortion in the temporal domain
inevitably limits the traditional optical fibers of long length in the ultrafast laser delivery.

Microstructured hollow-core fibers (MS-HCFs) provide a free-space-like propagation
environment where the leaky loss is significantly reduced [6]. In principle, the guidance of
light in the hollow core allows the laser transmission with a much higher average and peak
powers beyond the damaging of the fiber host material. Moreover, MS-HCFs have both
fiber dispersion and nonlinearity minimized, which have been demonstrated advantages
in ultrafast laser delivery applications. Previously, photonic-bandgap hollow-core fibers
(PBG-HCFs) and Kagome-HCFs as typical MS-HCFs have been extensively studied in the
delivery of ultrafast laser pulses [7–10]. The newly emerged anti-resonant hollow-core
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fibers (AR-HCFs) further reduce the modal overlap with the glass structure down to around
10−4 to 10−5 [11] thanks to features of large core and negative curvature of core wall [12].
Therefore, the impact of the fiber material on the modal properties is much reduced. The
laser damage threshold of AR-HCF is expected to be much beyond the traditional optical
fiber. Meanwhile, AR-HCF presents a lower and more flattened dispersion and lower
nonlinearity. The single-mode performance, large mode area, low dispersion, and low
nonlinearity make AR-HCF a most promising medium for high-power short-pulse laser
transmission for scientific and industrial applications [13].

AR-HCFs have been studied and applied in laser delivery over a broad spectral range
from ultraviolet to mid-infrared [14–19]. High-peak-power, near-diffraction-limited laser
pulse transmission has been achieved in AR-HCFs with reported output peak power
exceeding hundreds of MW [20,21] when AR-HCF is vacuumed along the length. For the
air-filled AR-HCF, a maximum peak power of around 15.3 MW was delivered, but the mode
of output beam degraded with M2 of 3.2 due to the multimode behavior of the fiber [22]. In
ref. [23,24], an AR-HCF was used to transmit peak power 0.34 MW over 5 m and kilowatt
peak power over 300 m with the need to impose a large minimum bend diameter (~32 cm)
to ensure acceptable bend losses. In ref. [25], 2.2-m argon-filled and vacuumed AR-HCFs
were used to deliver peak power over 100 MW. In the ref. [26], a 5-m vacuumed AR-HCF
was used to determine the relationship between beam quality and bending diameter. As
demonstrated in some research, filling inert gas or vacuuming the air in the core was an
effective method to eliminate the nonlinear effects in the beam transmission [25].

In this work, we successfully demonstrate the delivery of 3.5 MW high peak power
picosecond laser pulses at 1064 nm over 5 m AR-HCF fiber length. We experimentally
characterize the nonlinear spectral distortion and pulse duration shortening of laser trans-
mission in air-filled AR-HCF, beam quality, and power propagation at the AR-HCF output
as a function of incident power. The nonlinear spectral broadening is also theoretically
simulated and discussed.

2. Experiment
2.1. AR-HCF

The homemade AR-HCF in this paper was fabricated by the stack-and-draw technique
made of Heraeus F300 fused silica tubes. It consists of a single ring of seven capillaries
forming the cladding (inset of Figure 1), with a core diameter of about 33 µm and an
average capillary inner diameter of 20 µm. The 7-capillary cladding design of AR-HCF is
preferred for an optimized balance between the single-mode guidance [27] and low leakage
loss [28]. Figure 1 shows the measured attenuation of AR-HCF by the cut-back method,
and 0.18 dB/m was obtained at 1064 nm wavelength.

2.2. Picosecond Pulsed Laser Source

The laser source under the AR-HCF delivery test is a Delphi Amber IR-25 laser, which
consists of a picosecond pulsed fiber laser as the seed and a solid-state amplifier. Up to
25 W average power at 1064 nm wavelength emits with a maximum pulse energy of 66 µJ,
pulse duration of 8.7 ps, and repeat frequency of 500 kHz. The water-cooled beam delivery
optic and the remainder of the experimental setup are located in an interlocked laser safety
enclosure. The measured beam quality has M2 < 1.6.

2.3. Experimental Setup

The experiment of picosecond laser pulse delivery by AR-HCF is shown in Figure 2.
A Galileo system was used to scale the diameter of the laser beam to couple with AR-HCF.
A 5-m-long AR-HCF was loosely rewound on an aluminum plate in a circle with a radius
of about 20 cm without introducing a possible resonant bend loss [29]. It is noted that no
cooling was applied in the experiment.
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Figure 1. Measured attenuation of AR-HCF by a cut-back from 100 m to 10 m. Inset: SEM picture of
AR-HCF. The core diameter is about 33 µm.
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Figure 2. Schematic of the laser delivery setup: L1, L2, L3, L4 are coated spherical lenses; M1, M2,
M3 are dielectric mirrors; M4, M5 are back polished mirrors used as a sampler. PM1, PM2 are power
meters. The AR-HCF is mounted on a silica V groove loaded in a homemade gas cell.

In the experiment, about 5 cm of the coating was stripped off at both fiber ends to
avoid possible burning. At the input, the bare fiber end was mounted on a silica V-groove
which was loaded in the homemade gas cell for vacuuming. The fiber end stuck out
from the V-groove no longer than 3 mm against the possible wobble, causing the unstable
coupling. Before the input, a sampler was used to monitor the incident power calibrating
the coupling efficiency in real-time. At the AR-HCF output, the delivered laser power and
beam quality were measured at the same time after the collimating lens (L4).

3. Results
3.1. Characterization of Power Transmission

Figure 3 shows the transmitted laser power of AR-HCF as a function of incident power.
A 5-m-long AR-HCF was used, which was left in the atmosphere in the lab and filled with
air. The transmission efficiencies for different incident power were also plotted, defined as:

TE = Pout/Pin, (1)



Photonics 2023, 10, 416 4 of 11

where Pout is the measured output power from AR-HCF and Pin is the measured incident
power before AR-HCF.

As seen in Figure 3a, the output power of AR-HCF increased linearly as the incident power
increased. The highest coupling efficiency was 87%, calculated by Equation (2) when the
input power was lower than 14 W.

CE = TE× 10−
α×L
10 , (2)

where α is the measured fiber attenuation (with the unit of dB/m), and L is the transmission
length of the fiber.
As the incident power was increased, the transmission efficiency decreased. On the one
hand, it was due to the mechanical drifting of the XYZ stage with the incident end of
AR-HCF mounted. It was left without manual adjustment in the experiment. On the other
hand, the stimulated Raman scattering of air in the hollow core was observed when TE
decreased from 59% to around 54%, correspondingly with the incident power rising from
14 to 25 W.

Photonics 2023, 10, x FOR PEER REVIEW 4 of 12 
 

 

where outP is the measured output power from AR-HCF and inP  is the measured inci-

dent power before AR-HCF.  

As seen in Figure 3a, the output power of AR-HCF increased linearly as the incident 

power increased. The highest coupling efficiency was 87%, calculated by Equation (2) 

when the input power was lower than 14 W. 

1010
α L

CE TE


−

=  , (2) 

where α  is the measured fiber attenuation (with the unit of dB/m), and L is the transmis-

sion length of the fiber. 

As the incident power was increased, the transmission efficiency decreased. On the 

one hand, it was due to the mechanical drifting of the XYZ stage with the incident end of 

AR-HCF mounted. It was left without manual adjustment in the experiment. On the other 

hand, the stimulated Raman scattering of air in the hollow core was observed when TE 

decreased from 59% to around 54%, correspondingly with the incident power rising from 

14 to 25 W. 

  

(a) (b) 

Figure 3. (a) Measured output power and transmission efficiency as a function of incident power 

and (b) Measured powers of the residual incident and first Vib-SRS as a function of input power.  

The measured output spectra at the output of AR-HCF are shown in Figure 4. A peak 

centered at 1414 nm appeared in the output spectrum at input peak power above 3.6 MW, 

which is the first Stocks laser (S1) originating from vibrational stimulated Raman scatter-

ing (Vib-SRS) of a nitrogen molecule. Additionally, the anti-Stokes of the first order (AS1) 

was observed at 853 nm outside the low-loss transmission window of the fiber. By using 

band-pass and long-pass filters, the powers of the residual incident and S1 were meas-

ured, shown in Figure 3b. The first Vib-SRS power accounted for more than 7 W out of a 

total output of 13 W, where the maximum SRS efficiency approached 28%. 

Figure 3. (a) Measured output power and transmission efficiency as a function of incident power and
(b) Measured powers of the residual incident and first Vib-SRS as a function of input power.

The measured output spectra at the output of AR-HCF are shown in Figure 4. A peak
centered at 1414 nm appeared in the output spectrum at input peak power above 3.6 MW,
which is the first Stocks laser (S1) originating from vibrational stimulated Raman scattering
(Vib-SRS) of a nitrogen molecule. Additionally, the anti-Stokes of the first order (AS1)
was observed at 853 nm outside the low-loss transmission window of the fiber. By using
band-pass and long-pass filters, the powers of the residual incident and S1 were measured,
shown in Figure 3b. The first Vib-SRS power accounted for more than 7 W out of a total
output of 13 W, where the maximum SRS efficiency approached 28%.

To eliminate the nonlinear effects of atmospheric air and maintain a constant transmis-
sion for all incident powers, we vacuumed AR-HCF by using two gas cells to seal the ends
of AR-HCF. In order to avoid the influence of XYZ stage mechanical drift, the bulky gas
cell was fixed on the experimental platform through a pedestal post (Thorlabs, TRP50/M).
The measured pressure in the gas cell was around 800 Pa.

After vacuuming, the output power of AR-HCF increased linearly as the incident
power increased, as shown in Figure 5a, and the CE was stable at around 77%, calculated
by Equation (2) for incident power ranging from 1 to 25 W. After vacuuming the air in the
core, the transmission efficiency was slightly lower. It was partially related to the slight
tilting of AR-HCF after installation inside the gas cell. Without XYZ adjustment, the bulky
gas cell was left still, and the coupling of AR-HCF was finely tuned by moving the lens,
which makes it difficult to reach over 80% coupling efficiency. Figure 5b compares the
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delivered average laser power on the two conditions; the maximum output average power
of the evacuated AR-HCF was 15 W, which is 2 W higher than that of the air-filled AR-HCF.

Photonics 2023, 10, x FOR PEER REVIEW 5 of 12 
 

 

 

Figure 4. Measured output spectra under air-filled AR-HCF for different incident power. 

To eliminate the nonlinear effects of atmospheric air and maintain a constant trans-

mission for all incident powers, we vacuumed AR-HCF by using two gas cells to seal the 

ends of AR-HCF. In order to avoid the influence of XYZ stage mechanical drift, the bulky 

gas cell was fixed on the experimental platform through a pedestal post (Thorlabs, 

TRP50/M). The measured pressure in the gas cell was around 800 Pa. 

After vacuuming, the output power of AR-HCF increased linearly as the incident 

power increased, as shown in Figure 5a, and the CE was stable at around 77%, calculated 

by Equation (2) for incident power ranging from 1 to 25 W. After vacuuming the air in the 

core, the transmission efficiency was slightly lower. It was partially related to the slight 

tilting of AR-HCF after installation inside the gas cell. Without XYZ adjustment, the bulky 

gas cell was left still, and the coupling of AR-HCF was finely tuned by moving the lens, 

which makes it difficult to reach over 80% coupling efficiency. Figure 5b compares the 

delivered average laser power on the two conditions; the maximum output average power 

of the evacuated AR-HCF was 15 W, which is 2 W higher than that of the air-filled AR-

HCF.  

  

(a) (b) 

Figure 5. (a) Vacuumed AR-HCF output power and coupling efficiency as a function of incident 

power and (b) Comparison of output power between 5 m air-filled and vacuumed AR-HCF.  

Figure 4. Measured output spectra under air-filled AR-HCF for different incident power.

Photonics 2023, 10, x FOR PEER REVIEW 5 of 12 
 

 

 

Figure 4. Measured output spectra under air-filled AR-HCF for different incident power. 

To eliminate the nonlinear effects of atmospheric air and maintain a constant trans-

mission for all incident powers, we vacuumed AR-HCF by using two gas cells to seal the 

ends of AR-HCF. In order to avoid the influence of XYZ stage mechanical drift, the bulky 

gas cell was fixed on the experimental platform through a pedestal post (Thorlabs, 

TRP50/M). The measured pressure in the gas cell was around 800 Pa. 

After vacuuming, the output power of AR-HCF increased linearly as the incident 

power increased, as shown in Figure 5a, and the CE was stable at around 77%, calculated 

by Equation (2) for incident power ranging from 1 to 25 W. After vacuuming the air in the 

core, the transmission efficiency was slightly lower. It was partially related to the slight 

tilting of AR-HCF after installation inside the gas cell. Without XYZ adjustment, the bulky 

gas cell was left still, and the coupling of AR-HCF was finely tuned by moving the lens, 

which makes it difficult to reach over 80% coupling efficiency. Figure 5b compares the 

delivered average laser power on the two conditions; the maximum output average power 

of the evacuated AR-HCF was 15 W, which is 2 W higher than that of the air-filled AR-

HCF.  

  

(a) (b) 

Figure 5. (a) Vacuumed AR-HCF output power and coupling efficiency as a function of incident 

power and (b) Comparison of output power between 5 m air-filled and vacuumed AR-HCF.  
Figure 5. (a) Vacuumed AR-HCF output power and coupling efficiency as a function of incident
power and (b) Comparison of output power between 5 m air-filled and vacuumed AR-HCF.

Measured spectra of the output beam through the vacuumed AR-HCF are shown in
Figure 6. At a higher incident power, the laser spectrum was maintained, and SRS was no
longer observed.

3.2. Characterization of Laser Beam Profile

The laser beam profile at AR-HCF output was characterized for different incident
powers, and the measured M2 factor is shown in Figure 7. The output beam quality of the
laser source, air-filled AR-HCF, and vacuumed AR-HCF became degraded with the increase
of power. However, at a similar incident power, the output beam quality of vacuumed
AR-HCF was better than that of air-filled AR-HCF, both superior to that of the laser source.
Although a higher peak power was delivered through similar air-filled AR-HCF in ref. [22],
the mode of output beam degraded with M2 of 3.2 due to the multimode behavior of the
fiber. Benefitting from the improvement of the single-mode guidance property of AR-HCF,
the output beam quality of the laser source was improved after being delivered through
AR-HCF in our work. In AR-HCF [30], higher-order modes often experience significantly
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higher losses, and after a relatively long length, the output beam profile is usually improved
and regarded as ‘self-cleaning’. Benefiting from single-mode guidance and self-cleaning
properties, delivery of nearly diffraction-limited was accomplished in AR-HCF. Here, we
attributed the slightly worse beam profile to the output of air-filled AR-HCF due to the
overlapping of modal profiled at multiple wavelengths.
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end of air-filled and vacuumed AR-HCF at input power of 1.71 MW, 3.59 MW, and 5.28 MW.

3.3. Characterization of Laser Delivery in the Spectral and Temporal Domains

The evolution of delivered laser pulses in the spectral and temporal domains was
characterized by different incident power. The comparison of the output spectrum between
laser source, air-filled AR-HCF, and vacuumed AR-HCF is presented in Figure 8. As seen
from the upper row and lower row of Figure 8, pulse spectral width was maintained at 1 nm
with incident power increasing, and no significant difference appeared at laser delivery
in the spectral domains. In the air-filled AR-HCF, the output spectrum (middle row in
Figure 8) was spanned to 3 nm at the input peak power of 5.7 MW. Meanwhile, the spectral
shape was altered as well.
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at peak power of 1.71 MW, 3.59 MW, and 5.28 MW.

In Figure 9, the pulses duration of the laser source, air-filled AR-HCF, and vacuumed
AR-HCF were characterized for different incident power. The pulse duration of the laser
source was stable at around 9.3 ps for different power outputs. The pulse duration in
air-filled AR-HCF became narrower at a higher incident power from 8.8 ps to 6.1 ps. After
vacuuming, the pulse width was restored at the fiber output.
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4. Discussion on Pulse Compression in the Air-Filled AR-HCF
4.1. Dispersion of AR-HCF

The group velocity dispersion (GVD) of AR-HCF is numerically calculated [31] and
shown in Figure 10. At 1.064 µm, it is located in the flat region of the GVD curve, where D
is 4.73 ps/(nm·km) and GVD is −2.84 s2/m. The zero-dispersion wavelengths (ZDW) of
AR-HCF are calculated at approximately 905 nm, 1432 nm, and 1527 nm, respectively.
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4.2. Numerical Simulation of Pulse Propagation in AR-HCF

We numerically simulate the pulse propagation in the air-filled AR-HCF to repro-
duce the pulse compression. Our simulation is performed by solving scalar, generalized
nonlinear Schrödinger equation (GNLSE) numerically with the split-step algorithm: [32]

∂U
∂ξ

= i
1
2

∂U2

∂τ2 + i
γP0T2

0
|β2|

|U|2U, (3)

where input fields U =
√

P0 × sech(T/T0), nonlinear parameters γ = n2
λ0 Ae f f

, P0 is input
pulse peak power, and T0 is pulse duration. The nonlinear response of the fiber in the mod-
eling takes into account the calculated effective area of the guided mode Ae f f = 660 µm2

at 1064 nm and the nonlinear refractive index of the air n2 = 6× 10−23m2/W. Attenuation
and dispersion characteristics of the AR-HCF have also been included in the modeling.

The measured spectral broadening at different incident powers and numerical simula-
tions are compared in Figure 11. In the spectral domain, the simulated spectrum exhibits a
good agreement with the experimental spectra at the same power. The broadening of the
spectra occurs when increasing the incident power, which ultimately manifests itself as the
SPM effect [33]. Thus, the maximum phase shift can be calculated by the Equation:

ϕmax =
γP0[1− exp(−αL)]

L
, (4)

when input peak power is 3.59 MW and 5.28 MW, ϕmax has a value of 0.77π and 1.07π.
In the temporal domain, as seen in Figure 12, the spectrally broadened pulses are

effectively compressed in the anomalous dispersion region. The redshift of the spectrum
at the pulse front caused by the SPM effect slows down the motion of the pulse front and
speeds up the motion of the pulse trailing edge due to the spectral blueshift, which in
turn effectively compresses the pulse duration. In our case, apparently, the mixed effects
of intense SPM and weak GVD result in impulse distortion of high energy laser pulse
delivering through air-filled AR-HCF.
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5. Conclusions

In this work, we systematically characterize the picosecond laser pulse delivery in a
5-m AR-HCF. Transmission/coupling efficiency, the evolution of pulses in the spectrum
and temporal domain, and the output beam quality are experimentally measured. In the air-
filled AR-HCF, SRS can be observed when the incident power reaches 14 W, and a maximum
of Vib-SRS is measured at 7 W at 1414 nm wavelength. The interaction between SPM and
GVD results in impulse distortion of high energy laser pulse in the transmission along the
air-filled AR-HCF. The numerical simulation reproduces the pulse compression observed in
the experiment. By vacuuming the air in the core, a nearly constant transmission efficiency
of 77% is achieved through the 5-m AR-HCF, free of nonlinear effects, with M2 of the
output beam less than 1.17. The existence of mechanical drift not only increases the damage
probability of AR-HCF but also affects the long-term stability of output power. After fixing
AR-HCF with a gas cell, the coupling efficiency of AR-HCF is much more stable, which is a
better method to improve the long-term stability of output power. In the future, the small
vacuum-encapsulated packaging of AR-HCF could replace the bulky gas cell to improve
the long-term stability of high-energy pulse laser delivery.
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