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Abstract: In this paper, we studied the optomechanically induced transparency (OMIT) in a cavity 

optomechanical system containing a cubic nonlinear oscillator. In our system, a partially transpar-

ent, dielectric membrane was placed in the middle of the F-P cavity. Due to the partial transmission 

and reflective property of the membrane, the membrane was combined with both the mirrors on the 

left and right sides to form two cavities. When the system was driven by two coupling fields, we 

calculated the quantum fluctuation of the optomechanical system operators and showed the re-

sponse of the cavity optomechanical system to the probe field. We found that the cubic nonlinearity 

led to a shift of the OMIT window, which moved towards a frequency less than the resonance fre-

quency, and the absorption peak became significantly asymmetrical when OMIT appeared. The 

shift of the OMIT dip provided a method to detect the nonlinear effects of the system due to the 

existence of cubic anharmonic potential. 

Keywords: cavity optomechanical; optomechanically induced transparency; cubic anharmonic  

oscillator 

 

1. Introduction 

In recent years, research into the cavity optomechanical system [1,2] has received 

more attention as a crossover research area between quantum optics and nano science. 

Studies about the cavity optomechanical system include the ground state cooling of me-

chanical oscillators [3,4], parametric normal-mode splitting [5,6], the preparation of non-

classical states [7–9] and the slow light effect [10–12]. In the process of studying the cavity 

optomechanical system, Agarwal and his co-workers found the optomechanically in-

duced transparency (OMIT) [13]. The optomechanically induced transparency was fairly 

similar to the electromagnetically induced transparency (EIT) [14]. We know that the elec-

tromagnetically induced transparency is a quantum coherent phenomenon: when a probe 

field interacts resonantly with a three-level atomic system driven by a strong coupling 

field, due to the quantum coherent control from the strong coupling field, coupling tran-

sition can occur, producing a pair of dressed state transitions. This changes the transition 

of the probe field into two transitions and leads destructive interference to absorption. 

Finally, the three-level atomic medium completely takes on the transparency phenomena 

for the probe field. EIT has become a quantum-manipulation technology widely used to 

manipulate quantum coherent media, based on the technology of EIT, double Fano reso-

nance in a plasmonic double-grating structure [15], a plasmonic multilayer system [16] 

and metamaterial-induced transparency [17]. 

The theoretical scheme of OMIT was first proposed by Agarwal and Huang in 2010 

in Ref. [13], and their studies showed how the probe field became transparent in optome-

chanical systems driven by a strong coupling field. Through the driving of this strong 

field, the first harmonic was generated. The reason for transparency was the occurrence 

of the destructive interference between the probe field and the first harmonic. In the year 
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when the theory of OMIT was proposed, it was experimentally realized by Kippenberg’s 

group [18]. Since then, OMIT has been considered for some physical systems, such as: 

superconducting loop systems [19]; Fabry–Perot optical cavities with semi-permeable film 

in the middle [20]; cascaded multimode-cavity optomechanical systems [21]; Bogoliubov 

mechanical modes [22]; cavity optomechanical systems with Kerr effect [23] and diamond 

optomechanical crystals [24]. Jing’s group obtained the optomechanically induced trans-

parency in parity–time-symmetric microresonators [25]. Using the quantum manipulation 

of OMIT, the generation of second-order and higher-order sidebands in the cavity opto-

mechanical system was reported [26–28]. In addition to the OMIT for a single probe field, 

researchers investigated two-color, electromagnetically induced transparency in a hybrid 

optomechanical system [29]. Alongside in-depth studies about OMIT, this quantum co-

herence phenomenon was extended to a micro-resonator, coupled with nanoparticles [30] 

and a spinning resonator [31]. Because of the extremely narrow transparency peak, OMIT 

has a wide range of applications in precision measurements [32,33]. 

The reason why the optomechanical system exhibits so many novel physical phe-

nomena is due to the important role of quantum nonlinearity. By using the Duffing non-

linearity, Franco’s group investigated steady-state mechanical squeezing in an optome-

chanical system [34]. Regarding the coupling of the mechanical oscillator with the cavity 

field, the general processing mode is to treat the mechanical oscillator as a harmonic os-

cillator, meaning the mechanical oscillator has harmonic oscillator potential which is a 

quadratic function relating to position. In this work, we assumed that the mechanical os-

cillator had an anharmonic potential that included a cubic term besides the quadratic term 

of position. We investigated the optomechanically induced transparency of the optome-

chanical system, under the condition of the existence of a cubic anharmonic potential. We 

discussed the absorption and the dispersion spectrum of the output probe field in the sys-

tem, under different strengths of mechanical nonlinearity and different values of other 

parameters. We found that the peak of the absorption and the dispersion spectrum will be 

asymmetric and the window of OMIT will deviate from the resonance point when a cubic 

nonlinearity oscillator exists in a system. 

Our theoretical studies are based on current experimental progress in the field of 

cavity optomechanics. In order to numerically simulate the OMIT, our selections of pa-

rameters come from some experimental data. The research content of this paper is divided 

into three parts. In Section 2, we describe the physical model, give the Hamiltonian of the 

system, and obtain the steady-state expectation values of the system operators. Next, we 

explain how we calculated the quantum fluctuations of the operators and the steady con-

ditions. Then, we explain how we obtained the response of the cavity optomechanical 

system to the probe field. In Section 3, we discuss influences of cubic anharmonic potential 

and other parameters on the absorption and the dispersion spectrum of the output probe 

field in the system. We briefly draw a conclusion in Section 4. 

2. Physical Model and Methods 

We considered a partially transparent membrane placed in the middle of a cavity. 

Due to the partial transmission and reflective property of the membrane, the membrane 

and the mirrors on the left and right sides of the cavity can form two cavities, respectively, 

as shown in Figure 1. The membrane coupled with the two optical cavities simultane-

ously. When the cavities were driven by strong coupling fields, mechanical motion of the 

membrane occurred due to the radiation pressure force. In this system, we assumed that 

the membrane had potential that included harmonic oscillator potential, as well as anhar-

monic potential which related to the function of cubic of position. Here, the membrane 

was called a cubic anharmonic oscillator [35], and it had nonlinear potential energy. In 

Figure 1, two strong coupling fields (two weak probe fields) with the same frequency c  

(the frequency 
p  of the two weak probe fields) and amplitudes c  and d  (the ampli-

tudes 
p   and l   of the two weak probe fields) were used to drive cavity 1a   and 2a  , 
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respectively. This type of system has been studied on some phenomena in experiments 

[36–38]. 

 

Figure 1. A three-mode optomechanical system, in which two cavities couple to a cubic anharmonic 

oscillator. Meanwhile, two cavities couple to each other with coupling strength J . 

We describe the two optical cavities, respectively, by annihilation operators ia  and 

creation operators ( )† 1,2ia i =  while ( )1,2i i =  are the resonance frequencies of the cav-

ities and ( )1,2i i =  are the decay rates of the cavities. The annihilation operators and 

creation operators are restricted by the commutation relation †, 1i ia a  =  . The mechanical 

oscillator, with a frequency m  and a damping rate m , is described by displacement 

operator q   and momentum operator p  . These two operators satisfy the relation 

 , iq p =  . The Hamiltonian of the cubic anharmonic oscillator is then given by 
2 2 2 32 2 3m mH m q p m q = + +  , where m   denotes the effective mass of the oscillator, 

and   is the strength of the mechanical nonlinearity. Differences in   lead to different 

coupling-constant behavior [35]. It was found that the strength of the mechanical nonlin-

earity   can be about 711 10  2N m  in a system containing a movable mirror and a cu-

bic anharmonic oscillator [39]. The first two terms in the above Hamiltonian represent the 

potential energy and kinetic energy of the harmonic oscillator, respectively, and the third 

term is the potential energy produced by the cubic mechanical nonlinearity. We write op-

erators p  and q  as dimensionless momentum operator P  and displacement operator 

Q . P  and Q  are defined by 
zpfp x=  and 

zpfq x Q= , in which zpf mx m=  is the 

amplitude of the zero-point motion of the mechanical oscillator and 2h =   is Planck 

constant. P  and Q  satisfy the relation  , iQ P = . Therefore, the Hamiltonian of the cu-

bic anharmonic oscillator can be written as ( )2 2 32 3m mH Q P Q = + +  , 3

zpfx =  . 

Since the cubic potential energy 3 3Q  is much smaller than the quadratic potential en-

ergy, we can think of the cubic potential energy as a perturbation. In the rotating-wave 

frame of coupling frequency c , the total Hamiltonian of the optomechanical system can 

be written as: 

( ) ( )

( ) ( ) ( )

† † † † † † †

1 1 1 2 2 2 1 1 1 2 2 2 1 2 2 1 1 1

† † i i i i

2 2 1 1

†

2 2

i

i i e e i e e

m c

t t t t

d p l

H a a a a H g a a Q g a a Q J a a a a a a

a a a a a a   



  − −

=  +  + + + + + + −

+ − + − + −
 (1) 

Here, ( )1,2i i c i  = − =   are the detuning between cavities and coupling fields, 

and 
p c  = −  is the detuning between probe fields and coupling fields. The first and 

the second terms are the energy of two cavities. The fourth and fifth terms represent the 

interaction between the mechanical oscillator and the two optical cavities, respectively, 

which was caused by radiation pressure with the coupling strength ( )1,2i zpf i ig x l i= =

, with il  being the length of cavities. The sixth term describes the Hamiltonian of the in-

teraction between the two optical cavities. J  is the coupling strength between the two 
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cavities. The last four terms express the coupling of the coupling fields and the probe fields 

to the two optical cavities, respectively. The amplitudes of two coupling fields 
d  and 

d  

are related to the decay rates 1  and 2  of the two optical cavity fields, the laser powers 

c   and 
d   and the frequency c   of input fields, so they are described as 

12c c c  =   and 22d d d  =  . 

With the Hamiltonian written above in Equation (1), the dynamics of the system can 

be described by the quantum Langevin equation using the Heisenberg–Langevin equa-

tion: 

i

1 1 1 1 1 2 1 1 1 1,i i i e 2t

c p ina a g a Q Ja a a    −= − − − + + − +  

i

2 2 2 2 2 1 2 2 2 2,i i i e 2t

d l ina a g a Q Ja a a    −= − − − + + − +  

mQ P=  

† † 2

1 1 1 2 2 2 m mP g a a g a a Q Q P


  = − − − − − +  

(2) 

Here, ( ), 1,2i ina i =  is the input quantum vacuum noise in optical cavities with zero 

mean value , 0i ina = , and ( ) ( ) ( )†

, ,i in i ina t a t t t = −  is the nonzero time-domain corre-

lation function, while   is the thermal noise caused by the Brownian motion of the me-

chanical oscillator. The correlation function in the time domain is: 

( ) ( ) ( )i
e 1 coth

2 2

t tm

m B

d
t t

k T

  
  

 

− −
  

 = +  
   


 

(3) 

and its mean value is zero 0 = . In the above equation, Bk  is the Boltzmann constant 

and T  is the ambient temperature of the system. In this paper, we discuss the average 

response of the system to the input probe field; thus, the effect of the noise can be ignored 

in the subsequent calculations. Since the probe field, compared to the coupling field, is a 

weak field, the effect of the probe field can be regarded as a perturbation. Therefore, due 

to the perturbation effect of the probe field, each operator can be viewed as the sum of a 

steady-state mean value and small fluctuation, so we obtain i is ia a a= + , sQ Q Q= + , 

sP P P= + . The steady-state mean value is related to the input coupling field. In the ab-

sence of probe fields 
p  and l , we can obtain the steady-state mean values of operators 

in the system: 

( )

( )( )
2 2

1 2

1 1 2 2

i i

i i

c d

s

J
a

J

  

 

 + −
=

  +  + +
 

( )

( )( )
1 1

2 2

1 1 2 2

i i

i i

d c

s

J
a

J

  

 

 + −
=

  +  + +
 

2 2

1 1 2 2i is s

s

m s

g a g a
Q

Q




− −
=

+
 

0sP =  

(4) 

With ( )1,2i i i sg Q i =  + =  denoting the effective detuning between two cavities and 

coupling fields, respectively, 
i sg Q   is the optomechanical coupling strength of the me-

chanical oscillator and the two cavities, respectively. It can be noticed from the above 

equations that the steady-state mean value of the mechanical oscillator sQ  depends on 

the mechanical nonlinearity strength   and the number of cavity photons 
2

isa . 

The quantum Langevin equations in Equation (2) are nonlinear equations, so we 

solve them by keeping the only linear terms of fluctuation operators and ignoring quad-

ratic higher-order fluctuation. Therefore, the linearized quantum Langevin equations of 

fluctuation operators are shown as: 
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i

1 1 1 1 1 2 1 1i i i e t

s pa a g a Q J a a        −= −  − − − +
 

i

2 2 2 2 2 1 2 2i i i e t

s la a g a Q J a a        −= −  − − − +  

mQ P  =  
† †

1 1 1 1 1 1 2 2 2 2 2 2 2s s s s m s mP g a a g a a g a a g a a Q Q Q P


          = − − − − − − −
 

(5) 

Due to the presence of the operators †

ia , the amplitude and phase quadrature fluc-

tuation operators of the cavities are introduced as ( )†

1 1 1 2x a a  = +  , 

( )†

2 2 2 2x a a  = +  , ( ) ( )†

1 1 1 i 2y a a  = −  , ( ) ( )†

2 2 2 i 2y a a  = −  . The Langevin 

equations above in Equation (5) therefore can be written in the following matrix form: 

( ) ( ) inf t f t f= +M
 

(6) 

where ( )f t , inf and the coefficient matrix M  in Equation (6) are shown as follows: 

( ) ( )1 2 1 2, , , , ,
T

f t x x y y Q P     =
 

( )1, 2, 1, 2,, , , ,0,0
T

in in in in inf x x y y=  

1 1 1 1

2 2 2 2

1 1 1 1

2 2 2 2

1 1 2 2 1 1 2 2

0 0

0 0

0 0

0 0

0 0 0 0 0

2

m

m S m

J g v

J g v

J g u

J g u

g u g u g v g v Q












 

−  
 

−  
 − − − −
 

= − − − − 
 
 
 
− − − − − − − 
 

M  

(7) 

Here, 
( )1 1 1 2s su a a= +

 , 
( )2 2 2 2s su a a= +

 , ( ) ( )1 1 1 i 2s sv a a= −  , 

( )2 2 2 i 2s sv a a= −
 , 

( )i i

1, e e 2t t

in p px   −= +
 , 

( )i i

2, e e 2t t

in l lx   −= +
 , 

( ) ( )i i

1, e e i 2t t

in p py   −= −  , ( ) ( )i i

2, e e i 2t t

in l ly   −= −  . When the real parts of the ei-

genvalues of the coefficient matrix M  are negative, the system may be in a steady state. 

We can use the method of the Routh–Hurwitz stability criterion [40] to derive the stability 

conditions for the system. In the following discussion, it is necessary to make reasonable 

choices and adjustments to ensure that the system is always in a steady state. 

For simplicity of calculation, we assumed that the membrane was a perfect semi-

transmissive and semi-reflective membrane, and we let the amplitudes of the two probe 

fields be equal, that is, we let 
l p = . This was under the assumption that it was reasona-

ble to expand the fluctuation operators by the perturbation method, as the form 
i ie et t

p pw w w   −

+ −= + , where 1 2, , ,w a a Q P= . If we substitute the form of every operator 

into Equation (5), it can be solved as follows: 

1 1 2

1

1 1

i i 1

i i

sg a Q Ja
a

 
+ +

+

− − +
=

+  −
 

2 2 1

2

2 2

i i 1

i i

sg a Q Ja
a

 
+ +

+

− − +
=

+  −
 

i

mQ P



+ +=

−
 

1 1 1 1 1 1 2 2 2 2 2 2

i
2s s s s m s mP g a a g a a g a a g a a Q Q Q P


 


   

+ − + − + + + +

 
= − − − − − − − 

 
 

(8) 

With further calculations, output fields for both cavities can be obtained from: 
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( )2 2

1

1 2 1 2

L N B
a

N N L L
+

+
=

−
 

( )1 1

2

1 2 1 2

L N B
a

N N L L
+

+
=

−  

(9) 

where 
2 i 2m

m s

m m

A Q
 


 

= − − + +  

( )( ) ( ) ( )
2 22 2

1 1 2 2 1 1 2 2 2 2 1 1i i i i i i i i i is sB A g a g a          = −  − −  − + −  − + −  −  

( ) ( )1 1 1 2 2 2 2 1 1i i i i is sS g a Jg a     = −  − + −  −   

( ) ( )2 2 2 1 1 1 1 2 2i i i i is sS g a Jg a     = −  − + −  −   

1 2 2 1i isL g a S JB= −  

2 1 1 2i isL g a S JB= −  

( )1 1 1 1 1 1i i i sN B g a S  = + − −  

( )2 2 2 2 2 2i i i sN B g a S  = + − −  

(10) 

For studying the output fields of both two cavities, we needed to work out the output 

fields 1outa  and 
2outa , which can be obtained according to the input–output relation [18] 

2in outa a a+ = . From the model, we found that the input fields were i

,1 e t

in c pa   −= +  

and i

,2 e t

in d la   −= + . Therefore, the output fields of this system were written as Equation 

(11): 
i

1 1 1e 2t

out c pa a   −+ + =  

i

2 2 2e 2t

out d la a   −+ + =  
(11) 

Meanwhile, we expanded the output fields into the form of i ie et t

out p pa a a  −

+ −= +  

in the same way. Combined with the input–output relationship, the output response cor-

responding to the probe fields of the two cavities can be obtained as: 

1 1 12 1out a + += −  

2 2 22 1out a + += −  
(12) 

We characterized the properties of the output probe fields by quadrature of the fields 

1 1 12T a  +=  and 2 2 22T a  += , where the real part represents the absorption property, and 

the imaginary part represents the dispersion property [17]. 

3. Discussion and Results 

For this study, we first focused on the relationship between the ratio of the cubic po-

tential energy to the quadratic potential energy of the mechanical oscillator and the me-

chanical nonlinearity strength  . We assumed each coupling field drove cavities at the 

red-detuned mechanical sideband, making the effective detuning 1 2 m   =  =    and 

set mx  = − . Due to the steady condition, we referred to a study which has been worked 

out [6], and the specific parameters were selected as follows: the frequencies of the input 

coupling fields are 2 6.07c d  = =   GHz ; the frequency of the mechanical oscillator 

is 2 1.45m =   MHz ; the effective mass of the mechanical oscillator is 12m =  pg ; the 

coupling strength between the cavities and the mechanical oscillator is 

1 2 2 1.26 3g g g = = =    Hz  ; the decay rate of the cavities is 1 2 0.1 m   = = =  ; the 

damping rate of the mechanical oscillator is 2 24m =   Hz ; the coupling strength be-

tween two cavities is 2 12.5J =    kHz   and the power of the input coupling fields is 

2c d = =  μw . It can be seen from Equations (9) and (10) that the output probe fields of 

the two cavities are the same under this set of parameters, which can be written as 
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1 2T T T  = = . Figure 2 shows the ratio of the cubic potential energy to the quadratic po-

tential energy of the mechanical oscillator as a function of the mechanical nonlinearity 

strength  . When the nonlinear strength   increases from 0  to 712 10  2N m , the ra-

tio of the cubic potential energy to the quadratic potential energy ( )3 23 2s sr Q m Q=  

increases as    increases. When the mechanical nonlinearity strength reaches 
712 10 =   2N m , the ratio becomes ( )3 23 2 0.093s sQ m Q  , which means the cubic 

potential energy is much smaller than the quadratic potential energy at steady state and 

can be regarded as a perturbation. 

 

Figure 2. The ratio of the cubic potential energy to the quadratic potential energy of the mechanical 

oscillator ( )3 23 2s sr Q m Q=  as a function of the mechanical nonlinearity strength  . 

Next, we discuss the optomechanically induced transparency of the system contain-

ing a cubic anharmonic oscillator. We first considered the influence of the mechanical non-

linearity strength    on the output probe field spectrum of the cubic potential energy 

contained in the mechanical oscillator. We plotted the real and the imaginary parts of the 

output field amplitude T  versus the normalized frequency mx   for different mechan-

ical nonlinearity strength 0 = , 75 10 =   2N m  and 712 10 =   2N m . Here, Figure 

3a shows the real part of the output field amplitude T , and Figure 3b shows the imagi-

nary part of the output field amplitude T . As shown in Figure 3a, there is a dip near 

0x =  where the detuning is m =  as 0 = . That is to say, the absorption effect of the 

optical system on the probe field is zero at the resonance when the mechanical nonlinear-

ity strength is absent. The value of T  is close to zero, and this means that the input probe 

field transmitted completely through the system without loss. With the increase in the 

mechanical nonlinearity strength, the two absorption peaks gradually become asymmet-

ric; one absorption peak becomes higher and narrower, and the other absorption peak 

becomes lower and broader. At the same time, the positions of the two absorption peaks 

are shifted to the left, and the window width of the OMIT is slightly broader and is also 

shifted to the left and gradually deviated from the resonance point. The dispersion spec-

trum of the output field amplitude T  is shown as Figure 3b, and its slope represents the 

group delay. From the figure, we can see that as the mechanical nonlinearity strength in-

creased, and the slope of the dispersion curve gradually decreased, which means the 

group delay became smaller near the point where the OMIT occurred.  

Next, we discuss the differences between the spectrum of our OMIT and that of the 

standard OMIT in Ref. [13]. In previous work [13], the potential energy of a mechanical 

oscillator was ℏ𝜔𝑚𝑄2/2. In this case, when the oscillator was driven by the coupling field 

with frequency 𝜔𝑐 , it oscillated with the frequency 𝜔𝑚 , and the system generated 
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harmonic wave with frequency 𝜔𝑚 + 𝜔𝑐. If the 𝜔𝑚 + 𝜔𝑐 was equal to frequency 𝜔𝑝 of 

the probe field, interference phenomenon occured and the system could display a trans-

parent window with two symmetrically distributed absorption peaks on both sides of the 

window, which is called the OMIT. However, in our paper, we considered that the mem-

brane was in the potential energy with ℏ𝜔𝑚𝑄2/2 + 𝛼𝛽𝑄3/3 which no longer represented 

a harmonic oscillator potential. The cubic anharmonic potential 𝛼𝛽𝑄3/3  changed the 

membrane’s oscillation frequency that was no longer equal to 𝜔𝑚, so the position of the 

transparent window would shift, while the two absorption peaks were no longer strictly 

symmetrically changing the values of 𝛼. 

 

Figure 3. The output probe field amplitude T  as a function of normalized detuning mx   for dif-

ferent mechanical nonlinearity strength   . (a) Absorption spectrum. (b) Dispersion spectrum. 

Black solid line, red dotted line and blue dashed line represent the mechanical nonlinearity strength 

0 = , 
75 10 =   2N m , and 

712 10 =   2N m , respectively. 

We plotted the output probe field amplitude T  as a function of normalized detun-

ing mx   for different decay rates   of the optical cavity field in Figure 4. We chose the 

mechanical nonlinearity strength 75 10 =    2N m   for the discussion of this part, and 

other parameters were the same as in Figure 3. We focused on the corresponding output 

probe fields when the decay rates    were 0.02 m =  , 0.05 m =   and 0.1 m =  . It 

can be observed that the two absorption peaks became narrower gradually and had a 

slight tendency to become lower as the decay rate   became smaller and contracted to-

wards the resonance point. The window width of OMIT became narrower, and the point 

where the OMIT appears shifted gradually to the right and closed towards the resonance 

point. In Figure 4b, we find that the corresponding dispersion curve near the point where 

the absorption was zero became steeper as the decay rate decreased, and its slope in-

creased as the decay rate decreased. 

 

Figure 4. The output probe field amplitude T  as a function of normalized detuning mx   for dif-

ferent decay rates   of the optical cavity field. (a) Absorption spectrum. (b) Dispersion spectrum.  
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Black solid line, red dotted line and blue dashed line represent the decay rate 0.02 m =  , 

0.05 m =  and 0.1 m = , respectively. 

In addition to this, it can be seen that the coupling strength g  between the cavities 

and the oscillator, and the coupling strength J  between the two cavities are also factors 

affecting the output probe fields. In Figure 5, we show the output probe field amplitude 

T  as a function of normalized detuning mx   when the coupling strength g  between 

the cavities and the oscillator were 2 1.26 0.5g =     Hz  , 2 1.26g =    Hz   and 

2 1.26 3g =    Hz  . Mechanical nonlinearity strength 75 10 =    2N m   was consid-

ered here, while the other parameters were the same as in Figure 3. When the coupling 

strength g  became smaller, the two absorption peaks became lower and moved close to 

the resonance point, forming a narrower OMIT dip which also moved to the resonance 

point. The trend of the output probe field spectrum was similar to Figure 4, but the reduc-

tion in g  could make the OMIT dip of the output field become narrower than in Figure 

4. The dispersion spectrum of the output probe field is plotted in Figure 5b. We found that 

near the detuning corresponding to the OMIT dip, the slope of the curve became steeper 

as g  became smaller. 

 

Figure 5. The output probe field amplitude T  as a function of normalized detuning mx   for dif-

ferent coupling strength g  between the cavities and the oscillator. (a) Absorption spectrum. (b) 

Dispersion spectrum. Black solid line, red dotted line and blue dashed line represent the coupling 

strength 2 1.26 0.5g =    Hz , 2 1.26g =   Hz  and 2 1.26 3g =   Hz , respectively. 

Finally, we discuss the influence of the coupling strength J  between the two cavi-

ties on output probe field T  which is a function of normalized detuning mx   in Figure 

6. We chose the coupling strengths 2 12.5J =    kHz  , 2 92.5J =    kHz   and 

2 225J =   kHz . When the coupling strength J  decreased, the two absorption peaks 

obviously became asymmetric. The absorption peak on the left became higher and wider 

and gradually moved away from the resonance point, while the absorption peak on the 

right became lower and narrower and moved towards the resonance point. Differing from 
the above discussion, the decrease in J  made the OMIT dip move towards to the left and 

away from the resonance point. In addition to this, the slope of the corresponding disper-

sion curve gradually became gentler as the coupling strength J  between the two cavities 

decreased. 
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Figure 6. The output probe field amplitude T  as a function of normalized detuning mx   for dif-

ferent coupling strength J  between the two cavities. (a) Absorption spectrum. (b) Dispersion spec-

trum. Black solid line, red dotted line and blue dashed line represent the coupling strength 

2 12.5J =   kHz , 2 92.5J =   kHz  and 2 225J =   kHz , respectively. 

4. Conclusions 

Many phenomena have been achieved in the system with two cavities and an oscil-

lator, such as coherent perfect absorption (CPA), coherent perfect transmission (CPT) and 

coherent perfect synthesis (CPS) [41]. In this paper, we investigated the OMIT of the cavity 

optomechanical system containing a cubic anharmonic oscillator. We found that the pres-

ence of the cubic nonlinear anharmonic oscillator made the absorption spectrum of the 

output probe field become asymmetric and caused the OMIT dip to move away from the 

resonance point. These phenomena became stronger with the increase in the mechanical 

nonlinearity strength  . Moreover, in the cavity optomechanical system with a cubic an-

harmonic oscillator, the decay rate of the cavity field, the coupling strength between the 

two optical cavities and the coupling strength between the cavities and the mechanical 

oscillator all affected the absorption peak of the output probe field and the position of the 

OMIT dip. Among these, a smaller decay rate of the cavity field, or a smaller coupling 

strength between the optical cavities and the mechanical oscillator led to a narrower OMIT 

dip, and the effective detuning where the OMIT occurred was closer to the resonance point 

m = . On the contrary, the effective detuning moved away from the resonance point 

m =  where the OMIT occurred if the coupling strength between the two optical cavities 

decreased, even though the window width of OMIT was also slightly narrower. Besides 

this, the coupling strength between the two optical cavities also lead to a more obviously 

asymmetric phenomenon of the absorption peak, but it was opposite to the trend of the 

absorption peak height when the mechanical nonlinearity strength increased. Therefore, 

we found that we could adjust the position and width of the transparent window to 

achieve the OMIT required for different applications in this system. These results show 

that the influences of the cubic anharmonic potential on the spectrum of OMIT are signif-

icant, so we can detect the nonlinearity strength of the mechanical oscillator by measuring 

the shift of the transparent window. Our studies show the existence of cubic anharmonic 

potential to enhance the nonlinearity of the cavity optomechanical system; therefore, we 

can also extend this effect to the study of slow light and optical second-order sideband. 

Future research can also be extended to studying optomechanically induced amplification 

and optomechanically induced absorption, which provides optical information pro-

cessing techniques for all-optical communication networks. Finally, we discuss the experi-

mental feasibility of our scheme. With the development of micro/nano electromechanical 

technology, the optomechanical system has developed rapidly in recent years, and the 

parameters and scales of optomechanical systems have crossed the boundary between 

macro and micro. The oscillation frequency and effective mass values of the mechanical 

oscillator cover a very wide range, ranging from 10 to 109 Hz and from 103 to 10−20 g, 

respectively. Electromagnetic radiation also spans the wavebands of microwaves and op-

tical waves. In this paper, the frequencies of the input coupling fields were 
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2 6.07c d  = =   GHz , the frequency of the mechanical oscillator was 2 1.45m =   

MHz , and the effective mass of the mechanical oscillator was 12m =  pg . Based on the 

current development of cavity optomechanical technology, maybe our scheme could be 

feasible for use in experiments. 
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