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Simple Summary: Structural color is a vibrant color produced by optical effects such as interfer‑
ence, diffraction, or scattering of incident light interacting with the nanostructure, which has the
advantages of environmental protection, high saturation, and high resolution. High saturation and
dynamic tunability are the current research hotspots for structural color. We achieve full‑color wide
gamut structural colors and anti‑counterfeit functions by an all‑dielectric chiral metasurface con‑
sisting of half‑gammadion‑shaped resonators embedded in PMMA and a top TiO2 layer on quartz
coated with an ITO layer. This research has significant implications in micro‑display, nano‑printing,
anti‑counterfeiting, and information encryption.

Abstract: Structural color is anticipated to replace pigmented or chemical color due to its superior
saturation, resolution, environmental friendliness, and longevity. We achieve a full‑color gamut
of structural colors and anti‑counterfeit functions by an all‑dielectric chiral metasurface consisting
of half‑gammadion‑shaped resonators embedded in PMMA and a top TiO2 layer on quartz coated
with an ITO layer. The prominent resonance peaks of this embedded chiral metasurface under the
cross‑polarization condition, which are provided by the polarization conversion features of the chi‑
ral structure, lead to extremely saturated structural colors. The color phase mainly depends on the
structure’s period, opening up a full‑color range well beyond sRGB. Especially, we demonstrate a
star with hidden information of the letter “A” and the Chinese word “李龙杰” by taking advantage
of the difference in the color phase change under different polarization conditions to decode the infor‑
mation, thus realizing the anti‑counterfeiting function. Our proposed embedded chiral metasurface
provides dual‑function structural colors and is highly promising for micro‑display, nanoprinting,
anti‑counterfeiting, data storage, and information encryption.

Keywords: structural color; metasurface; chiral; anti‑counterfeit

1. Introduction
When compared to pigments and bioluminescence, structural color is a gift from

nature that may be used to create a colorful and sustainable world due to the advan‑
tages of non‑polluting, high resolution, high saturation, and durability, which are gen‑
erated through the interference and scattering of light from the nanostructure [1]. An
improvement in the utilization of plasmonic and all‑dielectric metasurfaces to creative
artificial structural colors has been attributed to recent developments in nanofabrication
techniques [2]. Optical responses for plasmonic structural colors represented by Au [3–5],
Ag [6–10], and Al [11–15] are mainly driven by plasmonic resonances based on a variety
of metallic nanostructures, but this is constrained by the inherent ohmic loss of the metal,
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leading to a subpar structural color performance. Yet the electric and magnetic dipole res‑
onances generated from high‑index dielectric materials simultaneously adapt to govern
the spectrum and achieve high‑saturation colors [16], as shown by the dielectric structural
colors represented by Si [17–27], TiO2 [28–37], and Si3N4 [38,39].

Static structured color has great potential for applications in the full‑color display,
Meta‑OLED, etc. [40]. However, it is usually difficult to alter the color scheme of a struc‑
ture once it has been built. As a result, the question of how to control structural color dy‑
namically is rising in importance. The use of phase‑change materials, voltage‑controlled
coupling, and thermal stimulation to tune the metasurface are just a few examples of the
methods that have been employed to achieve the dynamic tuning of structural color. An‑
othermethod that promises to be faster to tune and at the same time allow themultiplexing
of structures is the combination of anisotropic structures and polarized light [41]. Brilliant
structural colors under a cross‑polarization condition can be achieved by the anisotropic
structure’s high polarization conversion [5,7,8,14,33,37,42]. Dynamically tuned electro‑
magnetic metasurfaces using different materials properties can enable applications, such
as information processing, anti‑counterfeiting, and information encryption [43–48]. In‑
spired by the dynamic modulation of electromagnetic metasurfaces, the dynamic adjust‑
ment of structural color in the visible range by a chiral metasurface is feasible because of
the synergistic effects of the chiral metasurface and polarized light [49–51].

In this work, we propose an all‑dielectric chiral metasurface consisting of half‑
gammadion‑shaped resonators embedded in PMMAand a top TiO2 layer on quartz coated
with an indium tin oxide (ITO) layer to realize the full‑color gamut of the structural colors
and anti‑counterfeit functions. TiO2 was selected as the material for the embedded chi‑
ral half‑gammadion‑shaped resonators in our design due to its near‑transparency in the
visible spectrum and moderate refractive index (2.4–2.7). We show a full‑color gamut of
the structural colors that extends well beyond sRGB by properly tuning the duty cycle ( fL)
and period (P). The resonance peaks of the cross‑polarization reflectance spectra depend
on the period, thus being noticeable in color. Color mode and gray mode can be switched
under the different polarization conditions. The anti‑counterfeiting function is experimen‑
tally implemented by concealing the letter “A” and the Chinese word “ 李龙杰” inside a
star pattern.

2. Results and Discussions
The proposed embedded chiral metasurface is schematically depicted in Figure 1a,

which unfolds each layer by section. It is a square lattice of TiO2 chiral half‑gammadion‑
shaped resonators embedded in PMMA and a top TiO2 layer on quartz coated with an
ITO layer. The spatial inversion symmetry in the two‑dimensional plane is broken by the
asymmetrically protruding arms of the chiral half‑gammadion‑shaped resonators on the
left and right sides of the central rectangular bar. The square lattice has period P; the length
and width of the chiral half‑gammadion‑shaped resonators are, respectively, L andW; the
thickness of the top layer TiO2 layer is H1; the height of the embedded TiO2 chiral half‑
gammadion‑shaped resonators and PMMA isH2; and the thickness of the ITO layer isH3,
as shown in Figure 1b,c. We introduce two new factors: fW and fL, defined as the ratios of
W over the L/2, and L over the P, respectively, to simplify the design and description. Un‑
less otherwise stated, fW , H1, H2, and H3 are, respectively, 0.6, 40 nm, 100 nm, and 50 nm.
The embedded chiral metasurface was fabricated using a standard electron‑beam lithog‑
raphy (EBL) and atomic layer deposition (ALD) technique followed by a selectable induc‑
tively coupled plasma (ICP)‑etching process. To begin, the quartz substrate was cleaned
in the ultrasound bath with acetone and absolute ethyl alcohol for 10 min, respectively,
then rinsed well with deionized water. Then, a 50 nm thick ITO was deposited on the sub‑
strate with a magnetron sputtering process, improving the efficiency and saturation and
facilitating the scanning electron microscope (SEM) inspection (see Figure S1). Following
this step, a PMMA film was spin‑coated onto the substrate and baked at 180 ◦C for 2 min,
and the pattern layout was transferred to the PMMA resist by EBL. Next, TiO2 was filled
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by the conformal ALD process, where the total required film thickness is larger than the
half of the maximumwidth of the nanostructures. At last, the top TiO2 layer with different
thicknesses was etched by the ICP process. Our proposed embedded chiral metasurface is
beneficial for the preservation and the long‑termuse of themetasurface. Figure 1d presents
the scanning electronmicroscope (SEM) images of the typical arrays of the TiO2 chiral half‑
gammadion‑shaped resonators with the ratio fL of 0.7 and periods of 220, 300, and 380 nm.
It looks a little blurry because the PMMA and top TiO2 layer are not conducive. The chiral
metasurface is well‑fabricated except for the slightly rounded corners.
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Perspective view of the embedded chiral metasurface. (b) Top view and (c) side view of a single unit 
Figure 1. Full‑color gamut of color‑rendering performance of the embedded chiral metasurfaces.
(a) Perspective view of the embedded chiral metasurface. (b) Top view and (c) side view of a single
unit cell of the embedded chiral metasurface. (d) The top view SEM images of the embedded chiral
metasurfaces with P of 220 nm, 300 nm, and 380 nm. The cross‑polarization reflectance spectra and
corresponding micrographs with fL of (e) 0.9, (f) 0.8, (g) 0.7, and (h) 0.6 at different p from 220 nm to
380 nm. (i) The corresponding CIE 1931 chromaticity diagram of (e–h).
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Figure 1e–h show the full‑gamut color performance of the chiral metasurface with fL
from 0.9 to 0.6 and p from 220 nm to 380 nm at 40 nm intervals. The micrographs show
that we successfully created full‑color swatches in blue, cyan, yellow, green, orange, and
red. The cross‑polarization reflectance spectra are measured by a microscope and a fiber‑
coupled spectrometer. Here, the measured height of the top TiO2 layer, PMMA layer, and
ITO layer by ellipsometer are, respectively, about 40 nm, 100 nm, and 50 nm. The electric
field polarization of the normally incident light is along the x‑axis (Ein, red arrow in the
oblique view schematic in Figure 1a), and there is a 45◦ angle between Ein and the arm
of the half‑gammadion‑shaped resonator. In addition, an analyzer on the reflection direc‑
tion has an angle α of 90◦ relative to the x‑axis, and the reflectance spectra Eout along the
analyzer direction are recorded. Figure 1e–h present that the resonance peak of the mea‑
sured cross‑polarization reflectance spectrum is significantly red‑shifted with increasing
periods for each fixed fL, indicating the color hue mainly depending on the period. All
resonance peaks have an accompanying small resonance peak to the left of the main res‑
onance peak. For each fixed period, the resonance peak is slightly blue‑shifted with fL
decreasing, and the reflection efficiency decreases. Figure 1i shows the calculated chro‑
maticity coordinates by the reflectance spectra in Figure 1e–h, which cover the full‑color
gamut beyond the sRGB range. The blue, red, cyan, and black square markers are, respec‑
tively, for the nanostructures with an fL of 0.9, 0.8, 0.7, and 0.6.

We also numerically calculate the cross‑polarization reflectance spectra of the chiral
metasurface and the electromagnetic field at the resonant wavelength. The simulation is
performed by the finite‑difference time‑domain (FDTD) solver, EastWave. The simulation
domain is a 3D unit cell consisting of a TiO2 chiral half‑gammadion‑shaped resonator em‑
bedded in PMMA and a top TiO2 layer on quartz coated with an ITO layer. The periodic
boundary conditions are applied to the x‑ and y‑directions and the PML boundary con‑
ditions are applied to the z‑dimension to absorb the outgoing waves. Quartz’s refractive
index was acquired from the software, PMMA’s was set to 1.5, and the refractive indices
of the ITO and TiO2 were measured by an ellipsometer (see details about optical constants
of ITO and TiO2 in Figure S2 of Figure S1 Materials). The incident light is along the x‑axis,
and the normalized cross‑polarization reflectance power was calculated by the integration

of the Poynting vector at the y‑direction: Rcross = 1
2

∫
abs

(→
Py

)
·ds/Ps, where Ps is the

source power. Figure 2a–d show the simulated cross‑polarization reflectance spectra with
an fL from 0.9 to 0.6 and p from 220 nm to 380 nm. All the simulated cross‑polarization
reflectance spectra show prominent sharp resonance peaks in the visible range and have
very minimal background noise, which is essential for obtaining extremely saturated col‑
ors. More importantly, the resonance peak significantly redshifts with the period increas‑
ing and the reflectance efficiency decreases with the fL decreasing. These are consistent
with the experimental results, and the comparison of the simulated and measured results
are detailed in Figure S3 in Supplementary Materials. The disparity in the simulation and
measurement spectra is mainly from the difference in the source incident angle. Unlike
the light source conditions of vertical incidence during the simulation, in the actual mea‑
surement, the light source is of a certain aperture angle, which leads to the broadening
of the resonance peak, and at the same time, the absorption introduced by the fabrication
will broaden the resonant peak. The calculated cross‑polarization reflectance spectra are
converted to chromaticity coordinates in the CIE 1931 chromaticity diagram in Figure 2e,
which demonstrates that the colors can cover the full‑color gamut far beyond that of sRGB.
The blue, red, cyan, and black square markers are, respectively, for the nanostructures
with an fL of 0.9, 0.8, 0.7, and 0.6. The formation of resonance peaks is the hybridized
mode from the embedded nanoresonator and the array effect [19], and we calculated the
field distribution of the resonance peak at the red dot marker in Figure 2b, as shown in
Figure 2f. The chiral metasurface is proposed due to its excellent polarization conversion
properties, which makes it have good spectral properties under cross‑polarization con‑
ditions to achieve high‑saturation structural colors, and at the same time, our proposed
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embedded metasurface is less susceptible to damage and has the advantage that it can be
used for a long time compared to other structural color work.
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Figure 2. The color performance of simulated embedded chiral metasurface with different fL and P.
The cross‑polarization reflectance spectra and corresponding micrographs with fL of (a) 0.9, (b) 0.8,
(c) 0.7, and (d) 0.6 at different p from 220 nm to 380 nm. (e) The corresponding CIE 1931 chromaticity
diagram of (a–d). (f) The square of the absolute of the electric field distributions |E|2 at the xy‑ and
xz‑plane of resonant peaks in (b) marked by a magenta dot.

The proposed embedded chiral metasurfaces have different modes under different
observation conditions, such as those illustrated in Figure 3a,b. Figure 3a has a vibrant
structural color covering the full‑color gamut in Figure 3c under cross‑polarization condi‑
tions with different periods from 220 nm to 400 nm, which we call the color mode. As a
comparison, we observe the corresponding structural color at the angle of 135 degrees be‑
tween the polarizer and the analyzer, which loses its bright color covering the full gamut.
The change in the above conditions (the period and rotation angle of a single structure)
does not change the hue but presents a grayish‑yellow color, which we call the gray mode.
The corresponding chromaticity diagram in Figure 3c also shows that its gamut changes
very little and all the chromaticity coordinates are close to thewhite point, which is difficult
to recognizewith our naked eye. This feature allows us to use it to switch between the color
and gray modes. The fabricated “rainbow” shows bright colors under cross‑polarization
conditions, as in Figure 3d, and dull colors in gray mode, as in Figure 3e. The stitching
traces in Figure 3e are caused by two photographs due to the large area of “rainbow”.

The proposed embedded chiral metasurface is anti‑counterfeit due to its different
color performance under different observation conditions (e.g., no polarization, single‑
polarization, and cross‑polarization). As a proof of concept, we have designed and fab‑
ricated cryptographic nanoprints of a star encrypted with the letter “A” and the Chinese
word “李龙杰” which can only be decoded in the designated cross‑polarization. The pe‑
riod parameters of the star, the Chineseword “李龙杰”, and the letter “A” are, respectively,
540 nm, 580 nm, and 620 nm. The other parameters fL, fW , H1, H2, and H3 are, respec‑
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tively, 0.7, 0.6, 110 nm, 100 nm, and 50 nm. In the absence of polarization, which is the
observation condition in our daily life, we can only observe a pink star, in which we can
barely observe the Chinese word “ 李龙杰” and letter “A” with the naked eye, as shown
in Figure 4a. When the polarization direction is 0 or 90 degrees from the horizontal di‑
rection of the star, we can only see the internal information dimly, as shown in Figure 4b.
When we observe using cross‑polarization, the information will be decoded and we can
visibly observe it with the naked eye, as shown in Figure 4c. The star changes colors and
the embedded information becomes more or less clear as we rotate the sample. The letter
“A” is easier to make out at any rotation angle, while the Chinese word “ 李龙杰” is less
distinct at 0 and 72 degrees, while it is very clear at 36, 108, and 144 degrees. In the case
of cross‑polarization, where the incident polarization and the reflected polarization are
perpendicular to one another, only a few specific incident and reflected polarization tools
are capable of fully decoding the encrypted information recorded in the embedded chiral
metasurface. These phenomena offer platforms for use in cryptography and other secure
applications. Figure 4d presents the SEM images of the full view of the entire star and one
of the corners, where each pixel is made of the proposed embedded chiral metasurface.
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Figure 3. The color performance of fabricated embedded chiral metasurface under different observa‑
tion conditions. (a) Reflectance spectra and micrographs of the embedded chiral metasurface under
cross‑polarization observation conditions (0 degree incidence, 90 degree reflectance). (b) Reflectance
spectra and micrographs of the embedded chiral metasurface under observation conditions of 0 de‑
gree incidence and 135 degree reflectance. (c) The corresponding CIE 1931 chromaticity diagram of
(a,b). Rainbow images in (d) color mode and (e) gray mode.

As an auxiliary validation, we calculated the reflectance spectra of the structures with
periods of 540 nm, 580 nm, and 620 nm under different polarization light conditions, as
shown in Figure 5a–c. The parameters of this design are the same as those of the previous
section, with the exception that fL and H1 are 0.7 and 110 nm, respectively. The polar‑
ization conditions for the three reflectance spectra are the polarized light parallel to the
x‑axis, calculating the single‑polarized reflectance spectrum, as shown in Figure 5a; the
polarized light perpendicular to x‑axis, calculating the single‑polarized reflectance spec‑
trum, as shown in Figure 5b; and the polarized parallel to light x‑axis, calculating the cross‑
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polarized reflectance spectrum, as shown in Figure 5c. The cross‑polarized reflectance
spectra become more noticeable than that of the first two single‑polarization shifts when
the period is changed from 540 nm to 620 nm. In the 1931 CIE chromaticity diagram, it is
obvious that, with the period increasing, the color from the cross‑polarization reflectance
changes (the blue square dot), while the colors from the single‑polarized reflectance spec‑
trum hardly change (red and cyan dots), as shown in Figure 5d. The anti‑counterfeiting
function is aided by such a spectral performance.
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Figure 4. Anti‑counterfeiting feature of the embedded chiral metasurfaces. (a) Micrograph of a
star with encrypted information under no polarization. (b) Micrograph of a star with encrypted
information under single‑polarization (0 degrees or 90 degrees). (c) Micrograph of a star with en‑
crypted information under cross‑polarization with the sample rotated at an angle of 0, 36, 72, 108,
and 144 degrees. (d) The top view SEM images of the entire star and one of the corners consist of
embedded chiral metasurfaces.

Figure 5. The color performance of embedded chiral metasurface with different P from 540 nm to
620 nm. The reflectance spectra under (a) single‑polarization with 0 degrees to the x‑axis, (b) single‑
polarization with 90 degrees with 90 degrees to the x‑axis, (c) cross‑polarization at different p from
540 nm to 620 nm. (d) The corresponding CIE 1931 chromaticity diagram of (a–c).

3. Conclusions
In summary, we have demonstrated the full‑color gamut of the structural colors and

anti‑counterfeit functions of an all‑dielectric chiral metasurface consisting of half‑
gammadion‑shaped resonators embedded in PMMAand a top TiO2 layer on quartz coated
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with an ITO layer. The excellent polarization conversion characteristics of the chiral struc‑
ture are exploited, while the embedded structure is less susceptible to damage and thus
better protected for the long‑term use of the metasurface. Cross‑polarization resonance
peaks cross the visible range with the period p (from 220 nm to 380 nm) and fL (from 0.6
to 0.9), resulting in highly saturated structured colors covering the full‑color gamut con‑
siderably beyond sRGB. Moreover, we experimentally verify that the proposed embedded
chiral metasurface can switch modes under different observation conditions: color mode
and gray mode. Further, we designed and fabricated a star with internal hidden informa‑
tion including the letter “A” and the Chinese word “李龙杰”, achieving complete informa‑
tion decoding under cross‑polarization, which is thus the anti‑counterfeiting effect. This
research has significant implications in micro‑display, nano‑printing, anti‑counterfeiting,
and information encryption.
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