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Abstract: The wafer eccentricity deviation caused by misalignment between the center of the wafer
and rotary table will lead to edge image distortion and quality degradation of the defect signals
during automated inspection. However, wafer end jump and edge topography change will bring
great challenges to the accurate measurement of micrometer deviations. A new wafer eccentricity
deviation measurement method based on line-scanning chromatic confocal sensors (LSCCSs) is
proposed. Firstly, the LSCCS with Z-axis submicron resolution used in the experiment acquires the
3D profile height of the wafer edge as the turntable rotates, and the edge distance is calculated at
each rotation angle. Secondly, a robust Fourier-LAR fitting method is used to fit edge distance serial
to reduce sensitivity to outliers. Finally, the wafer eccentricity deviation that is equal to the wafer
center coordinate can be calculated using the wafer eccentricity deviation model. In the simulated
experiment, the results show that the eccentricity deviation measurement accuracy was insensitivity
to noise and reached the micron level. Additionally, the measurement uncertainty of eccentricity
deviation coordinate (Xw, Yw) was (0.53 µm, 1.4 µm) in the actual data of the 12-inch wafers.

Keywords: wafer eccentricity deviation; automated inspection; chromatic confocal; 3D profiler
measurement; dark-field scatter

1. Introduction

As the degree of integration of semiconductor chips becomes higher and higher,
the wafer size increases continuously and the lithography linewidth decreases gradually.
Cutting-edge technology has pushed the processes below 7 nm, which puts forward higher
requirements for the wafer surface and edge quality [1,2]. Sub-micron defects, such as
scratches, particles, and residues on the wafer surface will seriously affect the subsequent
grinding and coating process quality, resulting in wafer scraps. Automated wafer defect
inspection technology for quality control has been widely studied and applied in the
production lines [3–6].

Several detection approaches for wafer defects such as scanning electron microscopy
(SEM), atomic force microscopy (AFM), and the photo-thermal reflectance technique have
been proposed [7–10]. Although these methods have good sensitivity and resolution,
their long detection times limit their application. Until now, the most common detec-
tion technology is the zoom microscope based on the dark-field scattering technique for
micrometer-level defects. However, as the size of defects decreases to sub-micrometers, the
sensitivity and ability to distinguish the defects are limited and cannot meet the detection
requirements [11].

The spot laser scanning approach-based dark-field scattering technique for defect
detection is faster and more accurate than the traditional imaging method [12], which
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has been widely applied in the famous semiconductor equipment manufacturer KLA’s
products [13]. The wafer defect detection systems based on spot scanning generally use a
single-wavelength laser as the incident light source to collect the scattering or reflection
signals of the laser and process them to obtain a gray image. Then, the gray-scale image
is analyzed to achieve the defect detection target. The method has high sensitivity to the
defects (such as particles, scratches, and angular bumps) and has a good detection ability.
However, the spot scanning detection approach is sensitive to the eccentricity errors of
the wafer inspection system caused by misalignment between the wafer center and the
turntable center. The eccentricity error will lead the wafer surface to produce a blind
area, resulting in serious distortions in the image reconstruction and destruction of image
integrity. Likewise, eccentricity error leads to defocus for the edge defect inspection, which
will decrease the intensity of the defect signal. Hence, the eccentricity deviation error
measurement is extremely important for wafer defect inspection.

There are two kinds of methods for wafer eccentricity detection and correction. One
is the real-time hardware detection of the wafer edge with multiple locators to calculate
the center of the wafer and then correct it. The patent describes three positioning heads to
obtain the coordinates of the wafer edge points [13]. The center of the wafer is calculated
through the processor, and the eccentric movement is carried out. This method requires high
requirements for real-time acquisition and signal synchronization of multiple positioning
heads and is vulnerable to the changes in wafer mark gaps and wafer defect pits.

The other is the acquisition of the image and the calibration of the calibration plate
to calculate the deviation of the characteristic pattern to estimate the eccentricity. Addi-
tionally, the linear calibration object with specific characteristics is used for scanning in a
previous work [12]. The image characteristics are reconstructed and the linear distortion is
compensated using the calibration model. This method is complex and greatly affected by
the accuracy of the calibration object. This method is not suitable for wafer edge inspection
because of its curved appearance and difficult calibration. Meng et al. proposed a novel
circle center location method for large-scale wafers [14]. The method measured the system
angle in the horizontal plane. Through the analysis of multiple error sources and the
compensation of system angle, a new hierarchical Bayesian model was utilized to estimate
the circle center and radius and the average absolute deviation of the wafer circle parameter
was within 0.12 mm.

3D measurement technology has been widely studied and successfully applied in
many fields [15–18]. The line-scanning chromatic confocal sensor (LSCCS) is a device
used to determine the surface distance of the measured object using light radiation [19].
The complex light dispersion emitted by the transmitter of the sensor is converted into a
continuous wavelength spectrum. The wavelength is accurately mapped to the measured
object by color coding. By measuring the wavelength of the highest intensity of the reflected
light, the corresponding relationship between the sensor distance and the wavelength is
established to obtain the position information of the measured object. The spectral confocal
line sensor has the limitation of a fixed working distance range, and the depth of field is also
small. However, the measurement accuracy of the Z-axis direction can reach the submicron
level, which has high measurement accuracy and strong environmental adaptability. It is
commonly used for 3D surface profile analysis and 3D size measurements [20–23], and can
also be used for the measurement of the edge distance of the wafer.

To address the above issues, a wafer eccentricity deviation error measurement method
based on line-scaling chromatic confocal sensors is proposed in this paper. The measure-
ment system which can quickly acquire 3D profile information of the wafer edge and
calculate the edge distance is described in Section 3.2. A robust Fourier-LAR fitting method
is used to fit edge distance to reduce sensitivity to outliers. Then, the wafer eccentricity
deviation which is equal to the wafer center coordinate, can be calculated by the circle
fitting model.
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2. Principle of Wafer Defect Inspection and Error Measurement
2.1. Spot Scanning Wafer Surface Defect Inspection and Wafer Eccentricity Deviation Error

The common detection approaches for detecting small defects are based on dark-field
scattering technology that has high sensitivity. Figure 1 presents the layout of a spot
scanning inspection system for wafer surface defects. The system directs a laser beam
of radiation on the wafer surface, and then collects light reflected and scattered from the
surface to identify defects such as particles, scratches, etc.
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Figure 1. Layout of the spot scanning inspection system for wafer surface defects.

The illumination subsystem is configured to direct the layer beam of light to the wafer
surface at an oblique angle of incidence. The collection subsystem includes two collection
channels, which are arranged at different angles for collecting light scattered and light
reflected from the specimen. A high sensitivity detector is essential to convert light collected
into an electrical signal and increase the signal-to-noise ratio. Multiple types of detectors
(such as phototubes and photomultiplier tube PMTs, etc.) can be selected.

A position subsystem that includes a two-dimensional translation stage and a rotation
stage was designed for scanning the entire wafer surface. The position system is controlled
by a computer and then the scattered and reflected signals are detected using a data
acquisition card in real time. According to the obtained data points and scanning spiral
trace, an entire wafer surface defect image can be finally constructed for further analysis.

For the wafer surface defect inspection, the ideal spot scanning process should ensure
that the original scanning point position coincides with the rotation center of the spin
mechanism. However, there is often a relative deviation between the two positions as
shown in Figure 2, which will result in eccentric errors of the system in the motion process.
Eccentric errors can cause serious distortion of the reconstructed wafer surface image and
make the reconstructed image lose the ability to describe defect information, which has
been illustrated in a previous work [10].

The heights of different positions on the detection focal plane are different, which
causes the image distortion of the edge surface. Eccentric errors also have a great impact on
the detection signal. Hence, it is essential to measure and correct eccentricity errors before
wafer defect inspection.
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Figure 2. Schematic diagram of alignment of wafer center and turntable center.

2.2. Line-Scanning Chromatic Confocal Sensor

Chromatic confocal technology is a non-contact measurement method with ultra-high
accuracy and stability, which is widely used in the field of precision measurement. The
chromatic confocal sensor adopts a trigonometric structure and white light is used.

The chromatic confocal 3D profilometer uses a strong white light source that includes
all visible light bands to pass through a light source slit and a linear light source is formed in
the X-axis direction. Then, a complex optics transmitter radiation processing unit disperses
the linear light source in the Y-axis direction, and the beams with different wavelengths
focus on different heights of the measured normal line, thus forming a confocal plane in the
Z-axis direction. Only the light focused on the normal line of the measured object (such as
the red light in Figure 3) is reflected into the light receiver radiation processing unit, and can
be collected by the signal acquisition detector through the receiving slit. The left transmitter
and right receiver of the optical radiation processing unit have symmetric optical structures.
The optical component 2 has the same optical structure as optical component 1 and is
symmetric with respect to the focal plane. Meanwhile, the receiver slit 2 forms a conjugate
relationship with the light source slit 1. The defocused light (such as the green and blue
light in the image) that is not focused on the normal line of the measured object is blocked
outside the receiver slit and cannot be captured by the signal acquisition system. Finally,
the spectral data were decoded by image processing to obtain the surface depth information
of the measured object. The dispersion spectra on the confocal plane are shown in Figure 4.
The direction along the profiler line is the X-axis, and the vertical direction that presents the
depth size is the Z-axis. Line-scanning chromatic confocal measurements employ a line slit
as a spatial filter along the perpendicular (Y) direction of the slit and the Y-axis direction is
the direction of the measurement motion.
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Figure 4. Diagram of confocal plane spectral distribution.

The wavelength and light intensity information of each data point on the profiler X
is captured by the signal acquisition system to form an intensity contour that is highly
related to the surface of the measured object. The measured scope (such as profiler length
X, measurement depth Z) of the entire system is related to the optical system structure
design and spectral camera CMOS size. Then, using the obtained CMOS image, the surface
morphology characteristics of the measured object can be obtained. When the measured
object moves along the Y-axis, a 2D gray image will be generated from the scanned surface
step by step, and then the 3D shape of the scanning area is reconstructed.

2.3. Wafer Eccentricity Deviation Measurement System Setup

The wafer eccentricity deviation measurement system as shown in Figure 5 includes a
line-scanning chromatic confocal 3D profilometer, turntable, control module, and process-
ing computer. The turntable is used to place wafer samples and the control module drives
the turntable motor to rotate to measure all around the wafer at a fixed speed. A computer
is used for data acquisition and analysis.
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Figure 5. The proposed wafer edge distance measurement system.

The chromatic confocal 3D profilometer is installed at the side of turntable at suitable
work distance and chromatic confocal profiler line is positively perpendicular to the wafer
surface. The distance from the edge of the sensor wafer is collected to form the contour
information. The measured wafers have a 300 mm diameter and 0.75 mm thickness in the
experiments.
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As shown in Figure 6, the contour length Lx of the chromatic confocal 3D profilometer
used in the experiment is greater than 11 mm, the lateral resolution is better than 5 µm,
the depth measurement range Lz is 3 mm, and the resolution of the Z-axis is 0.5 µm. The
working distance Ld is 20.8 mm. The axial and radial end jump of the turntable is 5 µm,
repeated positioning accuracy is ±4 arcsec, and absolute positioning accuracy is ±8 arcsec.
The turntable controller is set to output a pulse-triggered signal at each rotation angle θ
and the 3D profilometer captures data with information on the wafer edge profile and
distance. The signal processing unit uses the data to calculate the eccentricity deviation
and the center of the wafer. The deviation results can be fed back to the wafer displacement
actuator for eccentric correction. In the experiment, due to the lack of an automatic slide
system, the wafer eccentricity deviation is then fine-tuned using a micro translation slide
to make the two centers as close as possible to that the coordinates of the wafer center are
approximately zero.
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3. Results
3.1. Signal Processing and Edge Distance Acquisition

In the measurement experiment, the turntable rotates clockwise with nr = 20,000 steps
per second (nt = 1,573,600 steps per turn of the turntable). The line-scanning chromatic
confocal sensor adopts the internal trigger acquisition mode, the acquisition frequency
f = 50 Hz, and 5000 lines of data points are acquired. Assuming that the turntable is
working at a uniform speed with LSCCS, the rotation angle corresponding to each group
data is:

θi = 2π ∗ nr

nt
∗ i

f
, i ∈ (1, 5000) (1)

The intensity signal Ii and height signal Hi can be captured using LSCCS and form two
vectors which each consist of 1724 points as shown in Figure 7. The number i is the index of
the data acquisition. Due to the mark groove and excessive eccentricity of the wafer, some
invalid wafer edge points beyond the measurement range of the LSCCS may be stored
during rotation. If all profile points of intensity signal Ii are below the setting threshold,
the corresponding height signal Hi will be eliminated to avoid invalid calculations. In our
experiments, the intensity thresh value Ithreshold is set to 50 according to practical experience.
On the contrary, the valid signal section [x1, x2] of the wafer edge shown in Figure 6 was
found and the corresponding wafer edge height points Hi,j(j ∈ [x1, x2]) were retained. The
top height Hi,val of the wafer edge is the maximum of signal height max

{
Hi,j
}

. The height
value Hi,j of the LSCCS is relative to the focal plan where Hi,j = 0 The edge distance Di from
the LSCCS to the top wafer edge is equal to the LSCCS working distance Ld = 20.8 mm
minus the top height Hi,j. Then, the valid edge distance serial Dval is formed.
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To further reduce the influence of the fluctuation of edge distance serial Dval on
eccentricity measurements, the mapping between the rotation angle and the edge distance
is obtained by fitting the edge distance with the corresponding wafer edge position. The
selection of the regression model has a direct impact on the measurement accuracy and
reduces the compensation difficulty of subsequent system. Among many models, the
polynomial function has high universality, and the fitting result of polynomial functions
also has good robustness. It is one of the most stable description equations. The polynomial
function formula is as follows:

y = anxn + an−1xn−1 + . . . + a2x2 + a1x + a0 (2)

where an represents coefficients of nth order term in the polynomial. The Fourier model
that consists of a sum of sine and cosine functions is also a good choice. The trigonometric
Fourier series form can be represented by the following equation:

y = a0 +
n

∑
i=1

aicos(iwx) + bisin(iwx) (3)

where a0 represents a constant term in the data and is associated with the i = 0 cosine term,
w is the fundamental frequency of the signal, and n(1 ≤ n ≤ 8) is the number of terms in
the series. In order to estimate the coefficients of the model, the least-squares method is
always used through minimizing the summed square of the residuals. The summed square
of the residuals is given by:

S =
n

∑
i=1

(
yi − y′i

)2 (4)

It is usually assumed that the fitting errors follow a normal distribution and that
outliers are rare, but outliers do occur. To minimize the influence of outliers, the least
absolute residuals (LAR) method can be used to fit the curve. The LAR method is a robust
method for finding a curve that minimizes the absolute difference of the residuals, rather
than the squared differences. Therefore, extreme values have less influence on the fit.

In the experiment, ten groups of wafer edge point clouds were captured by the
measurement system proposed above. Each group of point clouds first filtered out invalid
data points and calculated the edge distance Di and recorded the corresponding rotation
angle θi. The relationship between the rotation angle θi and acquisition serial number is
shown in Formula (1). The edge distance Di is shown in Figure 8.
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a good surface.

Wafer surface quality will bring fluctuations to edge distance measurements. Usually,
the wafers with a good-quality surface have continuous variations in edge surface distances
with few singular values. When there are notches, pits, and scratches on the edge, the
measured distance from the edge to the sensor will become longer. When there are bulges,
particles, and residues on the surface, the measured edge distance will be shorter.

3.2. Wafer Eccentricity Deviation Calculation

A two-dimensional Cartesian coordinate system for measuring wafer eccentricity
based on the center of rotation axis O(0, 0) was established and is shown in Figure 9. The
coordinate point O′(Xw, Yw) is the wafer center which ideally coincides with the center of
rotation axis. The deviation between the rotation axis center and the wafer center is equal
to the eccentricity deviation of the wafer. Therefore, the eccentricity deviation calculation
process is equal to determining the coordinate position of wafer center.
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Figure 9. Schematic diagram of wafer eccentric coordinate system.

The wafer rotates uniformly with the turntable, and the LSCCS obtains the edge
distance Dn, n ∈ {1, . . . , N} from the edge point (such as position P0 or P′) of the wafer at
each fixed angle ∆θ. The distance R0 from the turntable axis to the LSCCS is fixed. As the
turntable rotates θ degree at a constant speed, the wafer edge point P(x, y) moves to P′ and
the relationship as follows:

R0 = Dn + ρOP′ (5)
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where ρOP′ is the length of OP′ as well as OP, and

ρOP′ =
√

x2 + y2 (6)

According to the coordinate relationship of each position point in the coordinate
system,

(x− Xw)
2 + (y−Yw)

2 = R2
w (7)

tan θ = y/x (8)

In the actual experiment, the wafer radius is always a constant with good consistency.
The distance R0 between the turntable center and LSCCS may be inaccurate, which is mod-
eled as an undetermined variable. By introducing Formulas (7) and (8) into Formula (5),
the following equation can be obtained:

F(X, Φ) = Φ(1)− X(2)− (Φ(2) cos(X(1)) + Φ(3) sin(X(1)))
−sqrt

(
R2

w − (Φ(2) sin X(1)−Φ(3) cos X(1))2
) (9)

where are X = [θn, Dn] and Φ = [R0, Xw, Yw]. The question of circle fitting and determining
the wafer center coordinate becomes determining the optimal parameters Φ̂ for minimizing
the squares of F(X, Φ) using the input array X. Then, the wafer center coordinate (Xw, Yw)
and the distance R0 from the LSCCS to the turntable center are calculated. The acquisition
of this value is used as a reference for sensor and turntable spacing calibration.

3.3. Simulation Analysis for Dealing with Outliers of Edge Distance

Due to the influence of the hypotenuse of the signal wafer edge, such as pits, particle
defects, and mark slots, there are some distance points deviating from the normal distance,
which has a great influence on the calculation of the wafer eccentricity point. Because
it is difficult to collect data and obtain its corresponding accurate truth value, the wafer
edge distance data with fluctuations was simulated to verify the reliability of the proposed
approach. Then, the proposed algorithm was used to calculate eccentricity deviation, and
the results were compared with the corresponding truth value of the simulation data.

The distance R0 from the LSCCS to the center of turntable and the wafer radius
are always fixed. Due to the precision of wafer production processes, the wafer radius
Rw is generally consistent, which was set to 150 mm in the simulation experiment. The
distance R0 can easily be affected by assembly errors and will produce a certain deviation,
which is used as the parameter to be estimated in the simulation. Three parameters of
sampling frequency f (number of lines collected per circle) and eccentric position coordinate
(Xw, Yw) were changed. A total of 11,907 different groups of wafer edge distances were
generated according to Formula (7) and the corresponding eccentric coordinates (Xw, Yw)
were recorded. In order to simulate the influence of edge distance fluctuations, fluctuations
were added discontinuously to the simulated edge distance Dn as shown in Figure 10, and
then the signal eccentricity was calculated. In the process of real eccentricity deviation
measurement, the fluctuation range was from −0.5 mm to 0.5 mm except for wafer mark
grooves, so the same range was implemented in the simulation experiment.
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Figure 10. Simulated edge distance data with outliers.

The wafer eccentricity deviation generally results in smooth periodic changes in
the edge distance measured by the LSCCS, but the edge marking gap and edge defects
may cause large fluctuations in the distance. Therefore, more accurate edge distance is
obtained by fitting to remove the disturbances. In our experiment, different fitting models
(polynomial and Fourier function) were used and compared to the simulated dataset. To
obtain the coefficient estimates of the fitting model, the linear least-squares method (LLS)
was usually used through minimizing the summed square of the residuals. However, the
main disadvantage of least-squares fitting is its sensitivity to outliers that results in a large
influence on the fit for squaring the residuals that magnifies the effects of these extreme data
points. To minimize the influence of outliers, the robust least-squares regression method
called least absolute residuals (LAR) was chosen.

As shown in Figure 11, the polynomial and Fourier models using the LAR method (red
line) to fit the data points had a better fitting effect than those using the LLS method (green
line). Using the best fitting coefficients, the more accurate edge distances were predicted
and used for calculating the wafer eccentricity deviation.
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Following Equation (7), the wafer center coordinate (Xw, Yw) and the distance R0
from the LSCCS to the turntable center was calculated using the edge distance Dn and
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corresponding angle θn. The root-mean-square error (RMSE) of the system was used to
evaluate performance, and the calculation formula is as follows:

RMSE =
1
m

m

∑
i=1

(yi − ŷi)
2 (10)

A total of 11,907 groups of simulated edge distance datapoints with outliers were
used for the testing accuracy of the wafer eccentricity deviation measurements. The error
between the estimated value and the actual value of each parameter is shown in the
following table.

The degrees of the polynomial model and Fourier model were eight. According to the
results shown in Table 1, the RMSE of the LAR fitting method was smaller than the LLS
fitting method for both the Fourier and polynomial methods. Except that the RMSE value
of Rw with the polynomial-LAR method was only 0.05 µm smaller than the Fourier-LAR
method, the other parameters were smaller using the Fourier method. Overall, the robust
Fourier-LAR method reached a smaller RMSE than the other methods and was chosen as
the method for processing the measurement data.

Table 1. The RMSE of measurement parameters.

Fitting Method Rw (µm) Xw (µm) Yw (µm)

Fourier-LLS 8.03 8.03 7.81
Fourier-LAR 0.62 0.73 0.572

Polynomial-LLS 18.36 6.84 6.7
Polynomial-LAR 0.57 0.78 0.69

3.4. Uncertainty Estimation of Measurement System

In order to verify the robustness and stability of the measurement system against
the influence of wafer edge changes, poor quality edge wafers were used to perform the
experiments. The Fourier fitting result with the LAR method of the actual edge distance
was obtained and is shown in Figure 12.
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The robust Fourier-LAR method was adapted to fit the actual collected data and the
resulting regression values of the edge distance were used for calculating the measurement
parameters. Due to the absence of the true value, the uncertainty was used to evaluate the
measurement system. The uncertainty U is usually equal to the standard deviation and is
defined as follows:

U(si) =

√
∑n

i=1(si − s)2

(n− 1)
(11)
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where s is the arithmetic mean of si. Additionally, n is the time of repeated measurements.
The wafer coordinate (Xw, Yw) is the eccentricity deviation error mentioned in Section 3.2.

As shown in Figure 13, the uncertainty of Rw as 1.2 µm and the uncertainty of Yw was
1.4 µm. Because of the good X-axis accuracy of the LSCCS, an uncertainty of 0.53 µm was
obtained.
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4. Discussion

Due to the difficulty in acquiring actual wafer eccentricity coordinates, the accuracy
of the proposed eccentricity deviation calculation method was verified only in simulated
data and the repeatability was calculated using the actual data. The experimental results
show that the measurement accuracy of the proposed method reached the micron level
and the uncertainty of (Xw, Yw) was (0.53 µm, 1.4 µm). The application scope of this paper
was mainly the precise measurement of wafers, which is critical for defect inspection and
topography measurements of wafer surfaces and edges.

In addition to wafer eccentricity errors, wafer tilt errors have a great influence on defect
detection precision. The influence of tilt on the measurement of eccentricity error was not
considered in this paper. The line-scaling chromatic confocal sensor has a depth resolution
of 0.5 µm and an X-axis resolution of 5 µm which can be used for tile error measurements.
In the future, not only the influence of tilt on the measurement of eccentricity error, but also
accurate tilt error measurements will be further studied.

5. Conclusions

The wafer eccentricity deviation will lead to edge image distortion and quality degra-
dation of the defect signals during automated inspection. The wafer end jump and edge
topography changes will bring great challenges to the accurate measurement of micrometer-
level deviations. A new wafer eccentricity deviation measurement method based on a
line-scanning chromatic confocal 3D profilometer was proposed in this paper. The mea-
surement system includes a line-scanning chromatic confocal 3D profilometer, turntable,
control module, and processing computer. The turntable controller is set to output a pulse-
triggered signal at each rotation angle θ and the 3D profilometer captures information about
the wafer edge profile. Then, the signal processing unit first filters out the invalid points,
and then obtains the valid distance between the LSCCS to the wafer edge. Finally, the edge
distance serial is obtained as turntable rotates. A robust Fourier-LAR fitting method is used
to fit the edge distance serial and reduce sensitivity to outliers. The more accurate edge
distances are predicted and used for calculating the wafer eccentricity deviation. The wafer
eccentricity deviation model was built as described above. The simulated experimental
results show that the eccentricity deviation measurement accuracy reached the micron level
and the uncertainty was better than 1.4 µm in the actual data.
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