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Abstract: Presently, the segmented mirror is the mainstream development direction of large-aperture
telescopes. The key problem affecting the performance of segmented mirror telescopes concerns
the co-phase of the segments. The segments’ co-phase includes the fine phasing stage with high
detection accuracy requirements and a small measurable range, and the coarse phasing stage with
relatively high detection accuracy requirements and a large measurable range. For interferometry,
the required accuracy of the transition from the coarse phasing stage to the fine phasing stage is
half of the measured wavelength (~300 nm). In this study, a piston measure method based on the
wavefront data of the interference measurement results of multiple different wavelengths is proposed.
The simulation results show that the method can achieve a measurement accuracy of more than
300 nm in a large range of 1 mm. The experimental results show that the method can achieve a
more-than-300-µm measurable range and approximately 1.5 µm detection accuracy under laboratory
conditions; this method has advantages in terms of the measured range and speed and is suitable for
the coarse phasing stage.

Keywords: segmented mirrors; large aperture telescope; interferometry; active optics; wave-front
sensing

1. Introduction

The performance of a telescope system is heavily reliant upon the effective aperture
of the primary mirror. The universe observations and the detection of remote sensing
require optical systems with better performance [1]; therefore, the requirement for large-
aperture telescopes is increasing. The traditional fabrication technology is hardly capable
of fabricating a monolithic mirror larger than the 10 m class; to achieve better performance,
the most common approach is the segmented mirror plan, wherein the monolithic mirror
is replaced by several smaller mirrors. These small mirrors can be combined into a large
mirror, avoiding the issues related to fabrication technology. Compared with monolithic
mirrors, the equivalent aperture of segmented mirrors can be even greater than 30 m,
achieving brilliant performance that monolithic mirrors cannot currently obtain. However,
the diffraction effect of large segmented mirrors is more complicated than for monolithic
mirrors [2,3].

The first large-aperture telescope with a segmented primary mirror in the world was
the Keck telescope, built in 1991. The Keck has a 10 m effective aperture combined with
36 small segments, and each segment is 1.8 m large. The success and the great performance
of the Keck confirmed the potential of segmented designs. Various countries in the world
started to design and build segmented telescopes, such as the Hobby–Eberly Telescope
(HET), the South Africa Large Telescope (SALT), Gran Telescopio Canarias (GTC), the
European Extremely Large Telescope (E-ELT), and the Thirty Meter Telescope (TMT) [4–6].
As the cooperator of the TMT, China is also attaching great importance to segmented
telescope technology; the first segmented mirror design in China was LAMOST. Since the
James Webb Space Telescope (JWST) started its operation, the importance of segmented
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mirror technology has been further enhanced, and one of the key problems related to
segmented mirrors, the co-phasing of the segments, has become a research priority.

The co-phasing of segmented mirrors adjusts the positions of all of the segments,
ensuring that the segments are on the same equiphase surface. The most researched and
most sensitive co-phase error is the piston error, which is the position deviation in the
direction of the optical axis. Since the appearance of the Keck telescope, the co-phasing
problem has been continually researched for decades. In recent years, many valuable
co-phasing methods have been researched. Li Yang et al. proposed a piston-measuring
method based on hyperspectral images [7], whereby the measuring precision can reach a
few micrometers, and the measurement range can reach about 130 µm. Li Xiao yang et al.
proposed a modified Shack–Hartmann (S–H) sensor method [8]; this research resolved
some of the location error problems related to the S–H sensor. Seichi Sato et al. proposed
a cross-fringe piston sensor method, achieving a measurement precision of about 15 nm
when the piston is smaller than 5 µm [9]. Yang Lili et al. proposed a piston-measuring
method based on vortex phase-shifting interferometry, and the measurement precision can
reach 4.04 nm [10] when the piston is within one wavelength. Zhao weirui et al. proposed
a method to measure the piston error by using multiple neural network coordination of
feature-enhanced images [11]; the precision can be expected to achieve a sub-nanometer
class, and the measurable range is about 30 µm. However, these pieces of recent research
have been concerned with the measurement precision of the piston but not with achieving
a large measurable range, with the biggest range amongst them being 130 µm and the
smallest being even smaller than 1 µm. For the large segmented mirror, such as the JWST,
the measurable range of the piston was designed to be more than 300 µm for the coarse
phasing stage, and the precision was designed to be better than λ/20 in the fine phasing
stage [12].

Optical interferometry is a measurement method with ultra-high accuracy, which is
often used for the measurement of mirror surface shapes and micro-displacement. Its basic
principle is to use the intensity distribution of interference fringes to calculate the deviation
from the ideal equiphase surface.

However, the problem of piston error in interferometry detection is that the size of the
piston often exceeds the detection range of general interferometry. For this problem, the
commonly used method is to use dual-wavelength synthesis to expand the measurement
range. The principles of the synthetic wavelength method have been described in previous
studies [13]; in this study, we introduced a phase-shifting interference method to measure
the piston error and used a variable synthetic wavelength strategy to expand the measurable
range to more than 1 mm. However, although the synthetic wavelength method can
greatly expand the detection range, it still has a disadvantage, which is that the synthetic
wavelength method also expands the influence of the measurement error while expanding
the range, resulting in low detection accuracy in a large range. Although the measurement
error can be gradually reduced by reducing the synthetic wavelength, this method is still
relatively complex in the coarse phasing processes and it takes a long time to measure
and adjust.

This study aims to provide a simple system and efficient co-phasing method for
the coarse phasing process when the piston is relatively large; for this, a piston error
measurement method based on multiwavelength interferometry has been proposed, which
we called the multiwavelength wavefront linear fit (MWLF) method. Different from the
synthetic wavelength method, this method uses wavefront data at different wavelengths in
a continued waveband. Through the comprehensive calculation of multiple sets of data,
the influence of the calculation error caused by the wavefront detection error is reduced
while maintaining the advantages of interferometry in the measurement range. MWLF is
suitable for the rapid convergence experienced in the coarse phasing stage, wherein large
piston errors occur.
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2. Methodology
2.1. Principle of the MWLF

Assume that there is a piston error between two segments and the size of the piston is
P; then, use a wavelength of λi to achieve the interference fringe and calculate the wavefront.
The principle of the phase-shifting interference method to measure the wavefront data
was introduced in our previous study [13]. Due to periodic wrapping, the original optical
path difference between the two sub-mirrors was limited in

[
− 1

2 λi,+ 1
2 λi

]
; assuming that

the system is exposed to air, the refractive index n = 1, and the result of the optical path
difference caused by the piston has the size of P, under single-wavelength interference, the
solution wavefront is as follows:

OPDi = 2P−
[

2P
λi

]
· λi (1)

where OPD is the optical path difference, which is defined as the difference between two
segments. P is the piston error, and [] is the round function since the wavefront data will
be wrapped.

If different wavelengths in one continuous waveband are taken for measurement and
calculation for a fixed piston, the results shown in Figure 1 can be obtained. The ordinate
in the figure is the optical path difference, OPD, between the different segments, and the
abscissa is the measured wavelength.

As can be seen in Figure 1, for an equally sized piston error tested under different
wavelengths, different optical path differences were calculated, and the size of the OPD
was a linear function within a small waveband. For Equation (1), the existence of some
wavebands made the rounding function equal to a constant, and for the linear area shown
in Figure 1, its slope k can be expressed as follows:

k =

[
2P
λi

]
(2)

Equation (2) indicates that the slope of the linear area can calculate the piston error.
Then, the piston information can be calculated by the measured data of the OPD at different
wavelengths. The calculated piston errors can be expressed as follows. The average value
of all wavelengths was used to define the calculated piston errors:

Pc =
n

∑
i=1

λikc + OPDi
2n

(3)

where Pc is the calculated piston error, and kc is the calculated slope, which is calculated by
the least-squares minimization. n is the number of data, and λi is the measured wavelength
in the same liner region.

The OPD in Equation (3) can be calculated by the wavefront data as follows:

OPDi =

 ∑
mask1

Wi

n1
−

∑
mask2

Wi

n2

 · λi
2π

(4)

where Wi is the wavefront data of λi, and can be measured by the phase-shifting interference
method, mask1 and mask2 are the data masks for the two segments, respectively, and n1
and n2 are the data numbers in the masks.
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Figure 1. OPD in difference wavelength (150 µm in simulation).

2.2. Data Correction of MWLF

The linear area shown in Figure 1 tends to be narrow when the piston error is relatively
large. In this case, the calculation data of different wavelengths may contain multi-linear
areas; therefore, the OPD result will be wrapped.

In this case, there are two solutions for measuring the large piston error. The first
is to reduce the sampling interval between the wavelengths so that all of the data can
still be in the same linear area. However, this plan needs to predict the approximate size
of the existing piston in advance, and it requires a tunable laser light source with great
performance so that the sampling interval can be small enough. In the second solution, the
measurement data between different linear areas need to be compensated and corrected so
that they can still be approximately linear to obtain a correct solution result. This is similar
to the unwrapping of the wrapped wavefront. The difference is that the unwrapping
problem is under the same wavelength, and the period of all of the data is consistent, while
for multiwavelength data correction, each piece of wavelength data has different periods,
and each piece of data should be compensated for a corresponding period. After the data
correction, Figure 1 can be shown as Figure 2; it needs to be noted that the OPD is not
strictly linear in Figure 2 since the slope in different linear areas is not the same, but in
most cases it can be assumed to be linear. As shown in Equation (1), the slope difference
between adjacent linear areas is 1; for example, for a 100 µm piston, and 663 nm to 669 nm
waveband, the slope is 302 to 299 for the four linear areas, respectively. When the piston is
50 µm, there are only two different linear areas in this waveband, and their slope is 121 and
120, respectively. For a smaller piston, the linear area will exist only once in this waveband.
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Figure 2. OPD in difference wavelength after correction (150 µm).

3. Simulation
3.1. Simulation of MWLF Method and Synthetic Wavelength Method

In the case of wavefront interferometry, the final wavefront measurement results will
be affected by many factors, such as environmental noise, system noise, vibration, temper-
ature change, and airflow change. These errors will lead to instability in the interference
fringe and will change with time. As shown in Figure 3, the change in the interference
fringes is essentially a change in the optical path difference caused by the change in the
refractive index and travel. Although the data will often be multiple-sampled and aver-
aged during interference measurements to reduce the influence of errors, the influence on
high-precision co-phase measurements is still obvious.
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Figure 3. Wavefront measure errors’ influence (a) before correction and (b) after correction.

When wavefront measurement errors exist, Equation (1) changes as follows, where εi
is the error term.

OPDi = 2(P− εi)−
[

2(P− εi)

λi

]
· λi (5)
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The numerical simulation assumes a relatively large error of |εi| < 100 nm with a
random distribution. The sizes of the piston errors are assumed to be 10 µm, 100 µm, and
300 µm, respectively. The traditional dual-wavelength interference method and the MWLF
method are both simulated using the same data and with the same distribution of εi. The
simulation results are shown in Figure 4. The blue histogram on the left is the simulation
results of the MWLF method, the red histogram on the right is the simulation results of
the dual-wavelength interference method, the ordinate is the residual piston between the
measured value and the input value, and the abscissa is the Nth simulation result.
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For the MWLF method, with reference to the experimental equipment, 61 sets of wave-
front data with a 0.1 nm sample interval in the waveband of 663 nm to 669 nm were used for
the simulation. For the dual-wavelength interference method, the selected test wavelengths
were 663 nm/669 nm (the measurement range was about 18 µm), 663 nm/664 nm (the
measurement range was about 110 µm), and 663 nm/663.3 nm (the measurement range
was about 360 µm). The measurement range was slightly larger than the selected piston
to achieve an ideal measurement accuracy. For the two methods, each input piston was
simulated ten times.

For a 10 µm piston input, as shown in Figure 4a, the simulation’s piston residual RMS
of the MWLF method is 1.07 µm, and the simulation’s piston residual RMS of the synthetic
wavelength method is 3.07 µm. For a 100 µm piston input, as shown in Figure 4b, the
simulation’s piston residual RMS of the MWLF method is 1.74 µm, and the simulation
piston’s residual RMS of the synthetic wavelength method is 19.1 µm. For a 300 µm
piston input, as shown in Figure 4c, the simulation’s piston residual RMS of the MWLF
method is 1.46 µm, and the simulation’s piston residual RMS of the synthetic wavelength
method is 60.3 µm. The simulation’s results indicate that for the synthetic wavelength
method, the influence of the measurement error will be proportionally amplified with an
increased measurement range. In the previous study [13], we proposed a multiwavelength
phase-shifting interferometry method based on multiple groups of different synthetic
wavelengths. By flexibly switching the size of the synthetic wavelength, the measured
piston can be gradually reduced, and finally, convergence is achieved, that is, from a coarse
phasing process to a fine phasing process. However, this method is a complicated process,
requiring multiple adjustments to select the appropriate synthetic wavelength for repeated
measurements, and the convergence speed is slow. However, for the MWLF method,
the measurement process is relatively simple and rapid since MWLF can maintain better
measurement precision for a large piston.

3.2. Error Analysis and Discussion

For the MWLF method, the simulation results show that the measurements of a large
piston do not cause a significant decrease in measurement precision, which is basically
maintained at 1.5 µm, and the measurement range of the MWLF method only depends
on the sample interval of the wavelength and the wavefront measure error of εi. For
the simulation conditions of Figure 4 (0.1 nm for the wavelength sample interval and
|εi| < 100 nm for the wavefront error), the maximum measurable range can reach about
500 µm. In the ideal case of no wavefront error, it can reach about 1000 µm. Therefore, it can
be considered that the MWLF method is a more suitable piston measurement method in the
coarse phase process of segmented mirrors, helping the segments to reduce piston errors
rapidly. Normally, it is required that the piston errors are less than half of the measured
wavelength to make sure that the coarse phasing process can be considered as successfully
entering the fine phasing process. Using the commonly used He-Ne laser as an example, the
coarse phase detection accuracy is required to be within 316.4 nm. For the MWLF method,
from the simulation results, when the wavelength sample interval is increased to 0.01 nm
or the wavefront error is reduced to |εi| < 30 nm, the detection accuracy can be better
than 300 nm RMS. The influence of the wavelength sample interval and the wavefront
measurement error on the range and detection accuracy of a piston error are shown in
Table 1, as follows.

Table 1. Measurement range and precision in deference factors.

Wavelength Sample
Interval Wavefront Error |εi| Capture Range Measurement

Precision

0.1 nm <100 nm ~500 µm ~1 µm
0.01 nm <100 nm ~3400 µm ~300 nm
0.1 nm <30 nm ~800 µm ~300 nm
0.3 nm <50 nm ~200 µm ~1 µm
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4. Experiment
4.1. Experimental Setup

The experimental system used in this study was a spherical 400 mm aperture seg-
mented mirror system that combined three segments. However, since the co-phase detec-
tion between the two segments and between the multiple segments are not different in
theory, for the sake of decreasing the system complexity, only two segments were used for
the theoretical verification test.

As shown in Figure 5, the experimental system consisted of an interferometer, a test
tower, and two segmented mirrors. The interferometer was a multiwavelength Fizeau
interferometer jointly developed by the Institute of Optoelectronic Technology, Chinese
Academy of Sciences, and the Shanghai Institute of Technical Physics, Chinese Academy of
Sciences. Through the tunable laser light source, the measured wavelength can vary from
650 nm to 680 nm, and the wavelength interval can reach 0.1 nm. The size of the test tower
was 2.5 m × 0.9 m × 0.9 m. The measured segments formed a spherical mirror, the effective
aperture of each segment was about 150 mm, the material of the mirror was microcrystalline
glass, the radius of curvature was 1500 mm, and the mirror’s surface accuracy was better
than 1/50λ RMS. The segment adjustment mechanism was the 6-DOF parallel platform
produced by PI Company, and the model number was H-850. This adjustment mechanism
had a displacement accuracy of 100 nm. The whole system was located on a high-precision
optical isolation platform.
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4.2. Measurement Process

To clear the measurement process of the experiment, the detailed introduction of each
step is as follows:
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1. Install all experimental equipment and adjust the segmented mirrors to allow the
interference fringes of each segment to be obtained by the CCD camera.

2. Adjust the segmented mirrors to being nearly co-phased, as shown in Figure 6a; then,
it needs to measure the residual piston as the piston value of the original case.

3. For measuring the piston, first, measure the wavefront data of different wavelengths
using the phase-shifting interference method, as shown in Figure 6b.

4. Then, calculate the OPD between two segments using Equation (4) for each wave-
length.

5. Use the least squares method to calculate the slope and then calculate the piston using
Equation (3)

6. Introduce an additional piston error using the 6-DOF parallel platform, and then
repeat Steps 3 to 5; measure the piston again.
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4.3. Small Piston Detection

The 6-DOF parallel platform was used to input the piston error and adjust the seg-
ments; the measured wavelength was between 663 nm and 667.2 nm, and the wavelength
sample interval was 0.3 nm. For each wavelength measurement, the interference fringe
would be sampled 20 times and averaged to calculate the wavefront data; then, the wave-
front data would be measured five times, and the final used data are the average values of
the wavefront data. The segments should be first adjusted to nearly the co-phase, and then
the existing piston error should be measured as the original value; this stage is called the
original case in this study. For the small piston test, the piston error inputs were 10 µm and
20 µm compared with the original case, respectively. The result is shown in Figure 7.

Figure 7a shows the original case in which the piston error calculated was about
14.620 µm. Figure 7b shows the original case with a 10 µm piston input in which the piston
error calculated was about 26.073 µm. Figure 7c shows the original case with a 20 µm
piston input in which the piston error calculated was about 34.121 µm. When one combines
the original case and the other case, the deviation in the other case and the original case is
about 11.453 µm and 19.501 µm, respectively; compared with the input value, the residual
is 1.453 µm and −0.499 µm, respectively. The result indicates that under the conditions of
our experiment, the small piston error (about dozens of micrometers) could be measured
with a precision of about 1~2 µm, which is in accordance with the simulation results.
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4.4. Large Piston Detection

As mentioned in Section 3.2, the measurement range in the MWLF method depends
on two factors: one is the size of the wavefront measurement error since this will damage
the linearity of each linear area, and the boundary between each linear area will not be
able to be distinguished; then, the data between the different linear areas will not be
correctly corrected, causing the final measurement result to deviate from the true value.
Another factor is the sample interval of the wavelength. Commonly, the larger the piston
error, the larger the corresponding slope and the narrower the linear area. When the
sample interval of the wavelength cannot ensure that there is enough valid data in each
linear area, the information of the data point and the existing piston error will lose the
corresponding relationship, resulting in piston errors that cannot be calculated. For each
experimental system, based on the changes in these two factors, the maximum measurable
range will also change, and the influencing factors affecting the wavefront measurement
errors are relatively complex, changing with time, place, and the measurement environment.
Therefore, the measurable range of the MWLF method, generally, can only be roughly
determined through testing and is difficult to calculate theoretically.

For the large piston test in this study, in order to expand the measurable range, the
wavelength sample interval was set to 0.1 nm, and the input piston errors were 100 µm and
300 µm, respectively. The results of the experiment can be seen in Figure 7. Figure 8a shows
the original case, with the piston error calculated to be about −6.156 µm. Figure 8b shows
the original case with a −100 µm piston input, and the piston error was calculated to be
about−105.727 µm. Figure 8c shows the original case with a−300 µm piston input, and the
piston error was calculated to be about −302.954 µm. Combining the original case and the
other case, the deviation in the other case and the original case was about –100.429 µm and
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−296.438 µm, respectively, and compared with the input value, the residual was−0.429 µm
and 3.562 µm, respectively.
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5. Discussion

The measurement results in Sections 4.2 and 4.3 show that, in a large measurable
range, the accuracy of the MWLF method will not change significantly, which is different
from the interferometry method based on the principles of synthetic wavelengths. The
following is a brief analysis of the factors affecting the measurement accuracy of the MWLF
method. The factors that affect the measurement accuracy can be roughly divided into two
parts: wavefront detection accuracy and the sample interval of the measured wavelength.

The first is wavefront detection accuracy. Low wavefront detection accuracy will cause
the wavefront test results of each segment to fluctuate, making the optical path differences
between the segments fluctuate with each measurement. The reasons for the fluctuation
in the optical path difference include the fluctuation in the actual optical path difference
in the measurement (distance change caused by vibration, etc., refractive index change
caused by airflow disturbances, and temperature and humidity changes), and the error
in the interferometric measurement of the wavefront (wavefront detection error caused
by interference fringe contrast, CCD noise, etc., and the solution error in the algorithm of
unwrapping, Zernike coefficient fitting, etc.). Among them, the fluctuation in the actual
optical path difference is generally a time-dependent error item. If all of the measured
wavelengths or several measured wavelengths can be sampled at the same time, the
influence can be greatly reduced, thus optimizing piston measurement accuracy, leading to
a piston measurement precision greater than 300 nm.
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Second is the effect of the wavelength sample interval. The difference in the wave-
length sample interval essentially affects the number of effective data in each individual
linear area. Usually, the minimum sample interval of the wavelength is selected with the
goal of containing at least three effective data points in each linear area. However, the
larger the amount of data involved in the calculation, the more stable the test results and
the higher the test accuracy; however, sampling too much data will also increase the time
cost of both the measurement and calculation, having high requirements in terms of the
laser light source.

For the results shown in Figure 8, it can be seen that, for a 300 µm piston input,
compared with the other small input piston, the calculated error is relatively increased. In
fact, when the existing piston error is close to the measurable range limit of the system, the
piston measurement error will have an expanding trend. This is due to the fact that when
the piston size is closer to the range limit, the effective data in each linear region will tend to
be less, and then the influence of the wavefront measurement error on the linearity will be
more obvious; thus the precision of the piston measurement will decrease. According to the
simulation analysis and experimental experience, when the existing piston error is within
80% of the maximum measurable range, the detection error will not change significantly.

Generally, for the coarse phase process, the goal is to make the residual piston error
less than 300 nm ( 1

2 λ) so that it can enter the range of a single-wavelength detection and
achieve detection accuracy at the nanometer level in the fine phase process, leading to all
of the segment’s piston errors to be within λ

20 to complete the co-phasing. Although, in
the simulation and experiment sections of this study, the piston detection error is larger
than 1 µm, considering that when the wavelength sample interval is more precise and
a measurement environment with a smaller wavefront detection error is provided, this
accuracy can be optimized to a satisfactory value; thus, the MWLF method can indepen-
dently complete the coarse co-phase process of the segmented mirrors compared with
the synthetic wavelength method, since MWLF will not expand the piston measurement
error with an increased range. Therefore, it can be considered to be a more suitable coarse
co-phase detection method.

6. Conclusions

In this study, a coarse co-phasing method based on the relationship between the optical
path difference in different wavelengths between the segments has been proposed, which
is called the multiwavelength wavefront linear fit method.

The simulation results indicate that the MWLF method can maintain relatively high
detection accuracy in a large dynamic range under the conditions of a large measurement
error when the wavefront detection error ε has a random distribution of |εi| < 100 nm and
the wavelength sample interval is 0.1 nm, the measurement range can reach about 500 µm,
and the measuring accuracy can reach approximately 1 µm RMS. When the wavefront
detection error is under the conditions of |εi| < 30 nm, the wavelength sample interval is
0.1 nm or |εi| < 100 nm, the wavelength sample interval is 0.01 nm, and the measurement
accuracy of the piston errors can be better than 300 nm RMS, which satisfies the needs
of the coarse phasing progress; thus, the segments can successfully converge to the fine
phasing process via the MWLF method.

In the experimental results, for the 10 µm,20 µm, and 100 µm input piston errors, the
piston measurement accuracy of the MWLF method is about 1.5 µm, when the measured
piston is far from the measurable range, and for the input of 300 µm, the precision is
about 4 µm, since this piston is near the range limit. According to the simulation results,
it is reasonable to assume that if the laser source has a higher wavelength resolution or
the influence of the wavefront measurement error is reduced, the detection accuracy for
piston errors using the MWLF method can be optimized to within 300 nm, which can meet
the requirements of the transition from coarse phasing to fine phasing. Meanwhile, the
MWLF method has advantages in terms of detection range and speed and can accelerate
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the convergence rate of the coarse phasing process. Therefore, it can be considered that this
method has significant application potential in the field of co-phasing segmented mirrors.
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