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Abstract: Coupled to endoscopic techniques, Mueller polarimetry has been proven to be promising 

for early detection of certain diseases which affect biological tissues of inner organs. However, the 

depolarization power which is one of the most informative polarimetric characteristics cannot be 

directly measured through a fiber endoscope. For evaluating this quantity, we propose a method 

based on the Lu–Chipman decomposition of the averaged sum of the Mueller matrices of neighbor-

ing pixels. The principle is well supported by numerical simulations. Depolarization powers of 

Spectralon and of different areas of a biological sample are also successfully evaluated. 
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1. Introduction 

Over the past twenty years, polarization imaging techniques have been demonstrated 

to be very attractive for non-destructive characterization of materials, in particular biolog-

ical tissues [1–4]. Compared to intensity-based measurements, optical polarimetry pro-

vides additional information on the structure of tissues at the submicronic scale, especially 

fibrillar type I collagen [5,6]. 

Among the existing techniques, Mueller polarimetry has attracted a special interest 

in recent years, as it is the only one capable of measuring all the polarimetric effects expe-

rienced by a probing beam when it interacts with the tissue (sample): linear and/or circu-

lar retardance, linear and/or circular diattenuation, and depolarization [7]. From these 

quantities, information on the structural anisotropy (birefringence) and on the disorgani-

zation of the fibers arrangement in type I collagen can be drawn. Thereby, since the fibril-

lar structure of type I collagen can be affected due to the development of pathologies such 

as fibrosis or certain cancers, Mueller polarimetric imaging has often been proposed for 

early diagnosis of such diseases and for discriminating between healthy and pathological 

regions [8–13]. 

The principle of Mueller polarimetry has already been extensively presented in the 

literature [7,14]. In short, it consists of addressing four successive predefined polarization 

states from a Polarization State Generator (PSG) on the sample, and in analyzing each 

transmitted state via four successive configurations of a Polarization States Analyser 

(PSA). By means of relevant linear combinations of the 16 intensities measured after the 

PSA, it makes it possible to build a 4 × 4 matrix (so-called Mueller matrix M) which relates 

any incident polarization state (represented by its 4 elements Stokes vector S) to the cor-

responding transmitted polarization state (represented by its 4 elements Stokes vector S′), 

by means of the relation: 
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' .S M S=  (1) 

The Mueller matrix M represents the polarimetric response of the sample. To identify 

and quantify the specific polarimetric effects generated in this sample, M is generally de-

composed into a product of matrices of pure polarimetric effects (so-called “basic” matri-

ces in the following), under the assumption that they come one after the other in the sam-

ple. However, in practice, these effects are entangled in a complicated manner, generating 

intense debate in the scientific community concerning the most relevant order of the basic 

matrices in the product [15–18]. Nevertheless, the Lu–Chipman decomposition, which 

states that the probe beam successively undergoes diattenuation, then retardance, and fi-

nally depolarization, is the most widely agreed [19]. Therefore, the Mueller matrix M is 

decomposed as follows: 

. .
R D

M M M M


=  (2) 

where MD, MR and MΔ are, respectively, the Mueller matrices of a diattenuator, a retarder 

and a depolarizer. 

In view of clinical trials for early diagnosis of diseases on deep organs, inner Mueller 

polarimetric imaging is of major interest. For such application, the process must be cou-

pled to a flexible fiber endoscope. In this case, one difficult challenge arises, which is to 

get rid of the uncontrollable and time-dependent changes of the polarization states of light 

when propagating in the fiber, both in the forward and the backward path. Only a few 

techniques have been reported in the literature to overcome this problem. Some of them 

provide only part of the requested polarimetric parameters [20–22]. Others can only 

achieve a single pixel measurement [23] or require a bulky and very sophisticated optical 

head including remote PSG and PSA, not suitable for application in usual endoscopy [24].  

As a solution, we reported in a previous paper a method for measuring the full 

Mueller matrix of the sample through a single-mode fiber, so-called “two-wavelength dif-

ferential method (TWDM)” [25]. In brief, the method was based on the simultaneous 

measurements of the Mueller matrix M1 of the fiber in double path at a wavelength λ1, and 

that of the assembly “fiber + sample” (matrix M2) at a very close wavelength λ2. For ena-

bling these two measurements, a dichroic mirror highly reflective at λ1 and transparent at 

λ2 was set at the distal end of the fiber. Thus, two probe beams at λ1 and λ2, respectively, 

simultaneously launched in the fiber, were separated by the dichroic filter, the former be-

ing directly reflected in the fiber and the latter exiting towards the sample. Part of this 

beam reflected by the sample was then recoupled into the fiber. The beams at λ1 and λ2 

back guided by the fiber and transmitted through the PSA, were separated by a spectral 

filter, each wavelength being directed towards one intensity detector. Matrices M1 and M2 

were deduced from the intensities measured for 16 combinations of the assembly 

PSG/PSA, at λ1 and λ2, respectively. Finally, as explained in detail in [25], the Mueller 

matrix of the sample was calculated from the matrices M1 and M2. In the implementation 

of the method reported in [25], we used two CW lasers emitting at λ1 = 634 nm and λ2 = 

640 nm, respectively. 

Let us note that light coupling in the fiber endoscope, in both directions, would be 

much easier with a large-core high numerical aperture multimode fiber. However, polar-

ization changes along the propagation in a multimode fiber drastically depend on each 

guided mode. As these changes are not controllable nor measurable individually, multi-

mode propagation cannot be tolerated in the fiber endoscope. For that reason, the TWDM 

can be implemented only with a single-mode fiber endoscope. 

In order to perform polarimetric images by means of the TWDM through such a sin-

gle-mode fiber endoscope, a scanning device compatible with the technique must be im-

plemented. In the first demonstration reported in [25], we used a bulk scanner founded 

on x/y galvanometric mirrors. Later, to complete another stage towards an operational 
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endoscopic polarimetric imaging device, we developed a TWDM compatible endomicro-

scope, including a minimally invasive cylindrical microprobe (2.9 mm in diameter and 30 

mm in length) at the end of a 2 m endoscopic fiber [26]. In this miniaturized device, for 

compactness and efficient filtering purposes, the dichroic filter was replaced by a Fiber 

Bragg Grating (FBG) photowritten at the output end of the fiber. On the other hand, the 

scanning operation of the sample was operated by means of a dual-axis resonant mechanical 

excitation of the extremity of the fiber which was attached in a piezoelectric tube (PZT) set 

inside the microprobe, as depicted in Figure 1. The beam exiting the fiber was focused on 

the sample by a micro-optic imaging system placed at the extremity of the probe. This device 

was able to acquire 4 × 4 Mueller polarimetric images with a frame rate of 1 image/2 s. 

 

Figure 1. Schematic representation of an endomicroscope designed for achieving remote in situ 

Mueller polarimetric imaging by means of the two-wavelength differential method [26]. 

The TWDM has already been shown to allow effective and reliable measurements of 

linear and circular retardance and linear and circular diattenuation through a fiber endo-

scope [25,26]. However, the determination of another polarimetric quantity which is the 

spatial depolarization power of the sample is also of great interest for characterizing fi-

brillar tissues, as it is related to the degree of disorganization of the collagen fibers and 

fibrils [27]. In turn, it can reflect the existence of a possible pathology and even the stage 

of this pathology. For example, the measurement of this parameter on the cervix can help 

for the evaluation of the risk of prematurity [28]. It can also help for the early diagnosis of 

specific cancerous tumors or fibrosis on different external or internal organs [29]. In par-

ticular, depolarization measurements can help distinguishing between benign neurofi-

broma and cancerous cell carcinoma or melanoma [1,30]. Other recent works have shown 

promising applications of such measurements for characterizing prostate adenomia [31] 

and colon tumors [32,33]. Classically, this depolarization power is calculated from the ma-

trix MΔ extracted from the Lu–Chipman decomposition of M (see Equation (2)), as re-

minded in more details in Section 2. However, at this point, we must note a profound 

difference between measures performed by means of a classical free-space Mueller imag-

ing system and those achieved by scanning the sample with a focused beam from a single-

mode fiber endoscope. Indeed, when using a free-space Mueller imaging system, the en-

tire imaged area of the sample is illuminated at the same time by a large probe beam. 

Thus, in the case of spatial depolarizing sample, the light detected by each pixel of the 

camera may include possible scattered incoherent contributions which had entered the 

sample at different points of this illuminated area. For that reason, non-zero depolariza-

tion can be measured by any pixel of the camera. On the contrary, when a single-mode 

fiber endoscope is used, the Gaussian beam exiting the fiber at the distal end is focused 

on a very small area of the sample at a given time. Typically, the mode field diameter of 

the probe beam in our fiber endoscope (diameter of the core ~3.5 µm) is ~4 µm and, as 

the magnification of the optical system is ∼1, it produces an enlightened disk of only ∼4 
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µm in diameter on the sample. As a result, only light entered in this area and backscattered 

from the same area can be collected by the fiber, with no incoherent contribution. Further-

more, the collected light is coupled in the fundamental LP01 mode of the fiber which is 

linearly polarized all over its cross section. Thus, the backward beam which is analyzed 

by the PSA is totally polarized. In other words, at any time, no depolarization can be di-

rectly measured through a single-mode fiber endoscope. 

In this paper, we propose a method for overcoming the major issue of measuring the 

depolarization ability of the sample when a single-mode fiber is used for endoscopic 

Mueller polarimetry. This method is based on the approach reported by Gil et al. in [34], 

where the depolarization induced by an area of the sample can be considered as equiva-

lent to that resulting from the parallel combination of contributions of several non-depo-

larizing sub-areas. In the next section, we depict this method in more detail, and we show 

results of some related numerical simulations. In Section 3, we first describe the process 

used for implementing the method in our TWDM-based endoscopic Mueller polarimeter. 

Then, we report experimental measurements of depolarization power performed on dif-

ferent manufactured and biological samples and we discuss these results.  

2. Method and Numerical Simulations 

The polarization state of any optical beam can be described by means of its Stokes 

vector S: 

0

1

2

3

S

S
S

S

S

=

 
 
 
 
 
 

 (3) 

where S0, S1, S2, and S3 denote the four Stokes vector parameters [35]. The degree of polar-

ization (DOP) of this beam represents the fraction of the electromagnetic wave which is 

fully polarized. It is given by [35]: 

2 2 2

1 2 3

0

S S S
DOP

S

+ +
=  (4) 

Then, DOP = 1 for a fully polarized beam, DOP = 0 for a totally depolarized beam and 

0 < DOP < 1 for a partially depolarized beam. 

On the other hand, the Mueller matrix MΔ of a pure partially depolarizing sample 

(partial depolarizer) is written in the form: 

1 0 0 0

0 0 0
   , , 1

0 0 0

0 0 0

a
M a b c

b

c


= 

 
 
 
 
 
 

 (5) 

where (1 − |𝑎|) , (1 − |𝑏|),  and (1 − |𝑐|)  are the depolarization factors, describing the 

depolarizing ability of the depolarizer, which, respectively, affect the Stokes parameters 

S1, S2, and S3 of the incident beam. More precisely, MΔ is the Mueller matrix of a partial 

depolarizer which reduces the DOP of an incident horizontal or vertical linearly polarized 

light by a factor |𝑎|, the DOP of an incident 45° or 135° linearly polarized light by a factor 
|𝑏|, and the DOP of an incident circularly polarized light by a factor |𝑐| [36]. 

After interaction with a pure partial depolarizer (Mueller matrix MΔ), the Stokes vec-

tor S of an incident beam (Equation (3)) is changed in a new Stokes vector S′: 
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The DOP of the transmitted beam (noted DOP′) is then, according to Equation (4): 

2 2 2

1 2 3

0

2 2 2

'
a S b S c S

DOP
S

+ +
=  (7) 

When ,a b c= =  the depolarizer is uniform and it reduces the DOP of any incident 

beam by a factor 𝑎 [36]. If 1,a b c= = =  the sample is a non-depolarizing element and 

DOP′ = DOP. At the opposite, if 0,a b c= = =  the sample is an ideal depolarizer and DOP′ 

= 0 whatever the degree of polarization of the incident beam. 

Different metrics can be used to quantify the depolarizing ability of a medium, such 

as the Cloud entropy [37], the depolarization index [34], or the differential depolarization 

index [38]. Among these metrics, we select the depolarization power Δ, which is of partic-

ular interest as it indicates the averaged depolarization capability of a depolarizer [19]. It 

is defined as the mean value of the depolarization factors, and thus it is expressed as: 

1
3

a b c+ +
 = −  (8) 

We can notice that both Δ, and DOP′ compared to DOP, reflect the ability of the sam-

ple to depolarize light. However, there is no direct relationship between Δ and DOP’, ex-

cept in the case where the incident beam is fully polarized and the sample is a uniform 

depolarizer. In this case, 1 a = −  and 'DOP a= , i.e., ' 1DOP = − . 

In the pioneer work published by H.C. Van de Hulst in 1957, it was shown that a 

depolarizing optical system is optically equivalent to a system composed of a parallel 

combination of several non-depolarizing optical systems [39]. Therefore, since the Mueller 

matrix of a parallel combination of optical systems is the sum of the Mueller matrices of 

the systems which form the parallel combination, a depolarizing Mueller matrix can be 

written as the sum of various non-depolarizing Mueller matrices [34]. In other words, the 

depolarization power of a given area A of a sample can be evaluated using the coefficients 

𝑎, 𝑏, and 𝑐 of the matrix MΔ extracted from the decomposition of the Mueller matrix M  

given by: 

1

1 n

i

i

M M
n =

=   (9) 

where Mi is the Mueller matrix of an elementary non-depolarizing area Ai of A, A being 

the juxtaposition of the n areas Ai(i = 1, n). 

Let us note that a similar approach was used to investigate the depth-resolved depo-

larization properties of human retina [40,41] or skin tissue [30] by means of polarization 

sensitive optical coherent tomography (PS-OCT). In these studies, the objective was to de-

termine the degree of polarization of the transmitted beam DOP′. However, OCT being a 

coherent method, one issue in PS-OCT is similar to the one encountered with our endo-

scopic technique, i.e., light detected from one single speckle grain is always fully polar-

ized. Thus, in PS-OCT, DOP′ cannot be directly measured. To overcome this infeasibility, 

the Stokes vectors of adjacent speckle grains (pixels) were first measured and, considering 

that these adjacent speckle grains are uncorrelated, an average Stokes vector was deter-

mined over a given area. Each parameter 0S , 
1S , 2S  and 3S  of this vector was 
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the mean value of the corresponding parameters of the individual Stokes vectors meas-

ured in this area. Then, a quantity called degree of polarization uniformity (DOPU) was 

defined as: 

0

2 2 2

1 2 3
DOPU

S

S S S+ +
=  (10) 

Assuming that the probe beam is fully polarized, DOPU reflects the random variation 

of the polarization states of adjacent speckle grains and it is closely related to the desired 

DOP′. In other words, it might be regarded as a spatially-averaged degree of polarization 

allowing a quantitative evaluation of the magnitude of the depolarization induced by the 

sample. 

Inspired by the above works, we propose in this paper to extract the depolarization 

power of a sample from numerical processing of the Mueller matrices of neighboring pix-

els measured by means of our TWDM-based endoscopic Mueller polarimeter. The process 

is the following: 

- The Mueller matrix of each pixel of an image of the sample (“elementary matrix”) is 

first measured and registered following the procedure previously reported in [25]. 

As already stated, since the optical fiber is single-mode, each elementary matrix is a 

non-depolarizing matrix;  

- Then, for each pixel P, the average Mueller matrix over adjacent pixels is calculated, 

these pixels being those within a floating square window around P, as depicted in 

Figure 2. The size of this floating window, chosen beforehand, is N = (2n + 1)2 pixels, 

n being the number of considered rings of pixels around P; 

- Each average Mueller matrix is decomposed by means of the Lu–Chipman method, 

in order to extract the associated depolarization matrix MΔ whose form is given in 

Equation (5); 

- The depolarization power Δ of each pixel is finally calculated by means of Equation 

(8), and a pixelated image of Δ(x,y) is plotted. 

 

Figure 2. Pixels (green) in which Mueller matrices are averaged in order to calculate the depolariza-

tion power associated to the central pixel P. (a) considering 1 ring of pixels surrounding P (9 aver-

aged Mueller matrices); (b) considering 2 rings of pixels surrounding P (25 averaged Mueller matri-

ces). 

Prior to experimental measurements and processing, we numerically studied the 

evolution of the depolarization power according to the diversity of the averaged Mueller 

matrices. Since biological tissues mainly present phase retardation in addition to depolar-

ization, we first considered only elementary Mueller matrices of linear retarders. For bet-

ter precision, we involved a large number of retarders (N = 1000), the retardance and the 

eigenaxes orientation of each being randomly drawn in a continuous uniform distribu-

tion, within a predefined range  

P

(a) (b)

P
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Ψδ set around a central value δ0 for the retardance, and within a predefined range Ψθ 

set around θ0 = 0° regarding the eigenaxes orientation. For each retarder, we computed 

the corresponding elementary Mueller matrix and then we calculated the average Mueller 

matrix M . Afterwards, M  was decomposed by the Lu–Chipman method in order to 

extract the pure depolarization matrix from which the depolarization power Δ was finally 

calculated. In Figure 3, we plot Δ as a function of Ψδ and Ψθ, for 3 different values of the 

central retardance δ0. In Table 1, we report Δ for some particular values of δ0, Ψδ, and Ψθ.  

 

Figure 3. Depolarization power Δ of the average Mueller matrix of 1000 elementary Mueller matri-

ces of neighboring pure retarders, calculated as a function of the variation range of the retardance 

Ψδ and of the variation range of the orientation of the eigenaxes Ψθ of these retarders. Three central 

values δ0 of the retardance are considered: (a) δ0 = 45°; (b) δ0 = 90°; (c) δ0 = 135°. 

Table 1. Depolarization power for particular values of Ψδ, δ0, and Ψθ. 

Ψθ (°) Ψδ (°)   δ0 = 45° δ0 = 90° δ0 = 135° 

0 0   0 0 0 

0 90   0.07 0.07 0.07 

0 180  Δ→ 0.24 0.24 0.24 

90 90   0.17 0.42 0.63 

180 0   0.20 0.67 0.67 

180 90   0.24 0.67 0.67 

As expected, these calculations show that: 

- the depolarization power Δ is zero when all the elementary matrices remain the same 

(Ψδ = 0, Ψθ = 0) whatever the retardance δ0; 

- Δ increases with both Ψδ and Ψθ. In other words, Δ is higher as the diversity of the 

elementary matrices is large; 
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- if the orientation of the eigenaxes remains the same for all the retarders (i.e., Ψθ = 0), 

the increase in Δ as a function of Ψδ remains the same whatever the central retardance 

δ0; 

- for given ranges of variations Ψδ and Ψθ, the depolarization power Δ increases with 

δ0. 

We can notice that in this case where only pure retarders are involved, Δ cannot ex-

ceed a maximum value Δmax = 2/3~0.67, as demonstrated in the Appendix A. For reaching 

higher Δ, the variety of the averaged elementary matrices must be increased by involving 

additional polarimetric effects, namely circular retardance and linear and circular diatten-

uations. Circular retardance φ induced by the sample between incident right and left cir-

cular polarizations results in a rotation of the transmitted polarization state by an angle of 

−φ/2. Linear diattenuation DL is given by [19]: 

LH LV

L

LH LV

T T
D

T T

−
=

+
 (11) 

where TLH and TLV are, respectively, the transmission coefficients of linear polarizations 

oriented, respectively, along the orthogonal diattenuation eigenaxes H and V of the sam-

ple. There is no linear diattenuation when TLH = TLV (DL = 0) whereas the sample is a perfect 

linear diattenuator, i.e., an ideal polarizer, when TLV = 0 or TLH = 0 (DL = 1). Similarly, circu-

lar diattenuation Dc is given by: 

CR CL

C

CR CL

T T
D

T T

−
=

+
 (12) 

where TCR and TCL are the transmission coefficients of incident right and left circular po-

larizations, respectively. 

Circular diattenuation being most of the time negligible in biological samples, we set 

Dc = 0 in the following. Then, to simulate pixels exhibiting both linear and circular retard-

ance and linear diattenuation, we numerically built new elementary matrices M, each be-

ing the product of three basic matrices, namely, that of a pure linear retarder MLR, that of 

a pure rotator MCR and that of a pure linear diattenuator MLD, as follows: 

. .LR CR LDM M M M=  (13) 

This order of the matrices in the product is in accordance with that established in 

reference papers such as [17] and [42]. For each of these elementary matrices, the linear 

diattenuation DL was randomly drawn in a predefined range ΨDL =[0; DLmax] and the ori-

entation of the eigenaxes of diattenuation was set identical to that of the eigenaxes of re-

tardance, as it is generally the case in actual samples. Similarly, for each pixel, the circular 

retardance φ was drawn in a predefined range Ψφ = [0; φmax]. At this point, we can note 

that the number of parameters involved in the simulations has been significantly in-

creased. To help the reader, we list these parameters and we remind their physical signi-

fication in Table 2. 

In Figure 4, we plot the depolarization power Δ as a function of Ψδ and Ψθ, for 4 

different pairs of ΨDL and Ψφ, the central retardance being δ0 = 45° in all cases. Figure 4b,c 

highlight that the extent of the range of diattenuation has a relatively weak influence on 

the maximum attainable value of Δ (called Δmax in the following), obtained when Ψδ = 180° 

and Ψθ = 180°. For instance, Δmax only increases from 0.55 to 0.6 when ΨDL increases from 

0.1 to 0.99, with Ψφ = 90°. On the contrary, by comparing Figure 4a,b,d, we can see that 

Δmax significantly increases as Ψφ is increased. For example, ΨDL being set to 0.1 in all cases, 

Δmax reaches 0.37, 0.60 and 0.85 when Ψφ is set to 10°, 90° and 180°, respectively. These 

remarks are supported by the data of Table 3, where Δmax is reported as a function of ΨDL 

and Ψφ. We can notice that, as predictable, Δmax can now exceed the previous maximum 

value of 0.67. For instance, for δ0 = 45° and for the largest variety of polarimetric effects in 
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the considered pixels (i.e., Ψδ = 180°, Ψθ = 180°, ΨDL = 1, and Ψφ = 180°), Δmax = 0.88. Δmax can 

be even more increased, considering higher δ0. Thus, with δ0 = 90° and the same Ψδ, Ψθ, 

ΨDL and Ψφ as previously, the calculated Δmax exceeds 0.99, very close to the maximum 

possible value of 1. However, because circular retardance is likely to be very low in actual 

biological samples, values of Δ lower than 0.67 should be expected in experimental meas-

urements.  

Table 2. Parameters involved in the calculation of the depolarization power when linear retardance, 

circular retardance, and linear diattenuation occur in each pixel. 

δ Retardance of a given pixel 

δ0 Central retardance of the N considered pixels  

Ψδ 
Extend of the range of the retardances around δ0 for the N consid-

ered pixels 

θ Orientation of the eigen axis of a given pixel 

θ0 
Central orientation of the eigen axes of the N considered pixels 

(θ0 = 0) 

Ψθ 

 

DL 

Extend of the range of the orientations of the eigen axes around 

θ0 for the N considered pixels 

Linear diattenuation of a given pixel 

ΨDL 

Extend of the range of the linear diattenuations, from 0 to the 

maximum value DLmax, for the N considered pixels (i.e., ΨDL = 

DLmax) 

φ Circular retardance of a given pixel 

Ψφ 
Extend of the range of the circular retardances, from 0 to the max-

imum value φmax, for the N considered pixels (i.e., Ψφ = φmax) 

Δ 
Depolarization power calculated for the N considered pixels, for 

given δ0, Ψδ,  

 Ψθ, ΨDL and Ψφ 

Δmax 
Maximum attainable depolarization power calculated for the N 

considered pixels, for given δ0, ΨDL and Ψφ (Ψδ = 180°, Ψθ = 180°) 

Table 3. Maximum attainable depolarization power Δmax calculated as a function of the variation 

range of the linear diattenuation ΨDL and of the variation range of the circular retardance Ψφ, in 1000 

neighboring pixels (δ0 = 45°). 

ΨDL →  0.  0.1  0.5  0.8  0.99 

Ψφ (°)  
 

          

0  0.37  0.37  0.38  0.40  0.43 

60  0.45  0.46  0.47  0.50  0.51 

120  0.65  0.65  0.66  0.69  0.71 

180  0.84  0.85  0.85  0.86  0.88 



Photonics 2023, 10, 387 10 of 21 
 

 

 

Figure 4. Depolarization power Δ of the average Mueller matrix of 1000 elementary Mueller matri-

ces, each of them being the product of 3 matrices: the matrix of a pure linear retarder, the matrix of 

a pure circular retarder, and the matrix of a pure linear diattenuator. Δ is calculated as a function of 

the variation range of the retardance Ψδ and of the variation range of the orientation of the eigenaxes 

Ψθ of the linear retarders. The central value of the linear retardance is δ0 = 45°. The diattenuation of 

each pixel is randomly drawn within the range [0; ΨDL] and the circular retardation of each pixel is 

randomly drawn within the range [0; Ψφ]. (a) ΨDL = 0.1 and Ψφ = 10°; (b) ΨDL = 0.1 and Ψφ = 90°; (c) 

ΨDL = 0.99 and Ψφ = 90°; (d) ΨDL = 0.1 and Ψφ = 180°. 

From the above simulations, we can infer that meaningful depolarization power can 

be measured with the proposed method of averaging Mueller matrices of neighboring 

pixels, since we have shown that Δ increases as the variety of the involved Mueller matri-

ces is increased.  

At this point, it should be noted that, by nature, the calculated Δ are subject to some 

uncertainty. Indeed, as the polarimetric characteristics of each elementary matrix (δ, θ, DL 

and φ) are randomly drawn within a range of some extent (respectively, Ψδ, Ψθ, ΨDL and 

Ψφ), the calculated Δ may change when reiterating a given simulation with a new draw. 

Thus, we achieved some additional simulations in order to evaluate this uncertainty. For 

this, we repeated M times (M > 100) a given calculation of Δ with M successive draws of 

the polarimetric characteristics of the elementary matrices and we determined the uncer-

tainty on Δ as being equal to 0.5(Δmax − Δmin), Δmax, and Δmin being, respectively, the highest 

and the lowest values of Δ obtained over the M repeated simulations. We first fixed the 

central retardance δ0 = 0° and we calculated the maximum uncertainty on Δ versus the 

number N of averaged matrices, which was obtained in the most unfavorable case, 

namely, when we considered the largest possible ranges of the retardance (Ψδ = 180°), of 

the orientation of the eigenaxes (Ψθ = 180°), of the diattenuation (ΨDL = 1), and of the circu-

lar retardance (Ψφ = 180°). Then, we repeated these calculations with δ0 progressively in-

creased from 0° to 180°, by steps of 10°. Finally, we plot in Figure 5 the highest maximum 

uncertainty on Δ versus N, noted ± ξ(N), obtained over the different values of δ0. This 
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curve shows that, whatever δ0, the maximum uncertainty on Δ decreases as N is increased, 

i.e., Δ converges towards a limit value. With N = 1000, as used in the above simulations, ξ 

was found to be lower than 0.02. In view of experimental measurements, we considered a 

floating window of 5 rings of pixels around the central one (N = 121). In this case, ξ was 

found to remain lower than 0.07. This value is still acceptable, especially if we remember 

that it is the highest attainable uncertainty obtained in the most unfavorable case with N 

= 121, which means that actual ξ will be likely to be significantly lower in practical appli-

cations. Obviously, ξ could be reduced with higher N, but at the expense of lower resolu-

tion of the image. It is the reason why, in further experimental imaging of Δ, we will 

choose to not exceed this value of N = 121. 

We must also notice that, in experimental measurements, the value of Δ obtained 

with our method may be somewhat different from that obtained with a classical wide-

field Mueller polarimeter in free space because the experimental conditions are signifi-

cantly different, as depicted in Section 1. In the next section, we report and discuss exper-

imental measurements of Δ achieved using our TWDM-based endoscopic Mueller polar-

imeter and by means of the method of averaging Mueller matrices of neighboring pixels 

for different depolarizing samples. 

 

Figure 5. Highest uncertainty on the depolarization power Δ calculated versus the number of aver-

aged elementary matrices, obtained using the largest possible ranges of variations of the polarimet-

ric characteristics of these matrices, and whatever the central value of the retardance. 

3. Material and Experimental Results 

3.1. Depolarization Measurement on a Manufactured Sample 

In order to experimentally evaluate the method of averaging Mueller matrices of 

neighboring pixels, a reference depolarizing sample should be necessary. However, such 

a sample exhibiting a predetermined depolarization power does not actually exist. One 

reason is that the measured depolarization power strongly depends on the experimental 

conditions of the measurement, as already pointed out in this paper. Another even more 

important reason is that, in any material, it is extremely difficult to control or manage the 

magnitude of the diffusion phenomena which are at the origin of spatial depolarization. 

An exception is Spectralon, produced by Labsphere, North Sutton, NH, USA, which is a 

highly diffuse material based on polytetrafluoroethylene, and which is widely accepted 

as a reflectance standard close to a Lambertian surface [43,44]. As such, its polarimetric 
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characteristics have been widely studied and documented in the literature [45–47]. In par-

ticular, it was shown that Spectralon behaves as a pure partial depolarizer, the depolari-

zation power increasing with the reflectance value [48]. For that reason, we chose to use a 

Spectralon sample with a diffuse reflectance of 99%, i.e., the highest diffuse reflectance of 

any known materials. 

By means of the TWDM-based endoscopic Mueller polarimeter, we first performed 

a Mueller polarimetric image of a 500 µm × 500 µm area of this Spectralon sample (126 × 

126 pixels). Then, each Mueller matrix was first decomposed by the Lu–Chipman method 

and the linear retardance δ, the orientation of the eigenaxes of retardance θ, the linear 

diattenuation DL, and the depolarization power Δ of each pixel were extracted. These po-

larimetric characteristics are plotted in Figure 6a–d, respectively. We can observe that δ, 

θ, and DL drastically change from one pixel to the next. However, as expected, Δ is ~zero 

in most of the pixels and it remains small (lower than 0.3) in the others. These nonzero 

values are due to the fact that, Spectralon being highly diffusive material, very low inten-

sity is re-coupled into the fiber and then detected, resulting in degraded signal to noise 

ratio. 

 

Figure 6. (a) linear retardance δ; (b) orientation of the eigenaxes of retardance θ; (c) linear diattenu-

ation DL; (d) and depolarization power Δ, directly calculated for each pixel of the 126 × 126 Mueller 

image of a 500 µm × 500 µm area of a Spectralon sample, from the Lu–Chipman decomposition of 

the corresponding elementary Mueller matrices measured with the TWDM-based endoscopic 

Mueller polarimeter. 

Then, we applied the method of averaging Mueller matrices of neighboring pixels as 

depicted in Section 2. Figure 7a–c displays the depolarization power calculated for each 

pixel P of the image, when the considered floating square window around P includes, 

respectively, N = 9 pixels (n = 1), 49 pixels (n = 3), and 121 pixels (n = 5). In these figures, 

we can notice varied but significant values of Δ which are the signature of the diversity of 

the polarimetric characteristics displayed in Figure 6. Furthermore, as shown in Figure 

7d–f, the standard deviation σ 

σ of the distribution of the calculated Δ decreases as the number of pixels included 

in the floating window increases, i.e., the calculated Δ tends to a value representing the 

depolarization power of the entire analyzed area. 

(a) (b) (c) (d)
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Figure 7. Images of depolarization power of a Spectralon sample (a–c) and associated histograms 

(d–f) calculated by the method of averaging Mueller matrices of neighboring pixels, when consid-

ering a floating square window around each pixel containing: (a) and (d) 9 pixels; (b) and (e) 49 

pixels; (c) and (f) 121 pixels. 

The averaged matrix 𝑀̅ of all the 126 × 126 = 1576 measured Mueller matrices is the 

following: 

1.000 0.006 0.003 0.003

0.030 0.628 0.011 0.017
   

0.012 0.005 0.610 0.003

0.010 0.018 0.023 0.221

M

−

− −
=

−

−

 
 
 
 
 
 

 (14) 

As expected, matrix 𝑀̅ is very close to the Mueller matrix of a pure partial depolar-

izer, where coefficients mi,j (i ≠ j) ~ 0 and coefficients m22, m33, and m44 are relatively high 

but significantly lower than 1. We can notice that the amount of spatial depolarization 

induced by the Spectralon sample is almost insensitive to the orientation of an incident 

linear polarization, since m22~m33. On the other hand, an incident circular polarization ex-

periences higher depolarization from the Spectralon sample than a linear polarization 

since coefficient m44 is significantly lower than coefficients m22 and m33. The depolarization 

power directly calculated from this matrix 𝑀̅ is equal to 0.51. It is notably lower than that 

reported in previous papers, regarding similar Spectralon sample with 99% diffuse reflec-

tance [47,48]. This discrepancy can be explained by the fact that the experimental condi-

tions are significantly different in these papers, in particular the size of the region illumi-

nated at the same time which is much larger than in our measurements.  

3.2. Depolarization Measurement on a Biological Sample 

Afterwards, we achieved the same kind of measurement on a 40 µm thick sample of 

rat tail tendon (126 × 126 pixels). This biological sample rich in Type-I collagen is likely to 

exhibit retardance due to the birefringence of the collagen fibers as well as depolarization 

in the regions where the collagen fibers are disorganized. The linear retardance, the ori-

entation of the eigenaxes, the linear diattenuation, and the depolarization in each pixel of 

the imaged area were extracted by means of the Lu–Chipman decomposition of the asso-

ciated Mueller matrix. The corresponding polarimetric images are shown in Figure 8. One 

more time, we can notice that the measured depolarization power was ~0 for any individ-

ual pixel (Figure 8d). Then, we selected two sub-areas in the images of Figure 8, one at the 

top delimited by white boundaries (so-called sub-area 1) and one at the bottom delimited 

by red boundaries (so-called sub-area 2). A large diversity of retardance and of eigenaxes 

(c)(b)(a)

(d)   : 0.37
σ = 0.16

(e)   : 0.49
σ = 0.08

(f)   : 0.50
σ = 0.06
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orientation can be seen in sub-area 1, whereas these characteristics are much more similar 

in sub-area 2. This observation is quantitatively confirmed by means of the histograms 

reported in Figure 9. In these conditions, one can expect to find higher Δ in sub-area 1 than 

in sub-area 2, when implementing the method of averaging Mueller matrices of 

neighboring pixels. 

 

Figure 8. (a) linear retardance δ; (b) orientation of the eigenaxes of retardance θ; (c) linear diattenu-

ation DL; (d) and depolarization power Δ, directly calculated for each pixel of the 126 × 126 Mueller 

image of a 500 µm × 500 µm area of a rat tail tendon sample, from the Lu–Chipman decomposition 

of the corresponding elementary Mueller matrices measured with the TWDM-based endoscopic 

Mueller polarimeter. 

 

Figure 9. Histograms of the linear retardance (a,c) and of the orientations of the eigenaxes of retard-

ance (b,d) in sub-area 1 (a,b) and in sub-area 2 (c,d) of the polarimetric images of Figure 8. 

(a) (b)

(c) (d)

sub-area 1

sub-area 2

(a) (b)

(c) (d)

sub-area 1

sub-area 2
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As already performed with the Spectralon sample, we applied the method of averag-

ing Mueller matrices of neighboring pixels to calculate the depolarization power associ-

ated to each pixel P, when considering a floating square window around P of N = 9 pixels 

(n = 1), 49 pixels (n = 3), and 121 pixels (n = 5), respectively. The corresponding images are 

displayed in Figure 10. In sub-area 2, where the polarimetric characteristics of the involved 

pixels are almost similar, the depolarization power calculated when considering a floating 

square window of 121 pixels (Figure 10c) is limited to about 0.25. As expected, it is signif-

icantly higher in sub-area 1 (up to about 0.6), where the diversity of the polarimetric char-

acteristics of the involved pixels is larger.  

 

Figure 10. Depolarization power of a rat tail tendon sample calculated by the method of averaging 

Mueller matrices of neighboring pixels, when considering a floating square window around each 

pixel of: (a) 9 pixels; (b) 49 pixels; (c) 121 pixels. 

The above measurements show that, thanks to the method of averaging Mueller ma-

trices of neighboring pixels, one can calculate depolarization powers representative of the 

diversity of the polarization states transmitted by the pixels of given sub-areas, and there-

fore representative of the actual amount of spatial depolarization induced by these sub-

areas. Unfortunately, an in-depth quantitative comparison of these values of Δ with others 

measured by means of a classical wide-field free-space Mueller polarimeter would not 

really make sense, since the experimental conditions are, by construction, drastically dif-

ferent. Nevertheless, this does not prevent this evaluation of Δ from being of great interest 

in view of completing the polarimetric characterization of biological tissues achieved by 

means of our TWDM-based endoscopic Mueller polarimeter, for application to the early 

diagnosis of certain diseases of inner organs.  

4. Conclusions 

In this paper, we proposed a method for estimating the depolarization power Δ of a 

sample, from non-depolarizing Mueller matrices measured through a single-mode fiber 

endoscope. For each pixel P of the depolarization image, this method founded on the pi-

oneer works by Van de Hulst [39] and later by Gil and Bernabeu [34] consists of: 

- calculating a new matrix 𝑀̅ as the normalized sum of the Mueller matrices of all pix-

els included in a floating window centered on P; 

- performing the polar decomposition of 𝑀̅ by the Lu–Chipman method; 

- calculating Δ from the depolarization matrix resulting from this decomposition. 

By means of numerical simulations, we first verified that increasing the diversity of 

the polarization states from the assembly of considered pixels actually results in increased 

Δ, as predicted. Then, we used a single-mode fiber-based endoscopic Mueller polarimeter 

founded on the so-called “Two-Wavelength Differential Method (TWDM)” for measuring 

the Mueller matrices of all the 126 × 126 pixels of a 500 µm × 500 µm area of a high reflec-

tance standard (Spectralon sample). We showed that the normalized sum of these Mueller 

matrices was very close to the Mueller matrix of a pure partial depolarizer. Finally, with 

the same technique, we characterized a biological sample (rat tail tendon). We obtained 

highly contrasted Δ, from 0.25 to 0.6, depending on the diversity of the polarization states 

transmitted by the considered sub-areas of this sample. All these results are completely 

consistent and they are in qualitative good accordance with predictions.  

(a) (b) (c)

N = 9 N = 49 N = 121

Δ  0.6

Δ  0.25
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However, because our endoscopic Mueller polarimeter involves an optical fiber for 

transporting both the probe beam and part of the reflected light, and because this fiber 

must be single-mode at the working wavelengths, the measurement conditions are very 

different from those encountered with usual wide-field free-space Mueller polarimeters. 

On the one hand, only a very small region of the sample is probed at a given time (size of 

the spot focused on the sample), and on the other hand, the fiber behaves as a very narrow 

spatial filter on the reflected beam. For these reasons, a significate quantitative comparison 

with measurements of depolarization reported elsewhere cannot be achieved at this point, 

and further study regarding such comparison will be necessary. Thus, in the following, 

this issue will constitute a priority work. Another technical issue to be considered is the 

frame rate of our endomicroscope which can remain too low for operational use of the 

technique. Indeed, the current somewhat long 2s duration for one image may result in 

measurements subject to motion artefacts (heartbeat, patient breath…). Even if this motion 

could be reduced by pressing the extremity of the microprobe against the targeted tissue, 

additional research effort should be achieved for increasing the frame rate. 

Nevertheless, to our best knowledge, this is the first work allowing complete polari-

metric characterization of a sample through a single-mode fiber endoscope, including an 

estimation of the depolarization. Because this last quantity is of great interest for early 

diagnosis of certain diseases of biological tissues, this work reinforces the potential of en-

doscopic Mueller polarimetry in view of performing such diagnoses on inner organs, 

without biopsy. 
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Appendix A 

Calculation of the maximum depolarization power Δmax attainable with a parallel se-

ries of pure retarders with varied retardances δi in a range of extend Ψδ around a central 

value δ0, and with the orientation of their eigenaxes θi taken in the range of maximal ex-

tend Ψθ = π. 

Let us remember that the Mueller matrix of a pure retarder of retardance δ with its 

eigenaxes oriented with an angle θ in the reference framework is [14]: 

2 2

2 2

1 0 0 0

0 cos 2 sin 2 .cos sin 2 .cos 2 .(1 cos ) sin 2 .sin
   

0 sin 2 .cos 2 .(1 cos ) sin 2 cos 2 .cos cos 2 .sin

0 sin 2 .sin cos 2 .sin cos

R

A D E
M

G B F

H I C

       

       

    

= + = − = −
=

= − = + =

= = − =

 
 
 
 
 
 

 (A1) 

Let us now consider a uniform random selection of a large number of n retarders Ri 

(1 ≤ i ≤ n) with their retardance δi taken in a range of extend Ψδ around a central value δ0, 
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and with the orientation of their eigenaxes θi taken in a range of extend Ψθ around a cen-

tral value θ0, so that: δ0 − Ψδ/2 ≤ δi ≤ δ0 + Ψδ/2 and θ0 − Ψθ/2 ≤ θi ≤ θ0 + Ψθ/2.  

The Mueller matrix of a retarder Ri being noted MRi, the Mueller matrix of the n re-

tarders in parallel is the mean Mueller matrix of the matrices MRi (1 ≤ i ≤ n), noted M : 

1

1 n

Ri

i

M M
n =

=   (A2) 

1 0 0 0

0
   

0

0

A D E
M

G B F

H I C

=

 
 
 
 
 
 

where 
1

1
       , ,......,

n

i

i

X X X A B I
n =

= =  (A3) 

The maximum depolarization power Δmax of the matrix M will be obtained with the 

largest diversity of the orientations of the eigenaxes, i.e., with Ψθ = π. Let us calculate the 

non-diagonal coefficients of M  (i.e., , , , ,D E F G H  and I ) in this case where Ψθ = π. 

1

sin 2 .cos 2 .(1 cos )
1 n

i i i

i

D
n

  
=

= −  (A4) 

Since the random selection of the parameters δi and θi is uniform and since we con-

sider a large number of retarders, we can write: 
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Using the relationship 
sin 2

sin .cos
2

a
a a = , Equation (A6) becomes: 
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The left integral of Equation (A7) being zero, we finally obtain D  = 0 and as G D=

, we deduce that 0G = . 

Similarly, we calculate E  with: 

0 0 0 0

0 00 0

2 2 2 2

2 22 2
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1 1 1
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 

  
   

    
  

       
  

+ + + +

− −− −

−
−

=      (A8) 

The left integral of Equation (A8) is zero, so that E  = 0, and as H E= − , we deduce 

that 0H = . 

Finally, we calculate F  with: 
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The left integral of Equation (A9) is zero, so that F  = 0, and as I F= − , we deduce 

that 0I = . 

Since 0D E F G H I= = = = = = , Equation (A3) becomes: 
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 (A10) 

M  is the Mueller matrix of a pure partial depolarizer which depolarization power 

is [19]:  

max 1
3

A B C+ +
 = −  (A11) 

Let us now calculate 
A

, 
B

 and 
C
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As we proceeded for the previous quantities, we can write: 

0 0 0

0 0 0

2 2 2
2 2

2 2 2

cos 2 sin 2 cos
1 1 1

.A d d d





 
  

  
  

     
  

+ + +

− − −

+    

0 0 0

0 0 0

2 2 2

2 2 2

cos 4 ) cos 4 ) cos
1 1 1

(1 (1 .
2 2

d d d





 
  

  
  

     
  

+ + +

− − −

= ++ −    

0 0sin sin
1 1

2 2 2 2

 



 
 


=

    
+ + − −    

    
0sin cos

1 1
.

2 2









= +  

0

sin

cos
1 21 .
2

2










=

 
 
+ 

  
 

 

(A13) 

Similarly, we can calculate: 
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







= +  

0

sin

cos
1 21 .
2

2










=

 
 
+ 

  
 

 (A14) 

and 

0

sin

cos
2 .

2

C










=  (A15) 
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With 0      and 
00      we can note that 0A B=    and then A A=   and 

B B= . 

In the case where 00
2


  , 0C   and then C C= . In that case, from Equations 

(A13)–(A15), we can deduce that: 

0

sin

cos
21

2

A B C










+ + = +   

And finally, from Equation (A11): 

max 0

sin

cos
2 21
3

2










 
 

 = − 
  
 

  

The maximum value of Δmax is reached when 0
2


 =  , whatever Ψδ. This maximum 

value is 
2

3
. 

In the case where 0
2


   , 0C   and then C C= − . In that case, from Equations 

(A13)–(A15), we can deduce that: 

1A B C+ + =    

and from Equation (A11), we deduce that max

2

3
 = , whatever 0

2


   and whatever Ψδ. 
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