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Abstract: In this study, we demonstrated a framework for improving the image quality of compu-
tational ghost imaging (CGI) that used a conditional generative adversarial network (cGAN). With
a set of low-quality images from a CGI system and their corresponding ground-truth counterparts,
a cGAN was trained that could generate high-quality images from new low-quality images. The
results showed that compared with the traditional method based on compressed sensing, this method
greatly improved the image quality when the sampling ratio was low.
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1. Introduction

Ghost imaging, also known as correlation imaging, has been one of the frontiers and
hot spots in the field of quantum optics in recent years [1–21]. It is a new imaging technique
based on the correlation characteristics of quantum entanglement or classical light field
fluctuations. Ghost imaging generally obtains the target object information nonlocally
through the intensity correlation between the reference light field and the target detection
light field.

Ghost imaging techniques, as new imaging techniques, can solve some problems that
are difficult to solve using traditional optical imaging techniques. For example, ghost
imaging has a strong anti-interference ability, which leads to it having an imaging quality
that is significantly better than that obtained by traditional optical imaging techniques
in complex optical environments (such as atmospheric turbulence [22] and scattering
mediums [20,21,23]). Recently, ghost imaging techniques have been widely used in laser
radar detection [24,25], 3D imaging [26–28], X-ray ghost imaging [29–31], fluorescence
microscopy [32], optical encryption [19,33], and terahertz imaging [34–36]. Ghost imaging
has also gradually outperformed classical imaging in terms of its extremely weak light
imaging ability, its image signal-to-noise ratio, its spatial resolution, and its dynamic
range. In addition, researchers have enriched and innovated the technical means of ghost
imaging from the perspectives of its irradiation light source, its imaging mechanism, its
recovery algorithm, and so on, which has greatly expanded the implementation methods
and application scenarios of ghost imaging.

Ghost imaging techniques have attracted much attention due to their significant
advantages, such as their strong anti-interference abilities. However, ghost imaging requires
a long sampling time and a large number of iterative calculations to obtain high-quality
imaging since it needs to conduct multiple measurements. Therefore, it is very important
for ghost imaging to obtain an appreciable image quality with fewer measurements.

The development of compressed sensing in signal processing [37,38], which introduced
compressed sensing into ghost imaging, has allowed ghost imaging to achieve a relatively
higher imaging quality with fewer measurements than traditional methods [39]. For exam-
ple, Katkovnik et al. applied compressed sensing to computational ghost imaging(CGI),
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which simplified the experimental device and reduced the number of measurements while
guaranteeing a certain imaging quality [40]. Along this line, Wenlin Gong and Shensheng
Han and others realized compressed sensing super-resolution ghost imaging by introducing
a sparse constraint [41–43].

In addition to compressed sensing, artificial intelligence was considered for use in
ghost imaging due to its various advantages. For example, Barbastathis et al. were the
first to propose the training of a deep neural network for a lensless imaging system to
recover phase objects [44]. Lyu Meng [45] developed a neural network based on a DNN to
optimize the imaging quality under a low sampling rate, and Shimobaba [46] proposed a
neural network based on a U-net structure to achieve the denoising optimization of CGI.
Subsequently, the authors of [47] employed a CNN to further improve the image quality of
ghost imaging. Zhang [48] proposed a singular-value decomposition compressed ghost
imaging method based on deep unfolding to achieve a good antinoise performance at
low sampling rates. Although compressed sensing has been applied in ghost imaging, its
computational complexity is still relatively high since it involves a large number of iterative
calculations. The aforementioned artificial intelligence methods have complex network
structures, resulting in a huge number of parameters that need to be optimized.

Against this background, we combined a conditional generative adversarial network
(cGAN) [49,50] with CGI to reduce the complexity in the reconstruction computation. Our
aim of this work was to be able to quickly and accurately reconstruct a target image with
a low sampling ratio. Specifically, first, a low-quality image was obtained through CGI
at a lower sampling rate, which was used as the condition input of a lightweight cGAN
network, and the trained cGAN then generated a high-quality image so as to improve the
overall imaging quality performance. In the simulation experiment, we used the MNIST
dataset of 50,000 images [51] and their low-quality ghost images to train the network.
Through training, the deep neural network could learn the features of the image and make
a prediction, in addition to establishing a mapping between a low-quality image and its
repective high-quality image. The rest of this work is organized as follows. In Section 2,
we describe the considered scenarios and introduce the network structure. In Section 3,
we provide the numerical simulation results and verify the effectiveness of the proposed
scheme. Finally, Section 4 gives a brief conclusion of this study.

2. Methods

In this section, the computational ghost imaging system and network structure are
summarized, and the network training is then described.

2.1. Imaging Scheme

Differently from traditional ghost imaging, CGI reconstructs an image of an object
by correlating the preset speckle light field distribution and the light intensity obtained
by the bucket detector. Therefore, it only needs one bucket detector to recover the image
of an object. The modulation of the speckle light field can be realized by a light source
modulator, such as spatial light modulator (SLM) or a digital micromirror device (DMD).
A series of speckle light field designs have been achieved by programming. Specifically,
the light source modulator is loaded according to the preset cycle sequence and the target
scene is modulated N times in the spatial light field. After the emitted laser is modulated
by the light source modulator, the speckle light field for ghost imaging is obtained. The
detection value Bi of the corresponding bucket detector can be obtained through a series of
illuminations, where the object is illuminated by N different speckle light fields. The Bi can
then be expressed as

Bi = ∑
x

∑
y

Ii(x, y)T(x, y), (1)

where T(x, y) is the transmittance function of the measured object in which x and y are the
coordinates of the object plane and Ii(x, y) is the ith speckle light field, ∀i ∈ {1, 2, . . . , N}.
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For the reconstruction image of the measured object, the signal intensity Bi detected
by the bucket detector and the speckle light field intensity Ii(x, y) can be subjected to a
second-order correlation operation to recover the image, which can be expressed as [52]

O(x, y) =
1
N

N

∑
i=1

(Bi − 〈Bi〉)Ii(x, y), (2)

where 〈·〉 = 1
N ∑i · denotes the ensemble average over all N different speckle light fields.

We observe from Equation (2) that N speckle light fields are required to restore high-
quality target images. However, the value of N is generally relatively large, which causes
imaging process to suffer from high computational complexity. In order to overcome this
difficulty, we first reduced the number of measurements needed to obtain a relatively
low-quality reconstruction image, and we then employed a cGAN to enhance the image
quality. The corresponding reconstruction process can be expressed as

Õ(x, y) = R{O(x, y)}, (3)

whereR{·} represents the cGAN that maps the low-quality image O(x, y) to its respective
high-quality image. Here, we proposed the training of a feasible neural network R̃cGAN ,
which is given by

R̃cGAN = arg min
G

max
D
LcGAN(G, D) + λLL1(G), (4)

whereG is a generative model anD is a discriminative model. Both G and D are nonlinear
mapping functions. The function LcGAN is the loss function of the cGAN. The notation
arg min

G
max

D
LcGAN(G, D) means that G tries to minimize LcGAN whileD tries to maximize

it, and arg is the abbreviation of argument. The last item makes the generator near the
ground-truth output in an L1 sense. Here, λ is a constant and its value is 100. The two loss
functions in Equation (4) can be described in detail as follows [49]:

LcGAN(G, D) = E[log D(x | y)] +E[log(1− D(x | G(z | y)))] (5)

LL1(G) = E[‖y− G(x | z)‖1], (6)

where x, y, and z represent the output image, the ground-truth image, and the input image,
respectively. Here E stands for the operation of mathematical expectation. L1 means
L1 − norm.

2.2. Simulation

Figure 1 is a diagrammatic sketch of computational ghost imaging. The simulation
was based on this standard computational ghost imaging setup [39]. Monochromatic light
with a wavelength of 532 nm was emitted by the laser source. The phase modulation masks
were generated by a computer-controlled SLM according to the following formula:

Mr(k1, k2) = exp(j2πϕr(k1, k2)) (7)

1 6 k1 6 N1, 1 6 k2 6 N2, r = 1, 2, · · · , K,

where the random phase ϕr(k1, k2) is uniformly distributed over the interval [0, 1) and is
independent for all k1, k2, and r. In the modeling of wavefield propagation, the F-DDT
technique was applied [53]. The bucket detector measured the total intensity of the light
illuminating it. Considering the noise of the bucket detector when observing the light
intensity and the thermal noise of the detector itself, Gaussian white noise was added to
the output signal of the bucket detector during the simulation. Finally, the image was
reconstructed by calculating the correlation between the measurement intensity of the
bucket detector and the corresponding speckle pattern generated by the SLM.
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Figure 1. Diagrammatic sketch of computational ghost imaging.

2.3. Network Structure

Inspired by a cGAN [49] and pix2pix [50], we used a neural network whose structure
is schematically shown in Figure 2. The inputs of the generator were the low-quality
reconstructed images from the CGI system. The output images of the generator and their
corresponding ground-truth images constituted a pair of inputs to the discriminator. The
output of the discriminator was a binary value, which indicated whether the input gener-
ated image was true or fake. The architecture of the generator is shown in Figure 3, and
it was based on U-Net [54]. There were only five layers of encoders and four layers of de-
coders, which was lightweight for our scheme. Each convolution block in the encoders was
composed of a convolutional layer with a 3× 3 convolutional kernel and the rectified linear
unit (ReLU). In addition, a 2× 2 convolution kernel was used for the maximum pooling
layer during the downsampling process. A 2× 2 convolutional kernel was applied in the
process of upsampling. For the discriminator we employed a PatchGAN discriminator to
produce high-quality target images.

Real  

or

Fake?

Input images Generated

Images

Ground Truth

Generator

Discriminator

Figure 2. Schematic illustration of the training pipeline of deep learning ghost imaging.

Copy and Crop

Input

Image

16
32

64

128 512 128
64

32
16

conv 3 3 

ReLU

max pool 2 2 

up-conv 2 2

Generate

Image

Figure 3. Generator architecture: the number of channels is provided at the bottom of the box, and
the size of the image is marked on the right side of the box.
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2.4. Preparation of Training Data and Network Training

We recall that the inputs of the training network are pairs of picture data, which are
composed of ground-truth images and their corresponding CGI reconstruction results.
According to Equation (2), we found that the reconstruction of the target image was,
mathematically, the inner product between the measured intensity and the corresponding
speckle pattern. Thus, we used the simulation method to generate training data pairs.
Specifically, the train set was generated from the MNIST handwritten digit databases
through ghost imaging simulation.

The training step was 1000. The program was implemented using Python version
3.6 and the cGAN was implemented based on the TensorFlow framework. The GPU-chip
NVIDIA 1080ti was used to accelerate the calculation.

3. Results and Discussions

In this section, we evaluate the performance that was achieved by our improved
CGI scheme based on a cGAN. To demonstrate the benefit of our improved scheme, we
compared our scheme with traditional CGI and compressive sensing computational ghost
imaging (CSCGI) techniques. For the CGI, the correlation between the measured intensity
of the bucket detector and the random patterns were calculated to reconstruct the image.
For the CSCGI, we further applied the BM3D algorithm on the basis of CGI to reconstruct
the target image. In the simulations, each MNIST handwritten digit was binarized and
resized to a size of 32× 32, which indicated that N = 1024. In addition, the sampling
ratio β was set as M

N , where M ∈ {4, 8, 16, 32, 64, 128, 256, 512, 768, 1024}. Then, we had
β ∈ {0.39%, 0.78%, 1.56%, 3.12%, 6.25%, 12.5%, 25%, 12.5%, 25%, 50%, 75%, 100%}.

3.1. Results

In Figure 4, the simulation results achieved by our developed scheme are compared
with CGI and CSCGI for different values of the sampling ratio, β. As expected, we first
observed that the quality of the target images achieved by all schemes improved with the
different values of the sampling ratio, β. In addition, we observed that the image quality
achieved by CSCGI was better than that achieved by CGI when the value of β was relatively
large (e.g., β ≥ 6.25%), which is due to the fact that the BM3D algorithm was employed to
improve the reconstruct performance in the CSCGI.

100% 25% 6.25% 1.56% 0.39%
Ground

truth
3.12%12.5%75% 50% 0.78%

C
G
I

C
S
C
G
I

O
U
R
S

Figure 4. Comparison of simulation results from CGI, CSCGI, and our scheme (labeled as OURS) at
different values of β.

We also observed that the image quality achieved by our scheme was superior to that
of the CGI and CSCGI schemes, especially when the value of β was relatively small (e.g.,
β ≤ 6.25%). To illustrate this phenomenon, we plotted Figure 5, where the sampling ratio β
was set as 1.56%. From this figure, we observed that the reconstructed image achieved by
the CGI and CSCGI schemes were completely overwhelmed by noise, while our proposed
scheme still achieved recognizable image quality. This result demonstrates that our scheme
can effectively suppress noise.
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Ground

truth

CGI

CSCGI

OURS

Figure 5. Comparison of simulation results from CGI, CSCGI, and our scheme (labeled as OURS) at a
sampling ratio of 1.56%.

3.2. Discussions

In this subsection, we employ the root of mean square error (RMSE), the peak signal-to-
noise ratio (PSNR), and the structural similarity index (SSIM) to quantify the reconstruction
performance. The RMSE is defined as

RMSE(U, V) =

√√√√ 1
HW

H

∑
i=1

W

∑
j=1

(
Ui,j −Vi,j

)2, (8)

where H and W are the height and width of the image, respectively. The values U and V
are the evaluated image and the reference image, respectively.

The PSNR is defined as

PSNR(U, V) = 20 log10
MAX

RMSE(U, V)
, (9)

where MAX = 255 is the maximum gray value of the image.
The SSIM is described in [55] as

SSIM(U, V) =
(2µuµv + C1)(σuv + C2)

(µ2
u + µ2

v + C1)(σ2
u + σ2

v + C2)
, (10)

where µ and σ are the mean and variance of U and V, respectively, and σuv is the covariances
of U and V. The constants C1 and C2 are included to avoid instability when µ2

u + µ2
v and

σ2
u + σ2

v are very close to zero. Specifically, we chose C1 = (K1L)2 and C2 = (K2L)2, where
K1 and K2 are tiny constants and L is the dynamic range of pixel values. In this work
K1 = 0.01, K2 = 0.03, and L = 255, so we obtained C1 = 6.5025 and C2 = 58.5225.

In Figure 6, we evaluate the SSIM, the PSNR, and the RMES performances achieved
by CGI, CSCGI and our developed scheme. We note that all the original images in the test
set of the MNIST dataset were selected to verify the performance achieved by all schemes.
We observed from Figure 6 that both the SSIM and the PSNR performances achieved by
all schemes increases with the sampling ratio, while the RMSE performances obtained
by all schemes decreased with the sampling ratio. This is because the obtained target
image information became richer as the sampling ratio increased. From this figure, we also
observed that the SSIM, the PSNR, and the RMSE performances achieved by our scheme
were significantly better than that achieved by CGI and CSCGI. Specifically, the SSIM, the
PSNR, and the RMSE obtained by our scheme at low sampling ratios (e.g., β = 6.25%) was
even better than that obtained by the CGI and CSCGI schemes at high sampling ratios (e.g.,
β = 100%), which showed the superiority of our developed cGAN.
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Figure 6. Quantiative evaluation of CGI, CSCGI, and our scheme (labeled as OURS) in the simulation
with a sampling ratio of β = W·H

N .

According to β = M
N and N = 1024, this meant M = 64 when β = 6.25%, and

M = 1024 when β = 100%. We know that the smaller the number of samples M, the
less time is taken. As we know from Figure 6, with the same performance, our scheme
took less time than the GI and CSGI schemes. For example, when the M was 64, the
GI scheme took 2.3488 s for each image to be reconstructed, while the CSGI scheme,
respectively, took 8.3272 s. When the M was 1024, the GI scheme took 24.3536 s for each
image to be reconstructed, while the CSGI scheme, respectively, took 124.6102 s. Our
scheme predicted that 10,000 images would take 107.7102 s, and each image would take
0.0108 s. Considering the time required for CGI to reconstruct each image before, the actual
time for our scheme to reconstruct each image was only 2.3596 s. When the PSNR was
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about 13.5 dB, our scheme took 2.3596 s, while the GI and CSGI schemes took 24.3536 s
and 124.6102 s, respectively. Therefore, our scheme (at a sampling ratio of 6.25%) had the
same performance as the GI and CSGI schemes (at a sampling ratio of 100%), but the time
consumption was greatly reduced.

We also present the corresponding standard deviations of the SSIM, the PSNR, and
the RMES. Although the corresponding standard deviations of the PSNR and the RMSE
obtained by our scheme were close to those of the CGI and CSCGI schemes, the standard
deviations of the SSIM obtained by our scheme was significantly smaller than that of the
CGI and CSCGI schemes, especially when the sampling ratio β was relatively large.

4. Conclusions

We proposed using a cGAN to improve the quality of images produced with CGI. We
analyzed the performance of the proposed ghost imaging method under different sampling
ratio conditions and compared the results with conventional CGI and CSCGI schemes.
Our observations suggested that the proposed method had much better performance in
comparison to the other two schemes, especially at low sampling ratios, which indicated
that our scheme has the advantages of being strongly antinoise and having a fast computing
speed. Moreover, this work made some useful progress towards exploring the practical
applications of GI.
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