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Abstract: The tripartite entanglement generated from a cascaded parametric amplifier is always
present in the whole gain region in the ideal condition. However, in practical applications, the quan-
tum entanglement is very fragile and easily deteriorated by quantum noise from interactions with
external environments, e.g., the avoidable attenuation and amplification operations may lead to some
degradation effects on the quantum entanglement. Therefore, in this work, bipartite entanglement for
the three pairs and tripartite entanglement in this cascaded parametric amplifier under the circum-
stances of attenuation and amplification operations are analyzed by using positivity under partial
transposition criterion. The results show that tripartite entanglement is robust to the deterioration
effects from the attenuation and amplification operations rather than bipartite entanglement. Our
results may find some practical applications of multipartite quantum entanglement in quantum
secure communications.

Keywords: quantum noise; bipartite entanglement; tripartite entanglement; cascaded parametric
amplifier

1. Introduction

Attenuation and amplification operations can both introduce extra noise, which can in-
evitably affect the physical properties of the different systems. For example, in the classical
regime it has been found that for an ideal amplification process, the noise figure (NF) of a
transmitted light beam never exceeds a factor of two, while for an attenuation process, there
is no limit as to how large the NF can become [1]. More importantly, in the quantum regime,
the effects of attenuation and amplification on the exact solution to the master equation of
a nonlinear oscillator are presented, and it is shown that amplification destroys quantum
coherence more rapidly than attenuation does [2]; the behavior of the non-Gaussian state
of light under the actions of probabilistic noiseless amplification and attenuation is exam-
ined, and it is found that the mean-field amplitude may decrease (increase) in the process
of noiseless amplification (attenuation) [3], and the authors analyze the general laws of
continuous-variable (CV) entanglement dynamics during the deterministic attenuation and
amplification of the physical signal carrying the entanglement [4]. As discussed above, the
attenuation and amplification operations can largely influence the behaviors of the physical
systems by means of the different ways.

The parametric amplifier, for example, the four-wave mixing (FWM) process, acts as
an effective quantum device to generate bipartite entanglement [5–9] in the CV domain. Re-
cently, it has been reported that by cascading the two FWM processes, the tunable delay of
the Einstein-Podolsky-Rosen entangled state [10], the low-noise amplification of an entan-
gled state [11], SU(1,1) interferometer [12,13], and quantum mutual information [14] have
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been experimentally realized. In 2014, it has been theoretically proposed and experimen-
tally demonstrated that a cascaded FWM system can be used to generate multiple quantum
correlated beams based on the atomic ensemble [15]. After that, tripartite entanglement gen-
erated from this cascaded parametric amplifier has been theoretically proved to be present
in the whole gain region in the ideal condition [16]. However, in practical applications,
quantum entanglement is very fragile and easily deteriorated by the quantum noise from
the interaction with external environment, e.g., unavoidable attenuation and amplification
operations may lead to some deterioration effects to quantum entanglement [17]. It should
be emphasized that in Ref. [18] the optical losses introduced by the attenuation operation
as the inevitable experimental imperfections are used to consider their deterioration effect
on the entanglement of subsystems and multipartite entanglement generated by cascaded
FWM processes. In the present work the deterioration effect introduced by the amplification
operation is also considered. Therefore, here bipartite entanglement for the three pairs
and tripartite entanglement in this cascaded parametric amplifier under the circumstances
of attenuation and amplification operations are both analyzed by using positivity under
partial transposition (PPT) criterion [19–22]. The results show that tripartite entanglement
is robust to the deterioration effects from the attenuation and amplification operations
rather than bipartite entanglement.

This work is organized as follows. In Section 2, we describe the physical system
of the cascaded FWM processes under the cases of the attenuation and amplification
operations. In Section 3, the effect of the detector imperfections on bipartite entanglement
and tripartite entanglement is characterized by using PPT criterion. In Section 4, the effects
of the attenuation and amplification operations are also analyzed. In Section 5, we give a
brief summary of this work.

2. Cascaded FWM Processes under the Cases of the Attenuation and
Amplification Operations

Cascaded FWM processes under the cases of attenuation and amplification operations
are depicted in Figure 1. As depicted in Figure 1a, an intense pump beam and a much
weaker signal mode are crossed in the center of cell1 with a small angle; then, the signal
mode is amplified and a new idler mode is generated on the other side of the pump beam
at the same time. After that, the signal mode from the first FWM process (cell1) as the seed
is again seeded into the second FWM process (cell2). âη1, âη2, and âη3 are three newly-
generated modes in the output stage of the cascaded processes. The detection efficiencies
for the three modes âη1, âη2, and âη3 are assumed to be the same for the sake of simplicity.
More importantly, the attenuation operation is acted upon by η in Figure 1a. To analyze
the effect of the attenuation operation on bipartite entanglement for the three pairs and
tripartite entanglement, the input–output relation in Figure 1a can be written as

âη1 =
√

ηD â
′
v1 +

√
1− ηD âηD1

=
√

ηD[
√

G1 âv1 +
√

g1 â†
0 ] +

√
1− ηD âηD1

=
√

G1ηD âv1 +
√

g1ηD â†
0 +

√
1− ηD âηD1, (1)

âη2 =
√

ηD[
√

G2 â
′′
0 +
√

g2 â†
v2] +

√
1− ηD âηD2

=
√

G2ηD â
′′
0 +
√

g2ηD â†
v2 +

√
1− ηD âηD2

=
√

G2ηD[
√

η â
′
0 +

√
1− η âη ] +

√
g2ηD â†

v2 +
√
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=
√

G2ηDη â
′
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√
G2ηD(1− η)âη +

√
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√
G2ηD(1− η)âη

+
√

g2ηD â†
v2 +

√
1− ηD âηD2

=
√

G1G2ηηD â0 +
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G2g1ηηD â†
v1 +

√
G2ηD(1− η)âη
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âη3 =
√

ηD[
√

G2 âv2 +
√
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′′†
0 ] +

√
1− ηD âηD3

=
√

G2ηD âv2 +
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g2ηD â
′′†
0 +

√
1− ηD âηD3

=
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G2ηD âv2 +
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g2ηD[
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η â
′†
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√
1− η â†

η ] +
√

1− ηD âηD3

=
√

G2ηD âv2 +
√

g2ηDη[
√

G1 â†
0 +
√

g1 âv1] +
√

g2ηD(1− η)â†
η +

√
1− ηD âηD3

=
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G2ηD âv2 +
√

G1g2ηDη â†
0 +
√

g1g2ηDη âv1 +
√

g2ηD(1− η)â†
η

+
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1− ηD âηD3, (3)

where Gj (j = 1, 2) is the power gain in the FWM process and Gj − gj = 1. Equations (1)–(3)
can be rewritten in the form of the quadrature operators as follows:

X̂η1 = âη1 + â†
η1 =

√
G1ηDX̂v1 +

√
g1ηDX̂0 +

√
1− ηDX̂ηD1 , (4)

X̂η2 = âη2 + â†
η2 =

√
G1G2ηηDX̂0 +

√
G2g1ηηDX̂v1 +

√
G2ηD(1− η)X̂η

+
√

g2ηDX̂v2 +
√

1− ηDX̂ηD2 , (5)

X̂η3 = âη3 + â†
η3 =

√
G2ηDX̂v2 +

√
G1g2ηηDX̂0 +

√
g1g2ηηDX̂v1

+
√

g2(1− η)ηDX̂η +
√

1− ηDX̂ηD3 , (6)

and

Ŷη1 = −i(âη1 − â†
η1) =

√
G1ηDŶv1 −

√
g1ηDŶ0 +

√
1− ηDŶηD1 , (7)

Ŷη2 = −i(âη2 − â†
η2) =

√
G1G2ηηDŶ0 −

√
G2g1ηηDŶv1 +

√
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−√g2ηDŶv2 +
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η3) =

√
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g2(1− η)ηDŶη +
√

1− ηDŶηD3 , (9)

where X̂ and Ŷ represent the amplitude and phase quadratures, respectively, and have the
commutation relation [X̂, Ŷ] = 2i. From the above expressions for the quadrature operators,
the variances and covariances of amplitude and phase quadratures can be obtained to
construct covariance matrix (CMη123). 〈X̂2

m〉 denotes the amplitude quadrature variance
due to the zero mean value of 〈X̂m〉. Similarly, for the covariance, we use the notation
〈X̂mX̂n〉 and for the case where m = n it will reduce to the usual variance, 〈X̂2

m〉. Therefore,
the variances and covariances of tripartite entanglement under the case of attenuation
operation can be expressed as〈

X̂2
η1

〉
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〈
Ŷ2

η1

〉
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=
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=
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〈
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= −
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〉
= 2ηηD(G1 − 1)

√
G2(G2 − 1)

+2ηD

√
G2(G2 − 1). (15)
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Equations (10)–(15) contain all of the information about tripartite entanglement under
the case of attenuation operation when attenuation operation is switched to amplification
operation. Similarly, the input–output relation of tripartite entanglement under the case of
amplification operation in Figure 1b can be given by

âG1 =
√

G1ηD âv1 +
√

g1ηD â†
0 +

√
1− ηD âηD1 , (16)

âG2 =
√

G1G2GηD â0 +
√

G2g1GηD â†
v1 +

√
G2ηD(G− 1)â†

G

+
√

g2ηD â†
v2 +

√
1− ηD âηD2 , (17)

âG3 =
√

G2ηD âv2 +
√

G1(G2 − 1)GηD â†
0 +

√
G(G1 − 1)(G2 − 1)ηD âv1

+
√

g2(G− 1)ηD âG +
√

1− ηD âηD3 , (18)

similarly, the corresponding quadrature operators of the three modes âG1, âG2, and âG3 can
also be written as

X̂G1 = âG1 + â†
G1 =

√
G1ηDX̂v1 +

√
g1ηDX̂0 +

√
1− ηDX̂ηD1 , (19)

X̂G2 = âG2 + â†
G2 =

√
G1G2GηDX̂0 +

√
G2g1GηDX̂v1 +

√
G2ηD(G− 1)X̂G

+
√

g2ηDX̂v2 +
√

1− ηDX̂ηD2 , (20)

X̂G3 = âG3 + â†
G3 =

√
G2ηDX̂v2 +

√
G1g2GηDX̂0 +

√
g1g2GηDX̂v1

+
√

g2(G− 1)ηDX̂G +
√

1− ηDX̂ηD3 , (21)

and

ŶG1 = −i(âG1 − â†
G1) =

√
G1ηDŶv1 −

√
g1ηDŶ0 +

√
1− ηDŶηD1 , (22)

ŶG2 = −i(âG2 − â†
G2) =

√
G1G2GηDŶ0 −

√
G2g1GηDŶv1 −

√
G2ηD(G− 1)ŶG

−√g2ηDŶv2 +
√

1− ηDŶηD2 , (23)

ŶG3 = −i(âG3 − â†
G3) =

√
G2ηDŶv2 −

√
G1g2GηDŶ0 +

√
g1g2GηDŶv1

+
√

g2(G− 1)ηDŶG +
√

1− ηDŶηD3 , (24)

thus the variances and covariances under the case of amplification operation can also be
given by 〈

X̂2
G1

〉
=

〈
Ŷ2

G1

〉
= (2G1 − 1)ηD + (1− ηD), (25)〈

X̂2
G2

〉
=

〈
Ŷ2

G2

〉
= 2G2G1GηD + (1− 2ηD), (26)〈

X̂2
G3

〉
=

〈
Ŷ2

G3

〉
= 2GG1(G2 − 1)ηD + 1, (27)〈

X̂G1X̂G2
〉

= −
〈
ŶG1ŶG2

〉
= 2ηD

√
G1(G1 − 1)G2G, (28)〈

X̂G1X̂G3
〉

=
〈
ŶG1ŶG3

〉
= 2ηD

√
G1(G1 − 1)(G2 − 1)G, (29)〈

X̂G2X̂G3
〉

= −
〈
ŶG2ŶG3

〉
= 2GG1ηD

√
G2(G2 − 1), (30)

similarly, Equations (25)–(30) contain all of the information about tripartite entanglement
under the case of the amplification operation. We will use the above expressions to analyze
the entanglement properties of bipartite entanglement for the three pairs and tripartite
entanglement under the cases of attenuation and amplification operations because the three
modes output from the cascaded FWM system are Gaussian states, and the entanglement
properties of Gaussian states can be fully quantified by CM123 (CMη123 and CMG123) using
the PPT criterion.
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Figure 1. Cascaded FWM processes under the cases of the attenuation and amplification opera-
tions. (a) Cascaded FWM processes under the case of the attenuation operation. â0, âν1, and âν2 are
vacuum inputs; â′0, â′′0 , and â′ν1 are the generated modes from the first FWM process; âηD1 , âηD2 , and
âηD3 are the vacuum states induced by the detector imperfections; and âη and âG are the vacuum
states introduced by the attenuation operation and amplification operation, respectively. ηD is the
detector efficiency, and η is the attenuation operation. G1 and G2 are the power gains of cell1 and
cell2, respectively. âη1, âη2, and âη3 are three output modes. (b) Cascaded FWM processes under the
case of the amplification operation. âG1, âG2, and âG3 are three output modes. G is the amplification
operation. See (a) for others.

3. The Effect of the Detector Imperfections on Bipartite and Tripartite Entanglement

In this section, we will analyze the effect of the detector imperfections ηD on bipartite
and tripartite entanglement. PPT criterion as a sufficient and necessary criterion can be
used to quantify the effect of the detector imperfections on quantum entanglement. Firstly,
we will focus on bipartite entanglement for the three pairs. For example, only when both of
the symplectic eigenvalues of the partially transposed (PT) CMη12 no less than 1 [19–22],
will bipartite entanglement between âη1 and âη2 not be present. Following this idea, the
smaller symplectic eigenvalue Eη1−2 can be used to quantify the entanglement between
âη1 and âη2, i.e., if the smaller symplectic eigenvalue Eη1−2 is smaller than 1, bipartite
entanglement is present between âη1 and âη2. Utilizing Equations (10)–(15), we can get the
detailed expression of Eη1−2 as below

Eη1−2 = 1 + [−2 + G1 + (1− η + ηG1)G2]ηD

−
√
[G2

1 + 2G1G2(−1− η + ηG1) + G2
2(1− η + ηG1)2]η2

D, (31)

the dependence of Eη1−2 on the detector imperfections ηD is the black dashed line (G1 =
G2 = 2 and η = 1) in Figure 2a. The degree of bipartite entanglement between âη1 and âη2
increases with the increasing of ηD. We can explain this as follows. Firstly, when ηD = 1
the two entangled modes âη1 and âη2 are fully detected, the symplectic eigenvalue Eη1−2
is smaller than 1 [16]; secondly, when ηD = 0, the two detected modes âη1 and âη2 are in a
vacuum state, respectively, and the entangled state translate into the product state between
the two vacuum state (because the correlation term vanishes, i.e., the value of Equation (13)
is equal to 0), thus the value of Eη1−2 is equal to the variance of vacuum state, i.e., Eη1−2 = 1;
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thirdly, based on the above arguments, the value of Eη1−2 decreases with the increasing
of ηD. However, it can be shown that the value of Eη1−2 is always smaller than or equal
to 1, meaning that bipartite entanglement between âη1 and âη2 is robust to the detector
imperfections. Similarly, the smaller symplectic eigenvalue Eη1−3 of âη1 and âη3 is given by

Eη1−3 = [−η + (−1 + η)G2 + G1(1 + η − ηG2)]ηD +√√√√√ 1 + 2[−2 + η − (−1 + η)G1 + G2 + η(−1 + G1)G2]ηD
−4(−1 + η)(−1 + G1)(−1 + G2)η

2
D + [η − (1 + η)G1

+G2 + η(−1 + G1)G2]
2η2

D

, (32)

the dependence of Eη1−3 on ηD is the blue dotted line in Figure 2a. Its behavior can be
understood as follows. Firstly, when ηD = 1, the two modes âη1 and âη3 with 100% detector
efficiency are in thermal state, respectively, because they have been amplified by the
independent parametric amplification from different FWM processes, and this leads to the
absence of the direct interaction and quantum entanglement. Consequently, the symplectic
eigenvalue Eη1−3 is greater than 1 [16]; secondly, when ηD = 0, the two modes âη1 and âη3
with 0% detector efficiency are in the vacuum state, respectively, and the unentangled state
translates into the product state between the two vacuum states (because the correlation
term vanishes, i.e., the value of Equation (14) is equal to 0); thus, the value of Eη1−3 is equal
to the variance of the vacuum state, i.e., Eη1−3=1; finally, according to the above discussions,
the value of Eη1−3 increases with the increasing of ηD in Figure 2a. However, its value is
always greater than or equal to 1, meaning that bipartite entanglement between âη1 and
âη3 is not robust to the detector imperfections ηD.

In addition, the smaller symplectic eigenvalue Eη2−3 of âη2 and âη3 is given by

Eη2−3 = 1 + [−2 + η − 2(−1 + η)G2 + ηG1(−1 + 2G2)]ηD

−
√
[η2(−1 + G1)2 − 4(1− η + ηG1)2G2 + 4(1− η + ηG1)2G2

2 ]η
2
D, (33)

the dependence of Eη2−3 on ηD is the red solid line in Figure 2a. Its explanations are
analogous to the ones of Eη1−2 and Eη1−3. Its value is always smaller than or equal to 1,
meaning that bipartite entanglement between âη2 and âη3 is also robust to the detector
imperfections.

Secondly, the PPT criterion can also be applied to quantify the effect of quantum noise
on tripartite entanglement due to PPT criterion as a sufficient and necessary criterion for all
1 × N decompositions of Gaussian states, where N + 1 is the total number of the entangled
modes. For the tripartite entanglement condition, the three possible 1 × 2 partitions have
to be tested. All of the partitions of the tripartite entangled state are robust to the detector
imperfections when the smallest symplectic eigenvalue for each of the three PT CMs is
smaller than 1, i.e., tripartite entanglement is robust to the detector imperfections. When PT
operation is applied to the modes âη1, âη2, and âη3, the corresponding smallest symplectic
eigenvalues are Eη1−23, Eη2−13, and Eη3−12, respectively. The detailed expressions of Eη1−23,
Eη2−13, and Eη3−12 are not listed here due to their complexity. However, the results are
depicted in Figure 2b; the values of Eη1−23 (black dashed line), Eη2−13 (blue dotted line), and
Eη3−12 (red solid line) in Figure 2b are all smaller than or equal to 1, meaning that the three
1 × 2 partitions are robust to the detector imperfections, i.e., the tripartite entanglement is
robust to the detector imperfections.

Finally, as the above discussed, bipartite entanglement for the two pairs is not robust
to the detector imperfections, while tripartite entanglement is robust to the detector im-
perfections; this is because bipartite entanglement is the result of the decoherence effect of
tripartite entanglement, e.g., bipartite entanglement between âη1 and âη3 can be obtained
by tracing the mode âη2 in tripartite entanglement. Therefore, tripartite entanglement
containing more entanglement resources is more robust.
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Eη1-3

(a) (b)

Eη1-2
Eη2-3

Eη1-23

Eη2-13

Eη3-12

Figure 2. The effect of the detector imperfections on bipartite and tripartite entanglement. (a) The
dependence of Eη1−2 (black dashed line), Eη1−3 (blue dotted line), and Eη2−3 (red solid line) on the
detector imperfections ηD with G1 = G2 = 2 and η = 1. (b) The dependence of Eη1−23 (black dashed
line), Eη2−13 (blue dotted line), and Eη3−12 (red solid line) on the detector imperfections ηD with
G1 = G2 = 2 and η = 1. The horizontal line: E = 1.

4. The Effect of Attenuation Operation η and Amplification Operation G on Bipartite
and Tripartite Entanglement

After the effect of detector imperfections on bipartite entanglement for the three pairs
and tripartite entanglement is analyzed, their robustness degree to attenuation operation η
and amplification operation G will be investigated in this section. Firstly, we will consider
the condition of bipartite entanglement using PPT criterion. The dependence of Eη1−2
(black dashed line), Eη1−3 (blue dotted line), and Eη2−3 (red solid line) on attenuation
operation η with G1 = G2 = 2 and ηD = 1 is depicted in Figure 3a. As depicted in Figure 3a,
the value of Eη1−2 decreases with the increasing of η and is not always smaller than 1; thus,
bipartite entanglement between âη1 and âη2 is not always robust to attenuation operation.
These phenomena can be understood as follows. When η = 1, the two modes âη1 and âη2 are
in entangled state and the value of Eη1−2 is smaller than 1 [16]; when η = 0, the entangled
state between âη1 and âη2 translates into the product state between the two thermal states
(the value of Equation (13) is equal to 0), so the value of Eη1−2 is equal to the smaller
variance between âη1 (2G1–1 > 1 for any G1 > 1 in terms of η = 0 and ηD = 1 in Equation (10))
and âη2 (2G2–1 > 1 for any G2 >1 in terms of η = 0 and ηD = 1 in Equation (11)). Therefore,
based on the above arguments, the value of Eη1−2 is greater than 1 when η = 0 (1) and not
always robust to η. Similarly, the value of Eη1−3 decreases with the increasing of η and is
always greater than 1; therefore, bipartite entanglement between âη1 and âη3 is not robust
to attenuation operation. Similar to the above analysis, as for Eη1−3, when η = 1, the two
modes âη1 and âη3 are not entangled; consequently, the value of Eη1−3 is greater than 1 [16].
When η = 0, the unentangled state between âη1 and âη3 translates into the product state
between the two thermal states (the value of Equation (14) is equal to 0), so the value of
Eη1−3 is equal to the smaller variance between âη1 (2G1–1 > 1 for any G1 > 1 in terms of
η = 0 and ηD = 1 in Equation (10)) and âη3 (2G2–1 > 1 for any G2 > 1 in terms of η = 0 and
ηD = 1 in Equation (12)). In addition, the value of Eη1−3 with η = 0 (2G1–1 = 2G2–1 = 3)
is greater than 1.8 with η = 1 [16]). Therefore, Eη1−3 also decrease with the increasing of
η. More interesting is Eη2−3; its value slightly increases with the increasing of η, meaning
that a amplified vacuum seed can degrade the bipartite entanglement between âη2 and
âη3. These phenomena can be understood as follows. When η = 1, the seed mode for the
second FWM process is a amplified vacuum state amplified by the first FWM process; it
can deteriorate the bipartite entanglement between âη2 and âη3. When η = 0, the seed mode
is a vacuum state, which is better for bipartite entanglement. Thus, based on the above
arguments, the symplectic eigenvalue Eη2−3 characterizing bipartite entanglement with
η = 0 is smaller than the one with η = 1; therefore, the value of Eη2−3 increases with the
increasing of η. However, it is still robust to attenuation operation.
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Secondly, the effect of amplification operation on bipartite entanglement for the three
pairs in Figure 1b will be investigated. Utilizing Equations (25)–(30), the smaller symplectic
eigenvalue of âG1 and âG2 can be expressed as

EG1−2 = 1− 2ηD + G1ηD + GG1G2ηD

−
√

G2
1η2

D − 4GG1G2η2
D + 2GG2

1G2η2
D + G2G2

1G2
2η2

D, (34)

EG1−2 is the black dashed line (G1 = G2 = 2 and ηD = 1) in Figure 3b. The degree of bipartite
entanglement between âG1 and âG2 decreases with the increasing of G. When G is large
enough, the entanglement between âG1 and âG2 disappears because EG1−2 is equal to 1.
More importantly, as compared to the case of Eη1−2, it can be shown that the value of EG1−2
is always smaller than or equal to 1, meaning that bipartite entanglement between âG1
and âG2 is robust to amplification operation. In other words, the attenuation operation
destroys bipartite entanglement between âη1 and âη2 more rapidly than the amplification
operation does; this is because the correlation term Equation (28) for introducing bipartite
entanglement increases with the increasing of G in the amplification operation. Similarly,
the smaller symplectic eigenvalue EG1−3 of âG1 and âG3 is given by

EG1−3 = −ηD + G1ηD + GG1ηD − GG1G2ηD

+

√
1 + 2[−1 + G1(1− G + GG2)]ηD
+[−1 + G1(1 + G− GG2)]

2η2
D

, (35)

EG1−3 is the blue dotted line in Figure 3b and its value is always greater than or equal to 1.
In addition, the smaller symplectic eigenvalue of âG2 and âG3 can be expressed as

EG2−3 = 1− ηD − GG1ηD + 2GG1G2ηD

−
√

η2
D − 2GG1η2

D + G2G2
1η2

D − 4G2G2
1G2η2

D + 4G2G2
1G2

2η2
D, (36)

EG2−3 is the red solid line as depicted in Figure 3b. Bipartite entanglement between âG2
and âG3 is robust to amplification operation due to its value is always smaller than or equal
to 1 and increases with the increasing of G. Let us discuss the behavior of EG2−3. When
G = 1, the seed mode for the second FWM process is a amplified vacuum state amplified
by the first FWM process, and it can deteriorate bipartite entanglement between âG2 and
âG3. When G > 1, more extra uncorrelated noise will be introduced into the seed mode,
and it will totally destroy bipartite entanglement; thus, the symplectic eigenvalue EG2−3
charactering bipartite entanglement with G = 1 is smaller than the one with G > 1. Therefore
the value of EG2−3 increases with the increasing of G.

Finally, the effect of attenuation and amplification operations on tripartite entangle-
ment is depicted in Figure 4. As depicted in Figure 4a, the values of Eη1−23 (black dashed
line), Eη2−13 (blue dotted line), and Eη3−12 (red solid line) with G1 = G2 = 2 and ηD = 1 are
all smaller than or equal to 1, meaning that tripartite entanglement is robust to attenuation
operation. Similarly, the values of EG1−23 (black dashed line), EG2−13 (blue dotted line),
and EG3−12 (red solid line) in Figure 4b are also all smaller than or equal to 1, meaning
that tripartite entanglement is also robust to amplification operation. Additionally, all of
the traces increase with the increasing of G, which can be explained as follows. With the
increasing of G, more extra uncorrelated noise will be introduced into the seed mode for the
second FWM process, which can lead to the decoherence effect to tripartite entanglement;
thus, the three symplectic eigenvalues (EG1−23, EG2−13, and EG3−12) with G > 1 are all
greater than the ones with G = 1. Therefore, all of the traces in Figure 4b increase with
the increasing of G. Therefore, tripartite entanglement is robust to both attenuation and
amplification operations.
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Eη1-3

(a) (b)

Eη1-2

Eη2-3

EG1-2

EG1-3

EG2-3

Figure 3. The effect of attenuation operation η and amplification operation G on bipartite and
tripartite entanglement. (a) The dependence of Eη1−2 (black dashed line), Eη1−3 (blue dotted line),
and Eη2−3 (red solid line) on attenuation operation η with G1 = G2 = 2 and ηD = 1. (b) The dependence
of EG1−2 (black dashed line), EG1−3 (blue dotted line), and EG2−3 (red solid line) on amplification
operation G with G1 = G2 = 2 and ηD = 1. The horizontal line: E = 1. Inset: the expanded gain region
plot for (b).

Eη2-13

(a) (b)

Eη1-23

Eη3-12

EG1-23

EG2-13

EG3-12

Figure 4. The effect of attenuation operation η and amplification operation G on tripartite entangle-
ment. (a) The dependence of Eη1−23 (black dashed line), Eη2−13 (blue dotted line), and Eη3−12 (red
solid line) on attenuation operation η with G1 = G2 = 2 and ηD = 1. (b) The dependence of EG1−23

(black dashed line), EG2−13 (blue dotted line), and EG3−12 (red solid line) on amplification operation
G with G1 = G2 = 2 and ηD = 1. The horizontal line: E = 1. Inset: the expanded gain region plot for (b).

5. Conclusions

In conclusion, the effect of attenuation and amplification operations on bipartite
entanglement for the three pairs and tripartite entanglement generated from a cascaded
parametric amplifier are analyzed by using PPT criterion. The results show that tripartite en-
tanglement is robust to deterioration effects from attenuation and amplification operations
rather than bipartite entanglement. The results presented here may find some practical ap-
plications of multipartite quantum entanglement in quantum secure communications [23]
and quantum key distribution [24–26].
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